Skip to main content

Reproductive Ecology of Flowering Plants: An Introduction

  • Chapter
  • First Online:

Abstract

Sexual reproduction is vital to ensure variation and perpetuation in organisms. In flowering plants, the reproductive process is accomplished in four major phases. The first phase encompasses the development and organization of flowers, the second ensures pollination, the third includes events leading to fertilization and seed formation and the fourth is defined by dispersal of seeds and their recruitment in populations. Plants optimize reproductive success through interaction between these components of reproductive system and ecological factors. Longevity, vitality and sterility of sexual systems have been well understood in wild and crop species and studies on these aspects have unravelled interesting patterns in angiosperms. However, there is paucity of information on certain aspects such as how plant species modify their reproductive functions in varied habitats and how sexual systems respond to evolutionary pathways, and environmental cues. Reproductive ecological studies are currently trying to answer these questions, as reproductive processes operate in continuum with environmental variables and show specific responses and patterns. These studies also help in understanding the trade-offs and constraints that the angiosperms are always confronted with. The present chapter highlights some of the crucial aspects of reproduction covering phenology, floral biology, pollination ecology, breeding strategies and recruitment pattern. Elucidation of these processes is of immense importance in the management of forest ecosystems, recovery of threatened plant species and sustenance of yield in crops.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abu-Asab MS, Peterson PM, Shetler SG, Orli SS (2001) Earlier plant flowering in spring as a response to global warming in the Washington, DC, area. Biodivers Conserv 10:597–612

    Google Scholar 

  • Alexandersson R, Johnson SD (2002) Pollinator–mediated selection on flower–tube length in a hawkmoth–pollinated Gladiolus (Iridaceae). Proc R Soc Lond Ser B Biol Sci 269:631–636

    Google Scholar 

  • Armbruster WS, Debevec EM, Willson MF (2001) Evolution of syncarpy in angiosperms: theoretical and phylogenetic analyses of the effects of carpel fusion on offspring quantity and quality. J Evol Biol 15:657–672

    Google Scholar 

  • Armbruster WS, Mulder CP, Baldwin BG, Kalisz S, Wessa B, Nute H (2002) Comparative analysis of late floral development and mating-system evolution in tribe Collinsieae (Scrophulariaceae sl). Am J Bot 89:37–49

    PubMed  Google Scholar 

  • Arroyo MTK, Pacheco DA, Dudley LS (2017) Functional role of long-lived flowers in preventing pollen limitation in a high elevation outcrossing species. AoB Plants 9:plx050. https://doi.org/10.1093/aobpla/plx050

    Article  PubMed  PubMed Central  Google Scholar 

  • Ashman TL, Schoen DJ (1994) How long should a flower live? Nature 371:788–790

    CAS  Google Scholar 

  • Aslan C, Beckman NG, Rogers HS, Bronstein J, Zurell D, Hartig F, Shea K, Pejchar L, Neubert M, Poulsen J, HilleRisLambers J, Miriti M, Loiselle B, Effiom E, Zambrano J, Schupp G, Pufal G, Johnson J, Bullock JM, Brodie J, Bruna E, Cantrell RS, Decker R, Fricke E, Gurski K, Hastings A, Kogan O, Razafindratsima O, Sandor M, Schreiber S, Snell R, Strickland C, Zhou Y (2019) Employing plant functional groups to advance seed dispersal ecology and conservation. AoB Plants 11(2):plz006

    PubMed  PubMed Central  Google Scholar 

  • Auffret AG, Rico Y, Bullock JM, Hooftman DA, Pakeman RJ, Soons MB, Suárez-Esteban A, Traveset A, Wagner HH, Cousins SA (2017) Plant functional connectivity–integrating landscape structure and effective dispersal. J Ecol 105:1648–1656

    Google Scholar 

  • Baker HG, Baker I (1983) A brief historical review of the chemistry of floral nectar. In: Bentley B, Elias T (eds) The biology of nectaries. Columbia University Press, New York, pp 126–152

    Google Scholar 

  • Balducci MG, Martins DJ, Johnson SD (2019) Pollination of the long-spurred African terrestrial orchid Bonatea steudneri by long-tongued hawkmoths, notably Xanthopan morganii. Plant Syst Evol 305:765–775

    Google Scholar 

  • Barman C, Singh VK, Das S, Tandon R (2018) Floral contrivances confer strong influence on moth-pollinated and self-compatible Wrightia tomentosa (Apocynaceae) to elicit mixed-mating. Plant Biol 20:546–554. https://doi.org/10.1111/plb.12690

    Article  CAS  PubMed  Google Scholar 

  • Barrett SCH (1988) The evolution, maintenance and loss of self-incompatibility systems. In: Lovett Doust J, Lovett Doust L (eds) Reproductive strategies of plants: patterns & strategies. Oxford University Press, New York, pp 98–124

    Google Scholar 

  • Barrett SCH (2002) The evolution of plant sexual diversity. Nat Rev Genet 3:274–284

    CAS  PubMed  Google Scholar 

  • Barrett SCH (2003) Mating strategies in flowering plants: the outcrossing-selfing paradigm and beyond. Philos Trans R S Lond Ser B 358:991–1004

    Google Scholar 

  • Barrett SCH (ed) (2008) Major evolutionary transitions in flowering plant reproduction. Int J Plant Sci. The University of Chicago Press. London

    Google Scholar 

  • Bascompte J, Jordano P (2007) Plant-animal mutualistic networks: the architecture of biodiversity. Annu Rev Ecol Evol Syst 38:567–593

    Google Scholar 

  • Bascompte J, Jordano P, Melian CJ, Olesen JM (2003) The nested assembly of plant animal mutualistic networks. Proc Natl Acad Sci U S A 100:9383–9387

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bawa KS (1974) Breeding systems of tree species of a lowland tropical community. Evolution 28:85–92

    CAS  PubMed  Google Scholar 

  • Bawa KS (1979) Breeding systems of trees in a tropical wet forest. N Z J Bot 17(4):521–524

    Google Scholar 

  • Bawa KS (1992) Mating systems, genetic differentiation and speciation in tropical rain forest plants. Biotropica 24:250–255

    Google Scholar 

  • Bawa KS, Beach JH (1981) Evolution of sexual systems in flowering plants. Ann Mo Bot Gard 68:254–274

    Google Scholar 

  • Bawa KS, Kress WJ, Nadkarni MN, Lele S (2004) Beyond paradise: meeting the challenges in tropical biology in the 21st century. Biotropica 36:437–446

    Google Scholar 

  • Bedinger PA, Broz AK, Tovar-Mendez A, McClure B (2017) Pollen-pistil interactions and their role in mate selection. Plant Physiol 173:79–90

    CAS  PubMed  Google Scholar 

  • Bernardello G, Anderson GJ, Stuessy TF, Crawford DJ (2001) A survey of floral traits, breeding systems, floral visitors, pollination systems of the angiosperms of Juan Fernandez Islands (Chile). Bot Rev 67:255–308

    Google Scholar 

  • Bertin RI, Newman CM (1993) Dichogamy in angiosperms. Bot Rev 59(2):112–152

    Google Scholar 

  • Blendinger PG (2017) Functional equivalence in seed dispersal effectiveness of Podocarpus parlatorei in Andean fruit-eating bird assemblages. Front Ecol Evol 5:1–14

    Google Scholar 

  • Brandvain Y, Kenney AM, Flagel L, Coop G, Sweigart AL (2014) Speciation and introgression between Mimulus nasutus and Mimulus guttatus. PLoS Genet 10:e1004410

    PubMed  PubMed Central  Google Scholar 

  • Bronstein JL, Alarcón R, Geber M (2006) The evolution of plant–insect mutualisms. New Phytol 172(3):412–428

    PubMed  Google Scholar 

  • Brys R, Jacquemyn H (2011) Variation in the functioning of autonomous self-pollination, pollinator services and floral traits in three Centaurium species. Ann Bot 107:917–925

    PubMed  PubMed Central  Google Scholar 

  • Bullock SH, Bawa KS (1981) Sexual dimorphism and the annual flowering pattern in Jacaratia dolichaula (D. Smith) Woodson (Caricaceae) in a Costa Rican rain forest. Ecology 62:1494–1504

    Google Scholar 

  • Caruso CM, Eisen KE, Martin RA, Sletvold N (2019) A meta-analysis of the agents of selection on floral traits. Evolution 73:4–14

    PubMed  Google Scholar 

  • Charlesworth D (2002) Plant sex determination and sex chromosomes. Heredity 88:94–101

    PubMed  Google Scholar 

  • Charlesworth D, Charlesworth B (1987a) The effect of investment in attractive structures on allocation to male and female functions in plants. Evolution 41:948–968

    CAS  PubMed  Google Scholar 

  • Charlesworth D, Charlesworth B (1987b) Inbreeding depression and its evolutionary consequences. Annu Rev Ecol Syst 18:237–268

    Google Scholar 

  • Chaudhary A, Yadav SR, Tandon R (2018) Delayed selfing ensures reproductive assurance in Utricularia praeterita and Utricularia babui in Western Ghats. J Plant Res 131:599–610. https://doi.org/10.1007/s10265-018-1016-y

    Article  PubMed  Google Scholar 

  • Cheptou PO (2012) Clarifying Baker’s law. Ann Bot London 109:633–641

    Google Scholar 

  • Clobert J, Danchin E, Dhondt AA, Nichols JD (eds) (2001) Dispersal. Oxford University Press, Oxford

    Google Scholar 

  • Cody ML, Overton JM (1996) Short-term evolution of reduced dispersal in island plant populations. J Ecol 84:53–61

    Google Scholar 

  • Corlett RT (1998) Frugivory and seed dispersal by vertebrates in the oriental (Indomalayan) region. Biol Rev 73:413–448

    CAS  PubMed  Google Scholar 

  • Corlett RT (2004) Flower visitors and pollination in the oriental (Indomalayan) region. Biol Rev 79:497–532

    PubMed  Google Scholar 

  • Cousens R, Dytham C, Law R (2008) Dispersal in plants: a population perspective. Oxford University Press, Oxford/New York

    Google Scholar 

  • Culley TM, Weller SG, Sakai AK (2002) The evolution of wind pollination in angiosperms. Trends Ecol Evol 17:361–369

    Google Scholar 

  • Darwin CR (1862) On the various contrivances by which British and foreign orchids are fertilized by insects. John Murray, London

    Google Scholar 

  • de Graaf BHJ, Derksen JWM, Mariani C (2001) Pollen and pistil in the progamic phase. Sex Plant Reprod 14:41–55

    Google Scholar 

  • de Nettancourt D (2001) Incompatibility and incongruity in wild and cultivated plants. Springer, Berlin/Heidelberg/New York

    Google Scholar 

  • Dellinger AS, Artuso S, Pamperl S, Michelangeli FA, Penneys DS, Fernández-Fernández DM, Alvear M, Almeda F, Armbruster WS, Staeder Y, Schönenberger J (2019) Modularity increases rate of floral evolution and adaptive success for functionally specialized pollination systems. Commun Biol 2:453

    PubMed  PubMed Central  Google Scholar 

  • Diggle PK (1993) Developmental plasticity, genetic variation, and the evolution of andromonoecy in Solanum hirtum (Solanaceae). Am J Bot 80:967–973

    Google Scholar 

  • Dyer AG, Whitney HM, Arnold SEJ, Glover BJ, Chittka L (2006) Bees associate warmth with floral colour. Nature 442:525

    CAS  PubMed  Google Scholar 

  • Easterling DR, Evans JL, Groisman PY, Karl TR, Kunkel KE, Ambenje P (2000) Observed variability and trends in extreme climate events: a brief review. Bull Am Meteorol Soc 81:417–425

    Google Scholar 

  • Eckert CG (2000) Contributions of autogamy and geitonogamy to self-fertilization in a mass-flowering, clonal plant. Ecology 81:532–542

    Google Scholar 

  • Elam DR, Ridley CE, Goodell K, Ellstrand NC (2007) Population size and relatedness affect fitness of a self-incompatible invasive plant. Proc Natl Acad Sci U S A 104:249–252

    Google Scholar 

  • Endress PK (1982) Syncarpy and alternative modes of escaping disadvantages of apocarpy in primitive angiosperms. Taxon 31(1):48–52

    Google Scholar 

  • Endress PK (2001) The flowers in extant basal angiosperms and inferences on ancestral flowers. Int J Plant Sci 162:1111–1140

    Google Scholar 

  • Faegri K, van der Pijl L (1979) The principles of pollination ecology. Pergamon Press, Oxford

    Google Scholar 

  • Fenster CB, Armbruster WS, Wilson P, Dudash MR, Thomson JD (2004) Pollination syndromes and floral specialization. Annu Rev Ecol Evol Syst 35:375–403

    Google Scholar 

  • Flores-Rentería L, Whipple AV, Benally GJ, Patterson A, Canyon B, Gehring CA (2018) Higher temperature at lower elevation sites fails to promote acclimation or adaptation to heat stress during pollen germination. Front Plant Sci 9. https://doi.org/10.3389/fpls.2018.00536

  • Frankel AS, Clark CW, Herman LM, Gabriels CM (1995) Spatial distribution, habitat utilization, and social interactions of humpback whales Megaptera novaeangliae, off Hawaii determined using acoustic and visual means. Can J Zool 73:1134–1146

    Google Scholar 

  • Frankie GW, Vinson SB, Newstrom LE, Barthell JF, Haber WA, Frankie JK (1990) Plant phenology, pollination ecology, pollinator behavior and conservation of pollinators in neotropical dry forest. Reprod Ecol Trop For Plants 7:37–47

    Google Scholar 

  • Friedman J, Barrett SCH (2008) A phylogenetic analysis of the evolution of wind pollination in the angiosperms. Int J Plant Sci 169:49–58

    Google Scholar 

  • Friedman J, Hart KS, Den Bakker MC (2017) Losing one's touch: evolution of the touch-sensitive stigma in the Mimulus guttatus species complex. Am J Bot 104:335–341

    PubMed  Google Scholar 

  • Gaiotto FA, Bramucci M, Grattapaglia D (1997) Estimation of outcrossing rate in a breeding population of Eucalyptus urophylla with dominant RAPD and AFLP markers. Theor Appl Genet 95:842–849

    CAS  Google Scholar 

  • Gaira KS, Rawal RS, Rawat B, Bhatt ID (2014) Impact of climate change on the flowering of Rhododendron arboreum in central Himalaya. Curr Sci 106:1735–1738

    Google Scholar 

  • Gan XH, Xie D, Cao LL (2012) Sporogenesis and development of gametophytes in an endangered plant, Tetracentron sinense Oliv. Biol Res 45:393–398

    PubMed  Google Scholar 

  • Gan XH, Cao LL, Zhang X (2013) Floral biology, breeding system and pollination ecology of an endangered tree Tetracentron sinense Oliv. (Trochodendraceae). Bot Stud 54:50

    PubMed  PubMed Central  Google Scholar 

  • Garibaldi LA, Carvalheiro LG, Vaissière BE, Gemmill-Herren B, Hipólito J, Freitas BM, Ngo HT et al (2016) Mutually beneficial pollinator diversity and crop yield outcomes in small and large farms. Science 351(6271):388–391

    CAS  Google Scholar 

  • Genini J, Morellato LPC, Guimaraes PR Jr, Olesen JM (2010) Cheaters in mutualism networks. Biol Lett 6:494–497

    PubMed  PubMed Central  Google Scholar 

  • Gentry AH (1974) Flowering phenology and diversity in tropical Bignoniaceae. Biotropica 6:64–68

    Google Scholar 

  • Ghazoul J, Sheil D (2010) Tropical rain forest ecology, diversity, and conservation (No. 577.34 G4)

    Google Scholar 

  • Gibbs P, Bianchi MB (1999) Does late-acting self-incompatibility (LSI) show family clustering? Two more species of Bignoniaceae with LSI: Dolichandra cynanchoides and Tabebuia nodosa. Ann Bot 84:449–457

    Google Scholar 

  • Givnish TJ (1980) Ecological constraints on the evolution of breeding systems in seed plants: dioecy and dispersal in gymnosperms. Evolution 34:959–972

    PubMed  Google Scholar 

  • Good-Avila SV, Stephenson AG (2002) The inheritance of modifiers conferring self-fertility in the partially self-incompatible perennial, Campanula rapunculoides L. (Campanulaceae). Evolution 56:263–272

    PubMed  Google Scholar 

  • Goodwillie C, Kalisz S, Eckert CG (2005) The evolutionary enigma of mixed mating systems in plants: occurrence, theoretical explanations, and empirical evidence. Annu Rev Ecol Evol Syst 36:47–79

    Google Scholar 

  • Goodwillie C, Sargent RD, Eckert CG, Elle E, Geber MA, Johnston MO, Kalisz S, Moeller DA, Ree RH, Vallejo-Marin M, Winn AA (2010) Correlated evolution of mating system and floral display traits in flowering plants and its implications for the distribution of mating system variation. New Phytol 185:311–321

    PubMed  Google Scholar 

  • Gould E (1978) Foraging behavior of Malaysian nectar-feeding bats. Biotropica 10:184–193

    Google Scholar 

  • Hallmann CA, Sorg M, Jongejans E, Siepel H, Hofland N, Schwan H, Stenmans W et al (2017) More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS One 12(10):e0185809

    PubMed  PubMed Central  Google Scholar 

  • Hamrick JL, Murawski DA (1990) The breeding structure of tropical tree populations. Plant Species Biol 5:157–165

    Google Scholar 

  • Harder LD, Barrett SCH (2006) Ecology and evolution of flowers. Oxford University Press, New York

    Google Scholar 

  • Harder LD, Johnson SD (2009) Darwin’s beautiful contrivances: evolutionary and functional evidence for floral adaptation. New Phytol 183:530–545

    PubMed  Google Scholar 

  • Harris BJ, Baker HG (1958) Pollination in Kigelia africana Benth. Jour West African Sci Assoc 4:25–30

    Google Scholar 

  • Hedhly A, Hormaza JI, Herrero M (2008) Global warming and sexual plant reproduction. Trends Plant Sci 14:30–36

    PubMed  Google Scholar 

  • Herrero M, Hormaza JI (1996) Pistil strategies controlling pollen tube growth. Sex Plant Reprod 9:343–347

    Google Scholar 

  • Heslop-Harrison Y, Shivanna KR (1977) The receptive surface of the angiosperm stigma. Ann Bot 41(6):1233–1258

    Google Scholar 

  • Holsinger KE (1991) Mass-action models of plant mating systems: the evolutionary stability of mixed mating systems. Am Nat 138:606–622

    Google Scholar 

  • Holsinger K (2000) Reproductive systems and evolution in vascular plants. Proc Natl Acad Sci U S A 97:7037–7042

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hopkins HC (1984) Floral biology and pollination ecology of the Neotropical species of Parkia. J Ecol 72:1–23

    Google Scholar 

  • Howe HF, Miriti MN (2004) When seed dispersal matters. Bioscience 54:651–660

    Google Scholar 

  • Irwin RE, Adler LS, Brody AK (2004) The dual role of floral traits: pollinator attraction and plant defense. Ecology 85:1503–1511

    Google Scholar 

  • Johnson SD, Steiner KE (2000) Generalization versus specialization in plant pollination systems. Trends Ecol Evol 15:190–193

    Google Scholar 

  • Jones FA, Comita LS (2008) Neighbourhood density and genetic relatedness interact to determine fruit set and abortion rates in a continuous tropical tree population. Proc R Soc B 275:2759–2767

    CAS  PubMed  Google Scholar 

  • Junker RR, Blüthgen N (2010) Floral scents repel facultative flower visitors, but attract obligate ones. Ann Bot 105:777–782

    PubMed  PubMed Central  Google Scholar 

  • Kaiser-Bunbury C, Mougal J, Whittington AE, Valentin T, Gabriel R, Olesen JM, Blüthgen N (2017) Ecosystem restoration strengthens pollination network resilience and function. Nature 542:223–227

    CAS  PubMed  Google Scholar 

  • Kalisz S, Randle A, Chaiffetz D, Faigeles M, Butera A, Beight C (2012) Dichogamy correlates with outcrossing rate and defines the selfing syndrome in the mixed-mating genus Collinsia. Ann Bot 109:571–582. https://doi.org/10.1093/aob/mcr237

    Article  PubMed  Google Scholar 

  • Karron JD, Holmquist KG, Flanagan RJ, Mitchell RJ (2009) Pollinator visitation patterns strongly influence among-flower variation in selfing rate. Ann Bot 103:1379–1383

    PubMed  PubMed Central  Google Scholar 

  • Kevan PG (1989) Thermoregulation in arctic insects and flowers: adaptation and co-adaptation in behaviour, anatomy, and physiology. Therm Physiol 1:747–753

    Google Scholar 

  • Kier G, Kreft H, Lee TM, Jetz W, Ibisch PL, Nowicki C, Mutke J, Barthlott W (2009) A global assessment of endemism and species richness across island and mainland regions. Proc Natl Acad Sci 106:9322–9327

    CAS  PubMed  Google Scholar 

  • Kissling J, Barrett SCH (2013) Diplostigmaty in plants: a novel mechanism that provides reproductive assurance. Biol Lett 9:2013049

    Google Scholar 

  • Klein AM, Vaissiere BE, Cane JH, Steffan Dewenter I, Cunningham SA, Kremen C, Tscharntke T (2007) Importance of pollinators in changing landscapes for world crops. Proc R Soc B Biol Sci 274:303–313

    Google Scholar 

  • Kumar G, Yadav R (2012) Induction of cytomixis effects microsporogenesis in Sesamum indicum L. (Pedaliaceae). Russ J Dev Biol 43:209

    CAS  Google Scholar 

  • Kwak MM, Bekker RM (2006) Ecology of plant reproduction: extinction risks and restoration perspectives of rare plant species. In: Waser NM, Ollerton J (eds) Plant-pollinator interactions: from specialization to generalization. University of Chicago Press, Chicago, pp 362–386

    Google Scholar 

  • Larson BMH, Barrett SCH (2000) A comparative analysis of pollen limitation in flowering plants. Biol J Linn Soc 69:503–520

    Google Scholar 

  • Levin DA, Kerster HW (1969) The dependence of bee-mediated pollen and gene dispersal upon plant density. Evolution 23:560–571

    PubMed  Google Scholar 

  • Li XX, Zou Y, Xiao CL, Gituru RW, Guo YH, Yang CF (2013) The differential contributions of herkogamy and dichogamy as mechanisms of avoiding self-interference in four self-incompatible Epimedium species. J Evol Biol 26:1949–1958

    PubMed  Google Scholar 

  • Lloyd DG (1992) Self-and cross-fertilization in plants. II. The selection of self-fertilization. Int J Plant Sci 153:370–380

    Google Scholar 

  • Lloyd DG, Webb C (1986) The avoidance of interference between the presentation of pollen and stigmas in angiosperms I. Dichogamy. N Z J Bot 24:135–162

    Google Scholar 

  • Loveless MD, Hamrick JL (1984) Ecological determinants of genetic structure in plant populations. Annu Rev Ecol Syst 15:65–95

    Google Scholar 

  • Mathur G, Mohan Ram HY (1978) Significance of petal colour in Thrips-pollinated Lantana camara L. Ann Bot 42:1473–1476

    Google Scholar 

  • Mitchell RJ, Irwin RE, Flanagan RJ, Karron JD (2009) Ecology and evolution of plant-pollinator interactions. Ann Bot 103:1355–1363. https://doi.org/10.1093/aob/mcp122

    Article  PubMed  PubMed Central  Google Scholar 

  • Morales CL, Traveset A (2008) Interspecific pollen transfer: magnitude, prevalence and consequences for plant fitness. Annu Rev Ecol Syst 36:467–497

    Google Scholar 

  • Muchhala N, Thomson JD (2009) Going to great lengths: selection for long corolla tubes in an extremely specialized bat-flower mutualism. Proc Roy Soc Biol Ser B 276:2147–2152. https://doi.org/10.1098/rspb.2009.0102

    Article  Google Scholar 

  • Muchugi A, Muluvi GM, Kindt R, Kadu CCAC, Simons AJ, Jamnadass R (2008) Genetic structuring of important medicinal species of genus Warburgia as revealed by AFLP analysis. Tree Genet Genomes 4:787–795

    Google Scholar 

  • Mulcahy DL, Mulcahy GB (1987) The effects of pollen competition. Am Sci 75:44–50

    Google Scholar 

  • Murawski DA, Hamrick JL (1991) The effects of the density of flowering individuals on the mating system of nine tropical tree species. J Hered 67:167–174

    Google Scholar 

  • Nason JD, Herre EA, Hamrick JL (1998) The breeding structure of a tropical keystone plant resource. Nature 391:685–687

    CAS  Google Scholar 

  • Nasrallah JB, Nasrallah ME (2014) S-locus receptor kinase signaling. Biochem Soc Trans 42:313–319

    CAS  PubMed  Google Scholar 

  • Nasrallah ME, Liu P, Nasrallah JB (2002) Generation of self-incompatible Arabidopsis thaliana by transfer of two S locus genes from A. lyrata. Science 297:247–249

    CAS  PubMed  Google Scholar 

  • Nathan R, Muller-Landau HC (2000) Spatial patterns of seed dispersal, their determinants and consequences for recruitment. Trends Ecol Evol 15:278–285

    CAS  PubMed  Google Scholar 

  • Newman E, Manning J, Anderson B (2014) Matching floral and pollinator traits through guild convergence and pollinator ecotype formation. Ann Bot 113:373–384

    PubMed  Google Scholar 

  • Okubo A, Levin SA (1989) A theoretical framework for data analysis of wind dispersal of seeds and pollen. Ecology 70:329–338

    Google Scholar 

  • Okubo A, Levin SA (2001) Diffusion and ecological problems: modern perspectives. Springer, New York

    Google Scholar 

  • Olesen JM, Bascompte J, Dupont YL, Jordano P (2007) The modularity of pollination networks. PNAS 104:19891–19896

    CAS  PubMed  Google Scholar 

  • Ollerton J, Alarcón R, Waser NM, Price MV, Watts S, Cranmer L, Hingston A, Peter CI, Rotenberry J (2009) A global test of the pollination syndrome hypothesis. Ann Bot 103:1471–1480

    PubMed  PubMed Central  Google Scholar 

  • Opler PA, Frankei GW, Baker HG (1980) Cooperative phenological studies of treelet and shrub species in tropical wet and dry forests in the lowlands of Costa Rica. J Ecol 68:167–188

    Google Scholar 

  • Pandit MK, Babu CR (1998) Biology and conservation of Coptis teeta wall.- an endemic and endangered herb of eastern Himalaya. Conserv Biol 3:262–272

    Google Scholar 

  • Parachnowitsch AL, Kessler A (2010) Pollinators exert natural selection on flower size and floral display in Penstemon digitalis. New Phytol 188:393–402

    PubMed  Google Scholar 

  • Potts SG, Imperatriz-Fonseca V, Ngo HT, Aizen MA, Biesmeijer JC, Breeze TD, Dicks LV, Garibaldi LA, Hill R, Settele J, Vanbergen AJ (2016) Safeguarding pollinators and their values to human well-being. Nature 540:220–229

    CAS  PubMed  Google Scholar 

  • Primack RB (1985) Longevity of individual flowers. Annu Rev Ecol Syst 16:15–37

    Google Scholar 

  • Primack RB, Ibáñez I, Higuchi H, Lee SD, Miller-Rushing AJ, Wilson AM, Silander JA Jr (2009) Spatial and interspecific variability in phenological responses to warming temperatures. Biol Conserv 142:2569–2577

    Google Scholar 

  • Pykala J (2007) Implementation of Forest act habitats in Finland: does it protect the right habitats for threatened species? For Ecol Manag 242:281–287

    Google Scholar 

  • Ranjusha AR, Gangaprasad A, Radhamany PA (2013) Pollen morphology and in vitro pollen germination of Rauvolfi a hookeri Srinivasan & Chithra – a rare and endemic plant of southern Western Ghats, India. Int J Plant Reprod Biol 51:75–80

    Google Scholar 

  • Rathckey B, Lacey EP (1985) Phenological patterns of terrestrial plants. Annu Rev Ecol Evol Syst 16:179–214

    Google Scholar 

  • Renner SS (2014) The relative and absolute frequencies of angiosperm sexual systems: dioecy, monoecy, gynodioecy, and an updated online database. Am J Bot 101:1588–1596

    PubMed  Google Scholar 

  • Renner SS, Beenken L, Grimm GW, Kocyan A, Ricklefs RE (2007) The evolution of dioecy, heterodichogamy, and labile sex expression in Acer. Evolution 61:2701–2719

    CAS  PubMed  Google Scholar 

  • Richards AJ (1997) Plant Breeding Systems. Garland Science, New York

    Google Scholar 

  • Ritland K (2002) Extensions of models for the estimation of mating systems using n independent loci. Heredity 88:221–228

    PubMed  Google Scholar 

  • Ritland K, Jain S (1981) A model for the estimation of outcrossing rate and gene frequencies using n independent loci. Heredity 47:35–52

    Google Scholar 

  • Roubik D, Sakai S, Karim AAH (2005) Pollination ecology and the rain forest: Sarawak studies, vol 174. Springer, New York

    Google Scholar 

  • Russo L, Debarros N, Yang S, Shea K, Mortensen D (2013) Supporting crop pollinators with floral resources: network-based phenological matching. Ecol Evol 3:3125–3140

    PubMed  PubMed Central  Google Scholar 

  • Sarma K, Tandon R, Shivanna KR, Mohan Ram HY (2007) Snail-pollination in Volvulopsis nummularium. Curr Sci 93:826–831

    Google Scholar 

  • Schemske DW, Lande R (1985) The evolution of self-fertilization and inbreeding depression in plants. II. Empirical observations. Evolution 39:41–52

    PubMed  Google Scholar 

  • Schoen DJ, Ashman T (1995) The evolution of floral longevity: resource allocation to maintenance versus construction of repeated parts in modular organisms. Evolution 49:131–139

    PubMed  Google Scholar 

  • Schupp EW, Jordano P, Gómez JM (2010) Seed dispersal effectiveness revisited: a conceptual review. New Phytol 188:333–353

    PubMed  Google Scholar 

  • Scutt CP, Vinauger-Douard M, Fourquin C, Finet C, Dumas C (2006) An evolutionary perspective on the regulation of carpel development. J Exp Bot 57:2143–2152

    CAS  PubMed  Google Scholar 

  • Seavey SR, Bawa KS (1986) Late-acting self-incompatibility in angiosperms. Bot Rev 52:195–219. https://doi.org/10.1007/BF02861001

    Article  Google Scholar 

  • Sharma MV, Kuriakose G, Shivanna KR (2008) Reproductive strategies of Strobilanthes kunthianus, an endemic, semelparous species in southern Western Ghats, India. Bot J Linn Soc 157:155–163

    Google Scholar 

  • Sherry RA, Zhou X, Gu S, Arnone JA, Schimel DS, Verburg PS, Wallace LL, Luo Y (2007) Divergence of reproductive phenology under climate warming. PNAS 104:198–202

    CAS  PubMed  Google Scholar 

  • Shimizu KK, Tsuchimatsu T (2015) Evolution of Selfing: recurrent patterns in molecular adaptation. Annu Rev Ecol Evol Syst 46:593–622

    Google Scholar 

  • Shimizu KK, Kudoh H, Kobayashi MJ (2011) Plant sexual reproduction during climate change: gene function in natura studied by ecological and evolutionary systems biology. Ann Bot 108:777–787

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shivanna KR (2003) Pollen biology and biotechnology, vol 316. CRC Press Tailor/Francis Group, LLC, Milton

    Google Scholar 

  • Shivanna KR (2011) Pollen-pistil interaction: A complex mating game required for fertilization in flowering plants. J Palynol 46:97–120

    Google Scholar 

  • Shivanna KR (2015) Reproductive assurance through autogamous self-pollination across diverse sexual and breeding systems. Curr Sci 109:1255–1263

    Google Scholar 

  • Shivanna KR, Tandon R (2014) Reproductive ecology of flowering plants: a manual. Springer, New Delhi

    Google Scholar 

  • Singh VK, Barman C, Tandon R (2014) Nectar robbing positively influences the reproductive success of Tecomella undulata (Bignoniaceae). PLoS One 9(7):e102607. https://doi.org/10.1371/journal.pone.0102607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh V, Barman C, Mohanty D, Tandon R (2018) Contribution of reproductive attributes to the density-dependent effects on fruit-set pattern in Anogeissus sericea. AoB Plants 10:ply019

    PubMed  PubMed Central  Google Scholar 

  • Singhal V, Kumar P (2008) Impact of cytomixis on meiosis, pollen viability and pollen size in wild populations of Himalayan poppy (Meconopsis aculeata Royle). J Biosci 33:371–380

    CAS  PubMed  Google Scholar 

  • Sletvold N (2019) The context dependence of pollinator-mediated selection in natural populations. Int J Plant Sci 180:934–943

    Google Scholar 

  • Solomon Raju AJ (2013) Reproductive ecology of mangrove flora: conservation and management Transylv. Rev Syst Ecol Res 15(2):133–185

    Google Scholar 

  • Sreekala AK, Pandurangan AG, Ramasubbu R, Kulloli SK (2008) Reproductive biology of Impatiens coelotropis fisher, a critically endangered balsam from the southern Western Ghats. Curr Sci 95:386–388

    Google Scholar 

  • Stephenson AG (1981) Flower and fruit abortion: proximate causes and ultimate functions. Annu Rev Ecol Syst 12:253–279

    Google Scholar 

  • Stiles FG (1978) Temporal organization of flowering among the hummingbird food plants of a tropical wet forest. Biotropica 10:194–210

    Google Scholar 

  • Sunnichan VG, Shivanna KR (1998) Micropropagation of Eremostachys superba – an endangered, endemic species from India. Curr Sci 74:699–702

    Google Scholar 

  • Sunnichan VG, Mohan Ram HY, Shivanna KR (2004) Floral sexuality and breeding system in gum karaya tree, Sterculia urens. Plant Syst Evol 244:201–218

    Google Scholar 

  • Sutherland S, Delph LF (1984) On the importance of male fitness in plants: patterns of fruit-set. Ecology 65:1093–1104

    Google Scholar 

  • Tackenberg O (2003) Modeling long distance dispersal of plant diaspores by wind. Ecol Monogr 73:173–189

    Google Scholar 

  • Takebayashi N, Wolf DE, Delph LF (2006) Effect of variation in herkogamy on outcrossing within a population of Gilia achilleifolia. Heredity 96:159–165

    CAS  PubMed  Google Scholar 

  • Tandon R, Manohara TN, Nijalingappa BHM, Shivanna KR (2001a) Pollination and pollen-pistil interaction in oil palm, Elaeis guineensis. Ann Bot 87:831–838

    Google Scholar 

  • Tandon R, Shivanna KR, Mohan Ram HY (2001b) Pollination biology and breeding system of Acacia senegal. Bot J Linn Soc 135:251–262

    Google Scholar 

  • Tandon R, Shivanna KR, Mohan Ram HY (2003) Reproductive biology of Butea monosperma (Fabaceae). Ann Bot 92:715–723

    PubMed  PubMed Central  Google Scholar 

  • Tiedeken EJ, Egan PA, Stevenson GA, Wright GA, Brown MJF, Power EF, Farrell I, Matthews SM, Stout JC (2016) Nectar chemistry modulates the impact of an invasive plant on native pollinators. Funct Ecol 30:885–893

    Google Scholar 

  • Upadhyay VP, Rajiv R, Singh JS (2002) Human-mangrove conflicts: the way out. Curr Sci 83:1328–1336

    Google Scholar 

  • Uyenoyama MK (1986) Inbreeding and the cost of meiosis: the evolution of selfing in populations practicing biparental inbreeding. Evolution 40:388–404

    PubMed  Google Scholar 

  • van der Niet T, Peakall R, Johnson SD (2014) Pollinator-driven ecological speciation in plants: new evidence and future perspectives. Ann Bot 113:199–211

    PubMed  PubMed Central  Google Scholar 

  • van der Pijl L (1982) Principles of dispersal. Springer, Berlin

    Google Scholar 

  • van Doorn WG, van Meeteren U (2003) Flower opening and closure: a review. J Exp Bot 54:1801–1812

    PubMed  Google Scholar 

  • Verma S, Karihaloo JL, Tiwari SK, Magotra R, Koul AK (2007) Genetic diversity in Eremostachys superba Royle ex Benth. (Lamiaceae), an endangered Himalayan species, as assessed by RAPD. Genet Resour Crop Evol 54:221–229

    Google Scholar 

  • Vikas GM, Tandon R, Mohan Ram HY (2009) Pollination biology and breeding system of Oroxylum indicum in Western Himalaya. J Trop Ecol 25:93–96

    Google Scholar 

  • Walkovszky A (1998) Changes in phenology of the locust tree (Robinia pseudoacacia L.) in Hungary. Int J Biometeorol 41:155–160

    Google Scholar 

  • Waser NM, Price MV (1981) Pollinator choice and stabilizing selection for flower color in Delphinium nelsonii. Evolution 35:376–390

    PubMed  Google Scholar 

  • Waser NM, Ollerton J (2006) Plant–pollinator interactions: from specialization to generalization. University of Chicago Press, Chicago

    Google Scholar 

  • Webb C, Lloyd DG (1986) The avoidance of interference between the presentation of pollen and stigmas in angiosperms II. Herkogamy. N Z J Bot 24:163–178

    Google Scholar 

  • Wenny DG (2001) Advantages of seed dispersal: a re-evaluation of directed dispersal. Evol Ecol Res 3:51–74

    Google Scholar 

  • Westergaard M (1958) The mechanism of sex determination in dioecious flowering plants. In: Advances in genetics, vol 9. Academic, San Diego, pp 217–281

    Google Scholar 

  • Williams NH, Dodson CH (1972) Selective attraction of male euglossine bees to orchid floral fragrances and its importance in long distance pollen flow. Evolution 26:84–95

    PubMed  Google Scholar 

  • Winn AA, Elle E, Kalisz S, Cheptou PO, Eckert CG, Goodwillie C, Johnston MO, Moeller DA, Ree RH, Sargent RD, Vallejo-Marin M (2011) Analysis of inbreeding depression in mixed-mating plants provides evidence for selective interference and stable mixed mating. Evolution 65:3339–3359

    PubMed  Google Scholar 

  • Wyatt R (1986) Ecology and evolution of self-pollination in Arenaria uniflora (Caryophyllaceae). J Ecol 74:403–418

    Google Scholar 

  • Xu Y, Shen Z, Li D, Guo Q (2015) Pre-dispersal seed predation in a species-rich Forest Community: patterns and the interplay with determinants. PLoS One 10:e0143040. https://doi.org/10.1371/journal.pone.0143040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yadav N, Pandey A, Bhatnagar A (2016) Cryptic monoecy and floral morph types in Acer oblongum (Sapindaceae): an endangered taxon. Flora 224:183–190

    Google Scholar 

  • Zapata TR, Arroyo MTK (1978) Plant reproductive ecology of a secondary deciduous tropical forest in Venezuela. Biotropica 10:221–230

    Google Scholar 

  • Zinn KE, Tunc-Ozdemir M, Harper JF (2010) Temperature stress and plant sexual reproduction: uncovering the weakest links. J Exp Bot 61:1959–1968. https://doi.org/10.1093/jxb/erq053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tandon, R., Koul, M., Shivanna, K.R. (2020). Reproductive Ecology of Flowering Plants: An Introduction. In: Tandon, R., Shivanna, K., Koul, M. (eds) Reproductive Ecology of Flowering Plants: Patterns and Processes. Springer, Singapore. https://doi.org/10.1007/978-981-15-4210-7_1

Download citation

Publish with us

Policies and ethics