l‘)

Check for
updates

RPP Algorithm: A Method
for Discovering Interesting Rare Itemsets

Sadeq Darrab®™) | David Broneske, and Gunter Saake

University of Magdeburg, Magdeburg, Germany
{sadeq.darrab,david.broneske,gunter.saake}Qovgu.de

Abstract. The importance of rare itemset mining stems from its ability
to discover unseen knowledge from datasets in real-life domains, such as
identifying network failures, or suspicious behavior. There are significant
efforts proposed to extract rare itemsets. The RP-growth algorithm out-
performs previous methods proposed for generating rare itemsets. How-
ever, the performance of the RP-growth degrades on sparse datasets,
and it is costly in terms of time and memory consumption. Hence, in
this paper, we propose the RPP algorithm to extract rare itemsets. The
advantage of the RPP algorithm is that it avoids time for generating use-
less candidate itemsets by omitting conditional trees as RP-growth does.
Furthermore, our RPP algorithm uses a novel data structure, RN-list,
for creating rare itemsets. To evaluate the performance of the proposed
method, we conduct extensive experiments on sparse and dense datasets.
The results show that the RPP algorithm is around an order of magni-
tude better than the RP-growth algorithm.

Keywords: Rare itemset + RN-list - RPP

1 Introduction

Since the emergence of data mining, there is a plethora of methods introduced
to extract frequent itemsets [2]. However, rare itemset mining (RIM) discov-
ers unusual events (known as rare itemsets). Discovering rare itemsets provides
useful information in many domains since it extracts an uncommon valuable
knowledge from datasets. RIM is widely used in many applications such as
market basket analysis [2], predicting telecommunication equipment failures [§],
identifying fraudulent credit card transactions [9], medical diagnosis [10], and
adverse drug reactions [15]. For instance, in the health care domain, frequently
discovering (known) complications are less interesting than rarely (unexpected)
complications that may be more important to be discovered as early as possi-
ble. Therefore, discovering unusual events (rare itemsets) is more interesting,
and it comes into the focus since it may help us to avoid adverse consequences.
Traditional mining methods extract rare itemsets by setting a very low support
threshold, which leads to an over-generation of itemsets. Thus, analyzing a large

© Springer Nature Singapore Pte Ltd. 2020
Y. Tan et al. (Eds.): DMBD 2020, CCIS 1234, pp. 14-25, 2020.
https://doi.org/10.1007/978-981-15-7205-0_2


http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-7205-0_2&domain=pdf
https://doi.org/10.1007/978-981-15-7205-0_2

RPP Algorithm: A Method for Discovering Interesting Rare Itemsets 15

amount of itemsets is computationally expensive. To overcome this issue, a high
support threshold is used, which leads to a loss of interesting rare itemsets. Thus,
extracting rare itemsets is a challenge, and it is called a rare item problem [11].
To handle the rare item problem, there are various methods proposed [1,3,4,6].
These methods can be classified based on their traversal of the search space
into breadth-first search and depth-first search [19]. Breadth-first search meth-
ods use the most well-known algorithm called an apriori algorithm [2] to mine
rare itemsets. These methods inherit apriori algorithm’s drawbacks (overly huge
candidate sets, redundant scans over the data). To overcome these shortcom-
ings, depth-first search methods have been introduced to mine rare itemsets
by utilizing an FP-tree structure [12]. A prominent FP-tree-based algorithm to
mine rare itemsets is RP-growth [6]. The RP-growth algorithm solves the short-
comings of apriori-based algorithms in terms of time and memory consumption.
However, it generates an unnecessary amount of conditional trees, which com-
promises search time and storage consumption in sparse datasets [14]. However,
especially sparse datasets contain many uncommon patterns. Hence, how to
design an efficient mining method for rare itemsets mining on sparse datasets is
still critical research. In this paper, we propose the RPP algorithm for discov-
ering rare itemsets. The RPP algorithm is inspired by a novel data structure,
N-list [13], to generate interesting rare itemsets. The following steps summarize
the contribution of this paper.

— An RPPC-tree is constructed to maintain all information needed to extract
rare itemsets. It is constructed from transactions that contain at least one
rare item.

— An RN-list of all interesting rare items is created.

— The RN-list of rare items are used in the mining process to generate the whole
set of rare itemsets by intersecting these lists.

The rest of the paper is organized as follows. The concept of rare itemset
mining is presented in Sect. 2 and relevant literature is introduced in Sect. 3. The
details of the proposed algorithm, the RPP algorithm, is explained in Sect. 4.
Sections 5 and 6 present the performance results and conclusion, respectively.

2 Preliminaries

To understand the basic concepts of RIM, let us consider the following motivating
example.

Motivating example: given a transaction dataset DB in Table 1, let maximum
support threshold (maxzSup) and rare support threshold (minSup) be 0.80, 0.40,
respectively. The task of rare itemset mining is to extract the set of all rare
itemsets with support not less than minSup but also not exceeding maxSup.

Definition 1. Rare itemsets: An itemset X is called rare itemset if its occur-
rence frequency in a given dataset is less than the user given minimum support
threshold, fregSup, such that Sup(X) < fregSup.



16 S. Darrab et al.

Definition 2. Interesting rare itemsets: An itemset X whose support satis-
fies the following conditions is called the interesting rare itemset: Sup(X) <
mazSup A Sup(X) > minSup.

For instance, the itemset {ce : 2} in the
motivating example is called interesting rare
itemset since Sup(X) = 0.40 which is less Table 1. A simple dataset.

than mazSup and it is greater or equals to ~ TID|Items  |Ordered items
the minSup. 1 |a,b,c,d|b,c,a,d

2 |b,d b, d

3 a,b,c,elb,c a,e
3 Related Work 1 Jo.dehled e

5 a, b,c, glb,c, a

Rare itemset methods can be classified based
on the exploration of the search space into
two categories. The first category includes level-wise exploration methods that
depend on the downward closure property for pruning uninteresting item-
sets [1,2]. The second category uses a level-depth exploration [6,21].

3.1 Level-Wise Exploration Methods

Level-wise exploration methods work similar to an apriori algorithm [2]. These
methods generate k-itemsets (itemsets of cardinality k) with using (k — 1)-
itemsets by utilizing the downward closure property. In [1], an apriori-inverse
algorithm is proposed to extract rare itemsets that have a support below a max-
imum support threshold (maxzSup). It works similar to the apriori algorithm
except that in the first step the apriori-inverse algorithm generates 1-itemsets
that do not satisfy maxzSup. In [3], two algorithms are presented to detect rare
itemsets. In the first step, an apriori-rare algorithm identifies the minimal rare
itemsets (itemsets that do not have any subset which is rare). In the second step,
the minimal rare itemsets are used by an MRG-Exp algorithm as a seed for gen-
erating the whole set of rare itemsets. A method in [4] stated that exploring
the itemset space in a bottom-up fashion is costly in term of time and memory
consumption since it is common that rare itemsets are found at the top of the
search space (i.e., in the last iteration steps). Instead, they have proposed AfRIM
using a top-down traversal approach. AfRIM starts with the largest n-itemset
that contains all unique items found in a dataset. It discovers the candidate n-
1-itemset subsets from rare n-itemsets and collects the interesting rare itemsets.
Still, AfRIM is a time-consuming method since it considers zero-itemsets in the
mining process as it begins from the largest itemset that contains all distinct
items in the dataset. To avoid zero-itemset generation, the rarity algorithm [5]
is proposed for retrieving rare itemset. It works similar to AfRIM except that it
starts from items in the longest transaction in the dataset.

In [11], the first breadth-first search algorithm MSapriori, is proposed to
extract both frequent and rare itemsets under different support thresholds (MIS).
The MSapriori algorithm and its optimizations [16-18] extract frequent itemsets



RPP Algorithm: A Method for Discovering Interesting Rare Itemsets 17

including rare ones by assigning lower support thresholds for rare (infrequent)
itemsets than for most common (frequent) itemsets. Hence, they work similarly
to the former apriori [2] with the following major difference: It declares an itemset
(frequent and rare) as an interesting itemset if its support satisfies the lowest
MIS of items within it.

3.2 Level-Depth Exploration Methods

The above methods use the formal apriori algorithm [1], which is computation-
ally expensive since 1) they employ candidate generation and test fashion, and 2)
redundant scans over the dataset for each new generated candidate itemset. Fur-
thermore, these methods spend a huge amount of time searching for the whole
candidate itemsets (including useless itemsets whose support is zero) in order to
identify the rare itemsets. To overcome these problems, several methods [21-24]
are presented to discover most common (frequent) itemsets including unusual
(rare itemsets). CFP-growth [23] and its optimization CEFP-growth++ [24] algo-
rithms scan the dataset once to build a CFP-tree. Then, they reconstruct the
tree by employing several punning and merging techniques. Reconstruction of
the tree is computationally expensive in terms of memory and time consumption.
To overcome this shortcoming, the MISFP-growth algorithm [21] is proposed to
extract frequent itemsets including rare ones under MIS. The MISFP-growth
efficiently builds the tree without a need for the reconstruction phase. Unlike
the FP-growth based methods, mis-eclat [22] utilizes a vertical representation
of data to extract both frequent and rare itemsets. Although these methods
address the rare itemset problem, they suffer from overly huge itemsets since
they extract both frequent and rare itemsets.

Focusing only on rare itemsets, the RP-Tree algorithm [6] is proposed to
extract rare itemsets without the expensive itemset generation and pruning
steps. It utilizes a tree data structure, the FP-Tree [12]. The RP-Tree is based
on FP-growth, which uses a divide-and-conquer approach to generate rare item-
sets. However, for each rare item, RP-growth generates a conditional tree in the
mining process for generating rare itemsets. The RP-growth method becomes
costly when datasets are sparse since building RP-trees, which bases on condi-
tional pattern, recurrently makes RP-growth inefficient. It is common that rare
itemsets mostly occur in sparse datasets. Hence, how to design efficient mining
methods for mining rare itemsets is still a critical research problem.

4 Mining Rare Itemsets with Rare Pre Post (RPP)
Algorithm

Inspired by PrePost algorithm in [13], we propose the rare pre post algorithm
(RPP) to extract meaningful rare itemsets. The RPP involves three sequential
phases as follows.

1. At the first step, we build a Rare Pre-Post Code tree (RPPC-tree) to store all
information needed to extract rare itemsets. The RPPC-tree is constructed



18

S. Darrab et al.

by adding transactions that contain at least one rare item. Each node in
the RPPC-tree consists of four fields: item name, count, pre-order rank and
post-order rank. Item name represents the name of the item that this node
represents. Count registers the number of transactions that reaches this node.
Pre-order and post-order ranks stand for the number of traversed nodes from
the root to this node when using pre or post order traversal.

At the second step, we traverse the RPPC-tree to generate the rare pre post
code (RPP-code) for each node in the RPPC-tree. For a node X in the RPPC-
tree, the tuple of {(X-pre-order, X-post-order): count} is called the
RPP-code of X. For performance reasons, the RPP-codes are sorted in an
ascending order according to their pre-order values. The RPP-codes of nodes
that contain the same item X in the RPPC-tree is called RN-list of X, which
is generated in Step 3.

For the mining process, the RPP algorithm constructs RN-lists by considering
only the rare items. The RPP method iteratively constructs RN-lists of rare
itemsets of length k by intersecting RN-lists of rare itemsets of length k—1.
Finally, this process is terminated when there is no more RN-list that can be
intersected with.

To show how the RPP method works, let us consider our motivating example

to illustrate the three required phases of RPP algorithm in the following.

4.1

Construction of the RPPC-tree

To hold the mnecessary information
from a dataset, the RPPC-tree is con-
structed. The tree is built by scanning
the dataset twice. In the first scan, the
support of 1-itemsets is counted. In the
second scan, we add a transaction into
the tree if the transaction has at least
one rare item (item with support no
greater than mazSup and no less than
minSup). The RPPC-tree looks like
the RP-tree and it can be defined as
follows.

Definition 3. The RPPC-tree is a
tree structure with the following prop-
erties: It consists of one root node,
which is labeled as “null” , and a set
of nodes as the children of the root.

Fig.1. RPPC-tree after adding all trans-
actions in Table 1.

Except the root, each node in the RPPC-tree consists of four fields: item-name,
count, pre-order, and post-order. Item name holds the name of the item that
this node represents. Count registers the number of transactions that reaches
this node. A pre-post rank of a node registers the pre-order and post-order for



RPP Algorithm: A Method for Discovering Interesting Rare Itemsets 19

each node within the tree, i.e., its position when traversing the tree in pre-order
or post-order fashion, respectively.

Following the motivating example, we show how the RPPC-tree is con-
structed. To build the RPPC-tree, the dataset is scanned twice. In the first scan,
we calculate the support of the 1-items and eliminate useless items with support
less than minSup. For instance, the items g, h are discarded since their support
equals 1 which is less than minSup = 2. The interesting items are sorted in
descending support order as in the right column in Table 1. In the second scan,
the transactions in the right column in the Table1 are used to construct the
RPPC-tree. Figure 1 shows the final RPPC-tree after adding all transactions.
As it can be seen from Fig. 1, each node registers the item that this node repre-
sents, the number of transactions that reach this node, and the pre-post rank of
the node. For instance, the node c, its item name is ¢, its count = 3 and (2, 3)
is a pre-post rank of the node c.

4.2 Generating RN-list of Items

The main purpose of the RPPC-
tree is to generate the RN-lists of
items. The RN-lists hold all nec-  Item /RPP-codes Support
essary information for discovering b |{(1, 5): 4}
the whole set of rare itemsets. To :
construct the RN-lists of items,
first, the pre-post codes are gener-
ated for each node in the RPPC-
tree by traversing the tree in pre
and post order.

For a node X, its pre-post code is called RPP-code ((X.pre-order, X.post-
order): count). For instance, the RPP-code of node a is ((3, 2): 3) indicating
that a.pre-order is 3, a.post-order is 2, and its count is 3. The list of the RPP-
codes of nodes that hold the same item X in the RPPC-tree is called the RN-list
of X. The RPP-codes are sorted in ascending order of their pre-order values. For
instance, a node (e: 2) in Fig. 1 has two RPP-codes which are ((5, 1):1), and ((9,
6):1). Then, the RN-list of the itemset e is {((5, 1):1, ((9, 6):1)}. The advantage
of the RN-list approach is its easy support calculation. For the RN-list of itemset
X, which is denoted by (x1, y1): z1, (x2, y2): 22, . . ., (xm, ym) : zm, its support
is zZ1422+...+zm. For instance, the RN-list of the itemset e are {((5, 1):1, ((9,
6):1)} and its support is 2. Following the motivating example, Table 2 shows the
RN-list of all interesting 1-itemset.

Table 2. RN-lists of interesting rare items.

ro| wof ol =

olale]|o
PRV VNN VN pve

4.3 Generation of Rare Itemsets

The rare itemsets can be generated by using the information that is contained
in the RN-lists of itemsets. For RN-lists X, Y, the itemset XY can be generated



20 S. Darrab et al.

if X is an ancestor of Y. We call a node X as an ancestor of node Y when: X.pre-
order <Y.pre-order and X.post-order> Y.post-order (i.e., we call it an ancestor-
descendant relation). To generate the itemset XY, we traverse the RPP-codes of
X and compare them with the RPP-codes of Y. Then, if the ancestor-descendant
relation of X and Y holds (i.e., they are in the same path), we add the RPP-
code of X to the RN-list of XY. For the support count, we add Y.count to the
generated RN-list of XY since the items are sorted according to their descending
support (i.e., the itemset X occurs together with itemset Y at most Y.count).
Following our motivating example, we illustrate this phase as follows. Table 2
contains the RN-list of all 1-itemsets. To shrink the search space, we compare
the RN-list of itemsets with only the RN-list of rare items that satisfy both
of minSup = 2 and maxSup = 4. Thus, the RN-lists of {a, d, e} are used to
generate the whole set of rare itemsets. For instance, to generate rare itemset
{ce}, we first check whether the support of item e satisfies Definition 3. We find
out that minSup = 2 < Sup(e) = 2 < maxSup = 4. Then, we compare the
RN-list of ¢ with RN-list of e as follows.

1. The RN-list of the itemset ¢ is {(2, 3): 3, (7, 8): 1}, and the RN-list of the
itemset e is {(5, 1):1, (9, 6):1}. We compare each RPP-code of ¢ with all
RPP-codes of the itemset e to generate the itemset ce.

2. The RPP-code of ¢ ((2, 3): 3) is compared with the first RPP-code of e ((5,
1):1). We notice that 2 < 5 and 3 > 1, which satisfies the ancestor-descendant
relation. Then, we add the RPP-code {(2, 3): 1} to the RN-list of ce {(2, 3):
1}. Notice, we add the count of itemset e since it is descendant of ¢ and cannot
occur together more than e.count.

3. The RPP-code of ¢ ((2, 3): 3) is compared with the next RPP-code of e ((9,
6):1). We find that 2 < 9 and 3 < 6, which does not satisfy the ancestor-
descendant relation. Then, we would go for the next RPP-code of e. Since
there is no further RPP-code of e, we traverse the next RPP-code of c.

4. The RPP-code of ¢ ((7, 8): 1) is compared with the first RPP-code of e ((5,
1):1). We find that 7 > 5 and 8 > 1, which does not satisfy the ancestor-
descendant relation. Hence, we do not add this RPP-code to the RN-list of
itemset ce.

5. The RPP-code of ¢ ((7, 8): 1) is compared with the next RPP-code of e ((9,
6):1). The ancestor-descendant relation 7 < 9 and 8 > 1, holds. Thus, we add
((7, 8): 1) to the RN-list of ce {(2, 3):1, (7, 8): 1}.

6. The resulted RN-list of the itemset ce is {(2, 3): 1, (7, 8): 1}.

7. The support of the itemset ce is 2. Thus, the itemset ce is interesting rare
itemset since minSup = 2 < sup(ce) = 2 < maxSup = 4.

Similar to the above steps, the process is repeated for the remaining itemsets.
The final rare itemsets for our example are {a: 3, e: 2, d: 2, ba:3, bd: 2, ca:3, cd:
2, ce: 2, bea: 3}. We generate rare itemsets only from rare items {a, d, e}. For
instance, the RN-list of the itemset ¢ will not be compared with the RN-list of
b since the support of the itemset b is not less than the maxSup = 4 value.



RPP Algorithm: A Method for Discovering Interesting Rare Itemsets 21

5 Experimental Results

To measure the performance of the RRP algorithm, we compare its performance
with the state of art algorithm for mining rare itemset, RP-growth [6]. We carried
out several experiments on four real-world datasets: Mushroom, Retail, Pumsb,
and Kosarak. Both, sparse datasets (Kosarak, Retail), and dense datasets (Mush-
room, Pumsb) are used for the evaluation process. The characteristics of the
datasets are summarized in Table 3. For each dataset, the number of transac-
tions, the number of distinct items, and an average transaction are denoted by
# of Trans, # of items, and AvgTrans, respectively. The last column in Table 3
shows the density of the datasets. The datasets are downloaded from FIMI [7].
The experiments run on windows 10, 64 bit operating system, Intel Core i7-
7700HQ CPU 2.80 GHz with 16 GB main memory, and 1 TB hard disk. The
algorithms are implemented in Java to have a common implementation environ-
ment. The source code of RP-growth is downloaded from [20].

Table 3. The characteristics of the datasets.

Dataset Size (MB) | # Items | # Trans | AvgTrans | MaxSup | MinSup (%)
Mushroom | 19.3 119 8124 23 0.01 {0.1,0.2,..., 0.9}
Retail 4.2 16,470 | 88,126 | 10.3 0.1 {0.1,0.2,..., 1}
Pumsb 16.3 2,113 | 49046 | 74 0.8 {525, 55, ..., 70}
Kosarak 30.5 41,271 990,002 | 8.1 0.01 {0.1,0.2,..., 0.9}

5.1 Execution Time

We compare our RPP algorithm with RP-growth to evaluate the execution time
on all the datasets in Table 3. For all experiments, we use two support thresholds
(maxSup and minSup) to extract rare itemsets. For each experiment, we fix
the maxSup support threshold and vary the minimum rare support threshold
(minSup), as shown in columns (maxSup, minSup) in Table 3. The interesting
rare itemsets should be less than maxSup and greater or equal to minSup. In
each graph, the X-axis represents the varied values of minSup, whereas the Y-
axis stands for the execution time. Fig.2(a)—(d) show the performance of the
proposed algorithm, RPP; and RP-growth algorithm in terms of runtime. The
graphs show that our RPP algorithm outperforms RP-growth for all datasets.
The advantage of our RPP algorithm is that it utilizes only RN-lists of rare
itemsets to generate rare itemsets. In contrast, the RP-growth is costly since it
builds conditional trees for each rare item during the mining process. It can be
noticed from the graphs that the RPP algorithm is orders of magnitude faster
than RP-growth at low minSup values. This is a significant improvement since
most of the interesting rare itemsets can be generated with low minSup value. It
can be observed from the graphs that the performance is approximately the same
when increasing the minSup value. They gained the same performance when the
minSup value increased since the difference between maxSup and minSup is
decreased, and a small number of rare itemsets will be generated.



22 S. Darrab et al.

—e—RP-growth 60 —e—RP-growth
RPP RPP

TIME (SEC)
F N oW s oo
IME (SEC)

01 02 03 04 05 06 07 08 009 1 o
MINSUP % 01 02 03 04 05 06 07 08 009
MINSUP %

(a) Execution time (b) Execution time
for Retail dataset for Kosarak dataset
. ——rr-groweh oot
250
w
200
40 gm
530 Z 100
w
o
—— o —
0.4 0.5 0.6 MINSUP( %)
e
(c) Execution time (d) Execution time
for Mushroom dataset for Pumsb dataset

Fig. 2. Execution time of RP-growth and our RPP algorithm for different datasets.

5.2 Memory Consumption

To evaluate the memory cost, we use the same factors that are shown in columns
(maxSup, minSup) in Table 3. Fig. 3(a)—(d) show the memory cost of RPP and
RP-growth algorithms on all datasets at different minSup values. Similar to
the execution time figures, the maxSup value is fixed, while the minSup value
is changed. In all figures, minSup values are located at X-axes, whereas the
Y-axes represent the memory consumption by both algorithms. Fig.3(a)—(b)
show the memory cost of RPP algorithm and RP-growth algorithm on the retail
and Kosarak datasets. The graphs show that our RPP algorithm consumes less
memory than the RP-growth algorithm for the sparse datasets. For the retail
dataset, the RPP algorithm consumes less memory than the RP-growth when
the minSup value exceeds 0.3%, and it consumes a little more memory than the
RP-growth when the minSup value exceeds 0.6%. Fig.3(b) shows the memory
consumption of RPP and RP growth algorithms on the very sparse datasets,
Kosarak. Notably, the RPP algorithm consumes a little less memory than RP-
growth for all minSup values. For dense datasets (Mushroom, Pumsb), Fig. 3(c)
and Fig. 3(d) show the memory consumption of RPP and RP-growth algorithms.
The RPP algorithm consumes more memory than the RP-growth algorithm on
Mushroom and Pumsb datasets.



RPP Algorithm: A Method for Discovering Interesting Rare Itemsets 23

—4—RP-growth 900 —e—RP-growth

e o rer
100 o
o0 s
g, 2 30
00
2
00
o o
MINSUP (%) MINSUP %
(a) Memory consumption for (b) Memory consumption for
Retail dataset Kosarak dataset
et arowtn et growh
200 —m—RPP 2500 —m—RPP
w0
50 2000
e _
E 2 1500
£ 100 g
2w 2 1000
g g
o w00
. o
(c) Memory consumption for (d) Memory consumption for
Mushroom dataset Pumsb dataset

Fig.3. Memory consumption of RP-growth and our RPP algorithm for different
datasets.

5.3 Scalability

To evaluate the scalability of RPP algorithm and the RP-growth, we choose the
largest dataset, Kosarak. It contains about 1 million transactions. The dataset is
equally divided into ten parts. For each experiment, we add 10 % to the previous
accumulative parts. Fig. 4(a)—(b) demonstrates the experimental results of the
RPP and RP-growth algorithms in terms of time and memory consumption. The
graphs illustrate that the proposed RPP algorithm scales better than RP-growth
when increasing the size of the dataset. The RPP algorithm requires less time
and memory since it depends on RN-lists of rare itemsets during the mining
process. For RP-growth, it needs to traverse a big search space and generate
a large number of conditional trees to generate rare itemsets. To sum up, our
RPP algorithm is faster than RP-growth on all datasets that are given in Table 3.
For memory consumption, our RPP algorithm requires less memory on sparse
datasets, and it consumes more memory on dense datasets. Finally, when the
size of the dataset increases, our RPP algorithm scales better than RP-growth.



24 S. Darrab et al.

—e—RP-growth —e—RP-growth
RPP RPP

- > - 150
100
R

10 20 30 s0 90 100

50 60 50 60
SIZE (%) SIZE (%)

(a) Scalability of execution time. (b) Scalability of memory
consumption.

Fig. 4. Scalability of our RPP algorithm compared to RP-growth for the Kosarak
dataset.

6 Conclusion

In this paper, we proposed the RPP algorithm to discover the whole set of rare
itemsets. The RPP algorithm utilizes RN-lists of items, which contains the whole
information needed to generate rare itemsets. The RPP algorithm shrinks the
search since 1) it avoids redundant scans of the dataset, 2) it extracts the whole
set of interesting rare itemsets without generating conditional trees, and 3) the
support of the generated itemsets is calculated by intersection operations. To test
the performance of the RPP algorithm, we compared its performance with the
well-known algorithm for rare itemsets mining on dense and sparse datasets, the
RP-growth algorithm. The experimental results showed that the RPP algorithm
is significantly better than the RP-growth algorithm in terms of execution time,
memory cost, and scalability.

References

1. Koh, Y.S., Rountree, N.: Finding sporadic rules using Apriori-inverse. In: Ho, T.B.,
Cheung, D., Liu, H. (eds.) Pacific-Asia Conference on Knowledge Discovery and
Data Mining (PAKDD), pp. 97-106. Springer, Heidelberg (2005). https://doi.org/
10.1007/11430919-13

2. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large
databases. In: Proceedings of 20th International Conference on Very Large Data
Bases (VLDB), VLDB, pp. 487-499 (1994)

3. Szathmary L., Napoli A., Petko V.: Towards rare itemset mining. In: 19th Interna-
tional Conference on Tools with Artificial Intelligence (ICTAI), IEEE, pp. 305-312

2007

4. x(Adda,) M., Wu L., Feng, Y.: Rare itemset mining. In: Sixth International Conference
on Machine Learning and Applications (ICMLA), IEEE, pp. 73-80 (2007)

5. Troiano, L., Scibelli, G., Birtolo, C.: A fast algorithm for mining rare itemsets.
In: Proceedings of 9th International Conference on Intelligent Systems Design and
Applications, IEEE Computer Society Press, pp. 1149-1155 (2009)

6. Tsang, S., Koh, Y.S., Dobbie, G.: RP-Tree: rare pattern tree mining. In: Cuzzocrea,
A., Dayal, U. (eds.) Data Warehousing and Knowledge Discovery (DaWakK). Lec-
ture Notes in Computer Science, pp. 277—288. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-23544-3 21


https://doi.org/10.1007/11430919_13
https://doi.org/10.1007/11430919_13
https://doi.org/10.1007/978-3-642-23544-3_21
https://doi.org/10.1007/978-3-642-23544-3_21

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

RPP Algorithm: A Method for Discovering Interesting Rare Itemsets 25

Frequent Itemset Mining Dataset Repository. http://fimi.uantwerpen.be/data/
Bhatt, U.Y., Patel P.A.: An effective approach to mine rare items using Maximum
Constraint. In: Intelligent Systems and Control (ISCO), IEEE, pp. 1-6 (2015)
Weiss, G.M.: Mining with rarity: a unifying framework. In: ACM SIGKDD Explo-
rations Newsletter, pp. 7-19 (2004)

Szathmary, L., Valtchev, P., Napoli, A., Godin, R.: Efficient vertical mining of
minimal rare itemsets. In: Proceedings of 9th International Conference Concept
Lattices and Their Applications (CLA), pp. 269-280 (2012)

Lui, C.-L., Chung, F.-L.: Discovery of generalized association rules with multiple
minimum supports. In: Zighed, D.A., Komorowski, J., Zytkow, J. (eds.) European
Conference on Principles of Data Mining and Knowledge Discovery, pp. 510-515.
Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45372-5_59

Han, J., Pei, J., Yin, Y.: Mining frequent patterns without candidate generation.
In: Proceedings of the International Conference on Management of Data (ACM
SIGMOD), pp. 1-12 (2000)

Deng, Z., Wang, Z., Jiang, J.: A new algorithm for fast mining frequent itemsets
using N-lists. Sci. China Inf. Sci. 55, 2008-2030 (2012)

Borah, A., Nath, B.: Rare pattern mining: challenges and future perspectives.
Complex Intell. Syst. 5, 1-23 (2019)

Ji, Y., Ying, H., Tran, J., Dews, P., Mansour, A., Massanari, R.M.: A method for
mining infrequent causal associations and its application in finding adverse drug
reaction signal Pairs. IEEE Trans. Knowl. Data Eng. 25, 721-733 (2012)

Xu, T., Dong, X.: Mining frequent patterns with multiple minimum supports using
basic Apriori. In: Natural Computation (ICNC), IEEE, pp. 957-961 (2013)
Kiran, R.U., Re, P.K.: An improved multiple minimum support based approach
to mine rare association rules. In: Computational Intelligence and Data Mining
(CIDM), IEEE, pp. 340-347 (2009)

Lee, Y.C., Hong, T.P., Lin, W.Y.: Mining association rules with multiple mini-
mum supports using maximum constraints. Int. J. Approximate Reason. 40, 44-54
(2005)

Darrab, S, David, B., Gunter, S.: Modern application and challenges for rare item-
set mining. In: 8th International Conference on Knowledge Discovery (2019)
Fournier-Viger, P., Gomariz, A., Gueniche, T., Soltani A., Wu. C., Tseng V.S.:
SPMF: a java open-source pattern mining library. J. Mach. Learn. Res. (JMLR),
15, 3389-3393 (2014)

Darrab, S., Ergeng, B.: Frequent pattern mining under multiple support thresholds.
In: The International Conference on Applied Computer Science (ACS), Wseas
Transactions on Computer Research, pp. 1-10 (2016)

Darrab, S., Ergeng, B.: Vertical pattern mining algorithm for multiple support
thresholds. In: International Conference on Knowledge Based and Intelligent Infor-
mation and Engineering (KES), Procedia Computer Science, vol. 112, pp. 417-426
(2017)

Hu, Y.H., Chen, Y.L.: Mining association rules with multiple minimum supports: a
new mining algorithm and a support tuning mechanism, Decision Support Systems,
pp- 1-24 (2006)

Kiran, R.U., Reddy, P.K.: Novel techniques to reduce search space in multiple
minimum supports-based frequent pattern mining algorithms. In: Proceedings of
the International Conference on Extending Database Technology(EDBT), pp. 11—
20 (2011)


http://fimi.uantwerpen.be/data/
https://doi.org/10.1007/3-540-45372-5_59

	RPP Algorithm: A Method for Discovering Interesting Rare Itemsets
	1 Introduction
	2 Preliminaries
	3 Related Work
	3.1 Level-Wise Exploration Methods
	3.2 Level-Depth Exploration Methods

	4 Mining Rare Itemsets with Rare Pre Post (RPP) Algorithm
	4.1 Construction of the RPPC-tree
	4.2 Generating RN-list of Items
	4.3 Generation of Rare Itemsets

	5 Experimental Results
	5.1 Execution Time
	5.2 Memory Consumption
	5.3 Scalability

	6 Conclusion
	References




