Skip to main content

Molecular Dynamics Simulation of Protein and Protein–Ligand Complexes

  • Chapter
  • First Online:
Computer-Aided Drug Design

Abstract

Biomacromolecules, including proteins and their complexes, adopt multiple conformations that are linked to their biological functions. Though some of the structural heterogeneity can be studied by methods like X-ray crystallography, NMR, or cryo-electron microscopy, these methods fail to explain the detailed conformational transitions and dynamics. The dynamic structural states in proteins are covered in magnitude between 10−11 and 10−6 m and time-scales from 10−12 s to 10−5 s. For a comprehensive analysis of the biomolecular dynamics, molecular dynamics (MD) simulation has evolved as the most powerful technique. With the advent of high-end computational power, MD simulations can be performed between μs to the ms time-scale that can accurately describe the dynamics of any system. Various force fields like GROMOS, AMBER, and CHARMM have been developed for MD simulations. Tools like GROMACS, AMBER, CHARMM-GUI, and NAMD are the most widely used methods for MD simulation that can provide precise information on the motions and flexibility of a protein, which contributes to the interaction dynamics of protein–ligand complexes. MD simulation has several other practical applications in diverse research areas, including molecular docking and drug design, refining protein structure predictions, and studying the unfolding pathway of a protein. Combining MD simulation with wet-lab experiments has become an indispensable complement in the investigation of several important and intricate biological processes. Various tools like principal component analysis, cross-correlation analysis, and residues interaction network analysis are additional useful approaches for analyzing MD data. In this chapter, we will discuss MD simulation for a layman understanding and explain how it can be used for protein–ligand characterization as well as for use in diverse biomolecular applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adcock SA, McCammon JA (2006) Molecular dynamics: survey of methods for simulating the activity of proteins. Chem Rev 106(5):1589–1615

    CAS  PubMed  PubMed Central  Google Scholar 

  • Alder BJ, Wainwright TE (1957) Phase transition for a hard sphere system. J Chem Phys 27(5):1208–1209

    Article  CAS  Google Scholar 

  • Alder BJ, Wainwright TE (1959) Studies in molecular dynamics. I. general method. J Chem Phys 31(2):459–466

    Article  CAS  Google Scholar 

  • Barducci A, Bonomi M, Parrinello M (2011) Metadynamics. Wiley Interdiscip Rev Comput Mol Sci 1(5):826–843

    Article  CAS  Google Scholar 

  • Berger A, Linderstrom-Lang K (1957) Deuterium exchange of poly-DL-alanine in aqueous solution. Arch Biochem Biophys 69:106–118

    Article  CAS  PubMed  Google Scholar 

  • Boehr DD, Dyson HJ, Wright PE (2006) An NMR perspective on enzyme dynamics. Chem Rev 106(8):3055–3079

    Article  CAS  PubMed  Google Scholar 

  • Brooks B, Karplus M (1983) Harmonic dynamics of proteins: normal modes and fluctuations in bovine pancreatic trypsin inhibitor. Proc Natl Acad Sci U S A 80(21):6571–6575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brooks BR, Brooks CL 3rd, Mackerell AD Jr, Nilsson L, Petrella RJ, Roux B, Won Y, Archontis G, Bartels C, Boresch S, Caflisch A, Caves L, Cui Q, Dinner AR, Feig M, Fischer S, Gao J, Hodoscek M, Im W, Kuczera K, Lazaridis T, Ma J, Ovchinnikov V, Paci E, Pastor RW, Post CB, Pu JZ, Schaefer M, Tidor B, Venable RM, Woodcock HL, Wu X, Yang W, York DM, Karplus M (2009) CHARMM: the biomolecular simulation program. J Comput Chem 30(10):1545–1614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brunger AT, Brooks CL 3rd, Karplus M (1985) Active site dynamics of ribonuclease. Proc Natl Acad Sci U S A 82(24):8458–8462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brunger AT, Kuriyan J, Karplus M (1987) Crystallographic R factor refinement by molecular dynamics. Science 235(4787):458–460

    Article  CAS  PubMed  Google Scholar 

  • Case DA, Karplus M (1979) Dynamics of ligand binding to heme proteins. J Mol Biol 132(3):343–368

    Article  CAS  PubMed  Google Scholar 

  • Case DA, Cheatham TE 3rd, Darden T, Gohlke H, Luo R, Merz KM Jr, Onufriev A, Simmerling C, Wang B, Woods RJ (2005) The Amber biomolecular simulation programs. J Comput Chem 26(16):1668–1688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Colonna-Cesari F, Perahia D, Karplus M, Eklund H, Braden CI, Tapia O (1986) Interdomain motion in liver alcohol dehydrogenase. Structural and energetic analysis of the hinge bending mode. J Biol Chem 261(32):15273–15280

    CAS  PubMed  Google Scholar 

  • Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM, Ferguson DM, Spellmeyer DC, Fox T, Caldwell JW, Kollman PA (1995) A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J Am Chem Soc 117(19):5179–5197

    Article  CAS  Google Scholar 

  • Darden T, York D, Pedersen L (1993) Particle mesh Ewald: an N-log(N) method for Ewald sums in large systems. J Chem Phys 98(12):10089–10092

    Article  CAS  Google Scholar 

  • David CC, Jacobs DJ (2014) Principal component analysis: a method for determining the essential dynamics of proteins. Methods Mol Biol 1084:193–226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • David ES, Martin MD, Ron OD, Jeffrey SK, Richard HL, John KS, Cliff Y, Brannon B, Kevin JB, Jack CC, Michael PE, Joseph G, Grossman JP, Ho CR, Douglas JI, John LK, Timothy L, Christine M, Mark AM, Rolf M, Edward CP, Yibing S, Jochen S, Michael T, Brian T, Stanley CW (2007) Anton, a special-purpose machine for molecular dynamics simulation. Paper presented at the proceedings of the 34th annual international symposium on computer architecture, San Diego, California, USA

    Google Scholar 

  • Dessailly BH, Lensink MF, Wodak SJ (2007) Relating destabilizing regions to known functional sites in proteins. BMC Bioinf 8:141

    Article  CAS  Google Scholar 

  • Doshi U, Hamelberg D (2015) Towards fast, rigorous and efficient conformational sampling of biomolecules: advances in accelerated molecular dynamics. Biochim Biophys Acta 1850(5):878–888

    Article  CAS  PubMed  Google Scholar 

  • Dror RO, Dirks RM, Grossman JP, Xu H, Shaw DE (2012) Biomolecular simulation: a computational microscope for molecular biology. Annu Rev Biophys 41:429–452

    Article  CAS  PubMed  Google Scholar 

  • Duan Y, Kollman PA (1998) Pathways to a protein folding intermediate observed in a 1-microsecond simulation in aqueous solution. Science 282(5389):740–744

    Article  CAS  PubMed  Google Scholar 

  • Ewald PP (1921) Die Berechnung optischer und elektrostatischer Gitterpotentiale. Ann Phys 369(3):253–287

    Article  Google Scholar 

  • Falsafi-Zadeh S, Karimi Z, Galehdari H (2012) VMD DisRg: new user-friendly implement for calculation distance and radius of gyration in VMD program. Bioinformation 8(7):341–343

    Article  PubMed  PubMed Central  Google Scholar 

  • Feyfant E, Sali A, Fiser A (2007) Modeling mutations in protein structures. Protein Sci 16(9):2030–2041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frauenfelder H, Hartmann H, Karplus M, Kuntz ID, Kuriyan J, Parak F, Petsko GA, Ringe D, Tilton RF (1987) Thermal expansion of a protein. Biochemistry 26(1):254–261

    Article  CAS  PubMed  Google Scholar 

  • Froimowitz M (1993) HyperChem: a software package for computational chemistry and molecular modeling. BioTechniques 14(6):1010–1013

    CAS  PubMed  Google Scholar 

  • Fuzo CA, Degreve L (2014) Effect of the thermostat in the molecular dynamics simulation on the folding of the model protein chignolin. J Mol Model 18(6):2785–2794

    Article  CAS  Google Scholar 

  • Ge H, Wang Y, Li C, Chen N, Xie Y, Xu M, He Y, Gu X, Wu R, Gu Q, Zeng L, Xu J (2013) Molecular dynamics-based virtual screening: accelerating the drug discovery process by high-performance computing. J Chem Inf Model 53(10):2757–2764

    Article  CAS  PubMed  Google Scholar 

  • Gotz AW, Williamson MJ, Xu D, Poole D, Le Grand S, Walker RC (2012) Routine microsecond molecular dynamics simulations with AMBER on GPUs. 1. Generalized born. J Chem Theory Comput 8(5):1542–1555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Groenhof G (2013) Introduction to QM/MM simulations. Methods Mol Biol 924:43–66

    Article  CAS  PubMed  Google Scholar 

  • Gutowska I, Machoy Z, Machalinski B (2005) The role of bivalent metals in hydroxyapatite structures as revealed by molecular modeling with the HyperChem software. J Biomed Mater Res A 75(4):788–793

    Article  PubMed  CAS  Google Scholar 

  • Harvey SC, Prabhakaran M, Mao B, McCammon JA (1984) Phenylalanine transfer RNA: molecular dynamics simulation. Science 223(4641):1189–1191

    Article  CAS  PubMed  Google Scholar 

  • Heidari Z, Roe DR, Galindo-Murillo R, Ghasemi JB, Cheatham TE (2016) Using wavelet analysis to assist in identification of significant events in molecular dynamics simulations. J Chem Inf Model 56(7):1282–1291

    Article  CAS  PubMed  Google Scholar 

  • Hernandez-Rodriguez M, Rosales-Hernandez MC, Mendieta-Wejebe JE, Martinez-Archundia M, Basurto JC (2016) Current tools and methods in molecular dynamics (MD) simulations for drug design. Curr Med Chem 23(34):3909–3924

    Article  CAS  PubMed  Google Scholar 

  • Holden ZC, Richard RM, Herbert JM (2013) Periodic boundary conditions for QM/MM calculations: Ewald summation for extended Gaussian basis sets. J Chem Phys 139(24):244108

    Article  PubMed  CAS  Google Scholar 

  • Hsin J, Arkhipov A, Yin Y, Stone JE, Schulten K (2008) Using VMD: an introductory tutorial. Curr Protoc Bioinformatics 24:5–7

    Article  Google Scholar 

  • Huber T, Torda AE, van Gunsteren WF (1994) Local elevation: a method for improving the searching properties of molecular dynamics simulation. J Comput Aided Mol Des 8(6):695–708

    Article  CAS  PubMed  Google Scholar 

  • Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14(1):33–38, 27-38

    Article  CAS  PubMed  Google Scholar 

  • Jeremy Smith SC, Pezzeca U, Brooks B, Karplus M (1986) Inelastic neutron scattering analysis of low frequency motion in proteins: a normal mode study of the bovine pancreatic trypsin inhibitor. J Chem Phys 85(6):3636–3654

    Article  Google Scholar 

  • Jones JE (1924) On the determination of molecular fields. -II from the equation of state of a gas. Proc Roy Soc A 106(738):463

    CAS  Google Scholar 

  • Jorgensen WL, Tirado-Rives J (2005) Potential energy functions for atomic-level simulations of water and organic and biomolecular systems. Proc Natl Acad Sci U S A 102(19):6665–6670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kalita J, Shukla R, Tripathi T (2018a) Structural basis of urea-induced unfolding of Fasciola gigantica glutathione S-transferase. J Cell Physiol 234(4):4491–4503

    Article  PubMed  CAS  Google Scholar 

  • Kalita P, Shukla H, Shukla R, Tripathi T (2018b) Biochemical and thermodynamic comparison of the selenocysteine containing and non-containing thioredoxin glutathione reductase of Fasciola gigantica. Biochim Biophys Acta Gen Subj 1862:1306–1316

    Article  CAS  PubMed  Google Scholar 

  • Karplus M, Kuriyan J (2005) Molecular dynamics and protein function. Proc Natl Acad Sci U S A 102(19):6679–6685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kastner J (2011) Umbrella sampling. Wiley Interdiscip Rev Comput Mol Sci 1(6):932–942

    Article  CAS  Google Scholar 

  • Khan FI, Wei DQ, Gu KR, Hassan MI, Tabrez S (2016) Current updates on computer aided protein modeling and designing. Int J Biol Macromol 85:48–62

    Article  CAS  PubMed  Google Scholar 

  • Kini RM, Evans HJ (1991) Molecular modeling of proteins: a strategy for energy minimization by molecular mechanics in the AMBER force field. J Biomol Struct Dyn 9(3):475–488

    Article  CAS  PubMed  Google Scholar 

  • Knapp B, Lederer N, Omasits U, Schreiner W (2010) vmdICE: a plug-in for rapid evaluation of molecular dynamics simulations using VMD. J Comput Chem 31(16):2868–2873

    CAS  PubMed  Google Scholar 

  • Krieger E, Vriend G (2015) New ways to boost molecular dynamics simulations. J Comput Chem 36(13):996–1007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krishnamoorthy G (2012) Motional dynamics in proteins and nucleic acids control their function: revelation by time-domain fluorescence. Curr Sci 102(2):266–276

    CAS  Google Scholar 

  • Kuzmanic A, Zagrovic B (2010) Determination of ensemble-average pairwise root mean-square deviation from experimental B-factors. Biophys J 98(5):861–871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levitt M, Warshel A (1975) Computer simulation of protein folding. Nature 253(5494):694–698

    Article  CAS  PubMed  Google Scholar 

  • Likhachev IV, Balabaev NK, Galzitskaya OV (2016) Available instruments for analyzing molecular dynamics trajectories. Open Biochem J 10:1–11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • MacKerell AD, Bashford D, Bellott M, Dunbrack RL, Evanseck JD, Field MJ, Fischer S, Gao J, Guo H, Ha S, Joseph-McCarthy D, Kuchnir L, Kuczera K, Lau FT, Mattos C, Michnick S, Ngo T, Nguyen DT, Prodhom B, Reiher WE, Roux B, Schlenkrich M, Smith JC, Stote R, Straub J, Watanabe M, Wiorkiewicz-Kuczera J, Yin D, Karplus M (1998) All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B 102(18):3586–3616

    Article  CAS  PubMed  Google Scholar 

  • Maisuradze GG, Liwo A, Scheraga HA (2009) Principal component analysis for protein folding dynamics. J Mol Biol 385(1):312–329

    Article  CAS  PubMed  Google Scholar 

  • Malde AK, Zuo L, Breeze M, Stroet M, Poger D, Nair PC, Oostenbrink C, Mark AE (2011) An automated force field topology builder (ATB) and repository: version 1.0. J Chem Theory Comput 7(12):4026–4037

    Article  CAS  PubMed  Google Scholar 

  • Mamgain S, Sharma P, Pathak RK, Baunthiyal M (2015) Computer aided screening of natural compounds targeting the E6 protein of HPV using molecular docking. Bioinformation 5:236–242

    Article  Google Scholar 

  • Mazola Y, Guirola O, Palomares S, Chinea G, Menendez C, Hernandez L, Musacchio A (2015) A comparative molecular dynamics study of thermophilic and mesophilic beta-fructosidase enzymes. J Mol Model 21(9):228

    Article  PubMed  CAS  Google Scholar 

  • McCammon JA, Gelin BR, Karplus M (1977) Dynamics of folded proteins. Nature 267(5612):585–590

    Article  CAS  PubMed  Google Scholar 

  • McCammon JA, Karim OA, Lybrand TP, Wong CF (1986) Ionic association in water: from atoms to enzymes. Ann N Y Acad Sci 482:210–221

    Article  CAS  PubMed  Google Scholar 

  • Nguyen TT, Viet MH, Li MS (2014) Effects of water models on binding affinity: evidence from all-atom simulation of binding of tamiflu to A/H5N1 neuraminidase. Sci World J 2014:536084

    Google Scholar 

  • Nilsson L, Clore GM, Gronenborn AM, Brunger AT, Karplus M (1986) Structure refinement of oligonucleotides by molecular dynamics with nuclear overhauser effect interproton distance restraints: application to 5′ d(C-G-T-A-C-G)2. J Mol Biol 188(3):455–475

    Article  CAS  PubMed  Google Scholar 

  • Norberto de Souza O, Ornstein RL (1999) Molecular dynamics simulations of a protein-protein dimer: particle-mesh Ewald electrostatic model yields far superior results to standard cutoff model. J Biomol Struct Dyn 16(6):1205–1218

    Article  CAS  PubMed  Google Scholar 

  • Oostenbrink C, Villa A, Mark AE, van Gunsteren WF (2004) A biomolecular force field based on the free enthalpy of hydration and solvation: the GROMOS force-field parameter sets 53A5 and 53A6. J Comput Chem 25(13):1656–1676

    Article  CAS  PubMed  Google Scholar 

  • Pandey T, Shukla R, Shukla H, Sonkar A, Tripathi T, Singh AK (2017) A combined biochemical and computational studies of the rho-class glutathione s-transferase sll1545 of Synechocystis PCC 6803. Int J Biol Macromol 94:378–385

    Article  CAS  PubMed  Google Scholar 

  • Paquet E, Viktor HL (2015) Molecular dynamics, Monte Carlo simulations, and Langevin dynamics: a computational review. Biomed Res Int 2015:18

    Article  CAS  Google Scholar 

  • Perilla JR, Goh BC, Cassidy CK, Liu B, Bernardi RC, Rudack T, Yu H, Wu Z, Schulten K (2015) Molecular dynamics simulations of large macromolecular complexes. Curr Opin Struct Biol 31:64–74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem 25(13):1605–1612

    Article  CAS  PubMed  Google Scholar 

  • Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kale L, Schulten K (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26(16):1781–1802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ponder JW, Case DA (2003) Force fields for protein simulations. Adv Protein Chem 66:27–85

    Article  CAS  PubMed  Google Scholar 

  • Prakash A, Kumar V, Meena NK, Hassan MI, Lynn AM (2018) Comparative analysis of thermal unfolding simulations of RNA recognition motifs (RRMs) of TAR DNA-binding protein 43 (TDP-43). J Biomol Struct Dyn 37:178–194

    Article  PubMed  CAS  Google Scholar 

  • Pronk S, Pall S, Schulz R, Larsson P, Bjelkmar P, Apostolov R, Shirts MR, Smith JC, Kasson PM, van der Spoel D, Hess B, Lindahl E (2013) GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics 29(7):845–854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rahman A (1964) Correlations in the motion of atoms in liquid argon. Phys Rev 136(2A):A405–A411

    Article  Google Scholar 

  • Rahman A, Stillinger FH (1971) Molecular dynamics study of liquid water. J Chem Phys 55(7):3336–3359

    Article  CAS  Google Scholar 

  • Rajendran V, Shukla R, Shukla H, Tripathi T (2018) Structure-function studies of the asparaginyl-tRNA synthetase from Fasciola gigantica: understanding the role of catalytic and non-catalytic domains. Biochem J 475(21):3377–3391

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-Bussey IG, Doshi U, Hamelberg D (2016) Enhanced molecular dynamics sampling of drug target conformations. Biopolymers 105(1):35–42

    Article  CAS  PubMed  Google Scholar 

  • Sagui C, Darden TA (1999) Molecular dynamics simulations of biomolecules: long-range electrostatic effects. Annu Rev Biophys Biomol Struct 28:155–179

    Article  CAS  PubMed  Google Scholar 

  • Salomon-Ferrer R, Gotz AW, Poole D, Le Grand S, Walker RC (2013) Routine microsecond molecular dynamics simulations with AMBER on GPUs. 2. Explicit solvent particle mesh Ewald. J Chem Theory Comput 9(9):3878–3888

    Article  CAS  PubMed  Google Scholar 

  • Salsbury FR Jr (2010) Molecular dynamics simulations of protein dynamics and their relevance to drug discovery. Curr Opin Pharmacol 10(6):738–744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schuttelkopf AW, van Aalten DM (2004) PRODRG: a tool for high-throughput crystallography of protein-ligand complexes. Acta Crystallogr D Biol Crystallogr 60(Pt 8):1355–1363

    Article  PubMed  CAS  Google Scholar 

  • Senn HM, Thiel W (2009) QM/MM methods for biomolecular systems. Angew Chem Int Ed Engl 48(7):1198–1229

    Article  CAS  PubMed  Google Scholar 

  • Shukla H, Khan SR, Shukla R, Krishnan MY, Akhtar MS, Tripathi T (2018a) Alternate pathway to ascorbate induced inhibition of Mycobacterium tuberculosis. Tuberculosis (Edinb) 111:161–169

    Article  CAS  Google Scholar 

  • Shukla H, Shukla R, Sonkar A, Pandey T, Tripathi T (2018b) Distant Phe345 mutation compromises the stability and activity of Mycobacterium tuberculosis isocitrate lyase by modulating its structural flexibility. Sci Rep 7(1):1058

    Article  CAS  Google Scholar 

  • Shukla H, Shukla R, Sonkar A, Tripathi T (2018c) Alterations in conformational topology and interaction dynamics caused by L418A mutation leads to activity loss of Mycobacterium tuberculosis isocitrate lyase. Biochem Biophys Res Commun 490(2):276–282

    Article  CAS  Google Scholar 

  • Shukla R, Shukla H, Kalita P, Sonkar A, Pandey T, Singh DB, Kumar A, Tripathi T (2018d) Identification of potential inhibitors of Fasciola gigantica thioredoxin1: computational screening, molecular dynamics simulation, and binding free energy studies. J Biomol Struct Dyn 36(8):2147–2162

    Article  CAS  PubMed  Google Scholar 

  • Shukla R, Shukla H, Sonkar A, Pandey T, Tripathi T (2018e) Structure-based screening and molecular dynamics simulations offer novel natural compounds as potential inhibitors of Mycobacterium tuberculosis isocitrate lyase. J Biomol Struct Dyn 36(8):2045–2057

    Article  CAS  PubMed  Google Scholar 

  • Shukla R, Shukla H, Tripathi T (2018f) Activity loss by H46A mutation in Mycobacterium tuberculosis isocitrate lyase is due to decrease in structural plasticity and collective motions of the active site. Tuberculosis (Edinb) 108:143–150

    Article  CAS  Google Scholar 

  • Singh DB, Tripathi T (2020) Frontiers in protein structure, function, and dynamics. Springer, Singapore. https://doi.org/10.1007/978-981-15-5530-5. ISBN 978-981-15-5529-9

  • Sonkar A, Shukla H, Shukla R, Kalita J, Pandey T, Tripathi T (2017) UDP-N-Acetylglucosamine enolpyruvyl transferase (MurA) of Acinetobacter baumannii (AbMurA): structural and functional properties. Int J Biol Macromol 97:106–114

    Article  CAS  PubMed  Google Scholar 

  • Sonkar A, Shukla H, Shukla R, Kalita J, Tripathi T (2018) Unfolding of Acinetobacter baumannii MurA proceeds through a metastable intermediate: a combined spectroscopic and computational investigation. Int J Biol Macromol 126:941–951

    Article  PubMed  CAS  Google Scholar 

  • Syed SB, Shahbaaz M, Khan SH, Srivastava S, Islam A, Ahmad F, Hassan MI (2015) Estimation of pH effect on the structure and stability of kinase domain of human integrin-linked kinase. J Biomol Struct Dyn 37:156–165

    Article  CAS  Google Scholar 

  • Syed SB, Khan FI, Khan SH, Srivastava S, Hasan GM, Lobb KA, Islam A, Hassan MI, Ahmad F (2018) Unravelling the unfolding mechanism of human integrin linked kinase by GdmCl-induced denaturation. Int J Biol Macromol 117:1252–1263

    Article  CAS  PubMed  Google Scholar 

  • Takahashi K, Narumi T, Yasuoka K (2010) Cutoff radius effect of the isotropic periodic sum method in homogeneous system. II. Water. J Chem Phys 133(1):014109

    Article  PubMed  CAS  Google Scholar 

  • van Aalten DM, Bywater R, Findlay JB, Hendlich M, Hooft RW, Vriend G (1996) PRODRG, a program for generating molecular topologies and unique molecular descriptors from coordinates of small molecules. J Comput Aided Mol Des 10(3):255–262

    Article  PubMed  Google Scholar 

  • Vogeli B, Kazemi S, Guntert P, Riek R (2012) Spatial elucidation of motion in proteins by ensemble-based structure calculation using exact NOEs. Nat Struct Mol Biol 19(10):1053–1057

    Article  PubMed  CAS  Google Scholar 

  • Voter AF (1997) Hyperdynamics: accelerated molecular dynamics of infrequent events. Phys Rev Lett 78(20):3908–3911

    Article  CAS  Google Scholar 

  • Warshel A, Levitt M (1976) Theoretical studies of enzymic reactions: dielectric, electrostatic and steric stabilization of the carbonium ion in the reaction of lysozyme. J Mol Biol 103(2):227–249

    Article  CAS  PubMed  Google Scholar 

  • Wolf A, Kirschner KN (2013) Principal component and clustering analysis on molecular dynamics data of the ribosomal L11.23S subdomain. J Mol Model 19(2):539–549

    Article  CAS  PubMed  Google Scholar 

  • Wu X, Brooks BR (2009) Isotropic periodic sum of electrostatic interactions for polar systems. J Chem Phys 131(2):024107

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhou Y, Liepe J, Sheng X, Stumpf MP, Barnes C (2012) GPU accelerated biochemical network simulation. Bioinformatics 27(6):874–876

    Article  CAS  Google Scholar 

  • Zoete V, Cuendet MA, Grosdidier A, Michielin O (2010) SwissParam: a fast force field generation tool for small organic molecules. J Comput Chem 32(11):2359–2368

    Article  CAS  Google Scholar 

Download references

Competing Interest

The authors declare that there are no competing interests.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shukla, R., Tripathi, T. (2020). Molecular Dynamics Simulation of Protein and Protein–Ligand Complexes. In: Singh, D.B. (eds) Computer-Aided Drug Design. Springer, Singapore. https://doi.org/10.1007/978-981-15-6815-2_7

Download citation

Publish with us

Policies and ethics