Skip to main content

Recent Trends and Advances in Deep Learning-Based Sentiment Analysis

  • Chapter
  • First Online:
Deep Learning-Based Approaches for Sentiment Analysis

Part of the book series: Algorithms for Intelligent Systems ((AIS))

Abstract

Sentiment analysis is a fundamental branch of natural language processing. It is an essential task of identifying and extracting sentiment in opinionated data from sources such as social media, product feedback or blogs. Deep learning-based approaches have exceeded human-level performance in areas such as computer vision and speech recognition. Deep learning is widely accepted as the most promising in machine learning. In this chapter, we survey and analyse the current trends and advances in deep learning-based sentiment analysis approaches for document-level, sentence-level and aspect-based sentiment analysis for short and long text. A detailed discussion of deep learning architectures for sentiment analysis is provided. The studied approaches are classified into coarse-grain (including document and sentence level), fine-grain (includes target and aspect level) and cross-domain. Lastly, we provide a summary and in-depth analysis of the surveyed studies, for each of the aforementioned categories. The overwhelming number of studies explored convolutional neural networks (CNNs), long short-term memory (LSTM), gated recurrent unit (GRU) and attention mechanism. For coarse-grain sentiment analysis, LSTM and CNN-based models compete on performance, but it is CNNs that offer reduced model complexity and training overhead. Fine-grain sentiment analysis requires a model to learn complex interactions between target/aspect words and opinion words. Bi-directional LSTM and attention mechanisms offer the most promise, although CNN-based models have been adept at aspect extraction. The efforts in cross-domain sentiment analysis are dominated by LSTM and attention models. Our survey of cross-domain approaches revealed the use of multitask learning, adversarial training and joint training for domain adaptation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Koncz, P., and J. Paralic. 2011. An approach to feature selection for sentiment analysis. In 2011 15th IEEE International Conference on Intelligent Engineering Systems, 357–362. IEEE.

    Google Scholar 

  2. Zhang, H., Z. Yu, M. Xu, and Y. Shi. 2011. Feature-level sentiment analysis for Chinese product reviews. In 2011 3rd International Conference on Computer Research and Development, vol. 2, 135–140. IEEE.

    Google Scholar 

  3. Hu, M., and B. Liu. 2004. Mining opinion features in customer reviews. AAAI 4 (4): 755–760.

    Google Scholar 

  4. Biere, S. 2019. Hate speech detection using natural language processing techniques (online) Beta.vu.nl. Available at: https://beta.vu.nl/nl/Images/werkstuk-biere_tcm235-893877.pdf. Accessed 3 Jun 2019.

  5. Nahar, V., S. Unankard, X. Li, and C. Pang. 2012. Sentiment analysis for effective detection of cyber bullying. In Asia-Pacific Web Conference, 767–774. Berlin, Heidelberg: Springer.

    Google Scholar 

  6. Roman Steinberg, u. 2019. 6 areas where artificial neural networks outperform humans (online) VentureBeat. Available at: https://venturebeat.com/2017/12/08/6-areas-where-artificial-neural-networks-outperform-humans/. Accessed 10 Apr 2019.

  7. Zhang, L., Wang, S. and Liu, B. 2018. Deep learning for sentiment analysis: A survey. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, e1253.

    Google Scholar 

  8. Llombart, O.R. 2017. Using machine learning techniques for sentiment analysis. Published in June of 2017.

    Google Scholar 

  9. Kursuncu, U., M. Gaur, U. Lokala, K. Thirunarayan, A. Sheth, and I.B. Arpinar. 2019. Predictive analysis on Twitter: Techniques and applications. In Emerging Research Challenges and Opportunities in Computational Social Network Analysis and Mining, 67–104. Cham: Springer.

    Google Scholar 

  10. Giachanou, A., and F. Crestani. 2016. Like it or not: A survey of twitter sentiment analysis methods. ACM Computing Surveys (CSUR) 49 (2): 28.

    Article  Google Scholar 

  11. Mariel, W.C.F., S. Mariyah, and S. Pramana. 2018. Sentiment analysis: A comparison of deep learning neural network algorithm with SVM and naÏŠve Bayes for Indonesian text. In Journal of Physics: Conference Series, vol. 971(1), 012049. IOP Publishing.

    Google Scholar 

  12. Pradhan, V.M., J. Vala, and P. Balani. 2016. A survey on sentiment analysis algorithms for opinion mining. International Journal of Computer Applications 133 (9): 7–11.

    Article  Google Scholar 

  13. Xia, R., C. Zong, and S. Li. 2011. Ensemble of feature sets and classification algorithms for sentiment classification. Information Sciences 181 (6): 1138–1152.

    Article  Google Scholar 

  14. Joachims, T. 1998. Text categorization with support vector machines: learning with many relevant features. In 10th European Conference on Machine Learning (ECML’98).

    Chapter  Google Scholar 

  15. Rennie, J. and R. Rifkin. 2001. Improving multiclass text classification with the support vector machine. MIT, Technical Report. AIM-2001-026.2001.

    Google Scholar 

  16. Ly, D.K., K. Sugiyama, Z. Lin, and M.Y. Kan. 2011. June. Product review summarization from a deeper perspective. In Proceedings of the 11th Annual International ACM/IEEE Joint Conference on Digital Libraries, 311–314. ACM.

    Google Scholar 

  17. Agarwal, B, N. Mittal. 2016. Prominent feature extraction for sentiment analysis. In Springer Book Series: Socio-Affective Computing series, 1–115. Springer International Publishing. ISBN: 978-3-319-25343-5, https://doi.org/10.1007/978-3-319-25343-5.

    Book  Google Scholar 

  18. Somprasertsri, G. and P. Lalitrojwong. 2008. Automatic product feature extraction from online product reviews using maximum entropy with lexical and syntactic features. In 2008 IEEE International Conference on Information Reuse and Integration, 250–255. IEEE.

    Google Scholar 

  19. Wang, B, and H. Wang. 2008. Bootstrapping both product features and opinion words from Chinese customer reviews with cross-inducing. In Proceedings of the Third International Joint Conference on Natural Language Processing: Volume-I.

    Google Scholar 

  20. Zhang, L., B. Liu, S.H. Lim, and E. O’Brien-Strain. 2010. Extracting and ranking product features in opinion documents. In Proceedings of the 23rd International Conference on Computational Linguistics: Posters, 1462–1470. Association for Computational Linguistics.

    Google Scholar 

  21. Sriram, B., D. Fuhry, E. Demir, H. Ferhatosmanoglu, and M. Demirbas. 2010. Short text classification in twitter to improve information filtering. In Proceedings of the 33rd International ACM SIGIR Conference on Research and Development in Information Retrieval, 841–842. ACM.

    Google Scholar 

  22. Cambria, E.e.a. 2013. Statistical approaches to concept-level sentiment analysis. IEEE Intelligent Systems 28 (3): 6–9.

    Article  Google Scholar 

  23. Mokken, M.M.K.R.J, and M.D. Rijke. 2004. Using wordnet to measure semantic orientation of adjectives. In 4th International Conference on Language Resources and Evaluation, 1115–1118.

    Google Scholar 

  24. Esuli, A, and F. Sebastiani. 2005. Determining the semantic orientation of terms through gloss classification. In 14th ACM International Conference on Information and Knowledge Management, 617–624.

    Google Scholar 

  25. Peng, T.-C., and C.-C. Shih. 2010. An unsupervised snippet-based sentiment classification method for chinese unknown phrases without using reference word pairs. Journal of Computing 2 (8).

    Google Scholar 

  26. Melville, P., W. Gryc, and R.D. Lawrence. 2009. Sentiment analysis of blogs by combining lexical knowledge with text classification. In 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ser. KDD ’09 1275–1284. ACM.

    Google Scholar 

  27. Han, E. 1999. Text categorisation using weight adjusted k-nearest neighbour classification. Ph.D. dissertation, University of Minnesota.

    Google Scholar 

  28. A.P. Jain, and V.D. Katkar. 2015. Sentiments analysis of Twitter data using data mining. In International Conference on Information Processing (ICIP).

    Google Scholar 

  29. Turney, P., and M. Littman. 2003. Measuring praise and criticism: Inference of semantic orientation from association. ACM Transactions on Information Systems 21 (4): 315–346.

    Article  Google Scholar 

  30. Wiegand, M., A. Balahur, B. Roth, D. Klakow, and A. es Montoyo. 2010. A survey on the role of negation in sentiment analysis. In Proceedings of the Workshop on Negation and Speculation in Natural Language Processing, ser., 60–68.

    Google Scholar 

  31. Bifet, A., and E. Frank. 2010. Sentiment knowledge discovery in Twitter streaming data. In Proceedings of the 13th International Conference on Discovery Science, 15, Ed.

    Google Scholar 

  32. Cambria, E., B. Schuller, Y. Xia, and C. Havasi. 2013. New avenues in opinion mining and sentiment analysis. IEEE Intelligent Systems 28 (2): 15–21.

    Article  Google Scholar 

  33. Pang, B., L. Lee, and S. Vaithyanathan. 2002. Thumbs up? Sentiment classification using machine learning techniques. In Proceedings of the ACL-02 Conference on Empirical Methods in Natural Language Processing, 79–86.

    Google Scholar 

  34. Ficamos, P., and Y. Liu. 2016. A topic based approach for sentiment analysis on twitter data. International Journal of Advanced Computer Science and Applications 7 (12).

    Google Scholar 

  35. Cambria, E., and A. Hussain. 2015. Sentic computing: A common-sense-based framework for concept-level sentiment analysis. Springer Publishing Company, Incorporated.

    Google Scholar 

  36. LeCun, Y., L. Bottou, Y. Bengio, and P. Haffner. 1998. Gradient-based learning applied to document recognition. Proceedings of the IEEE 86 (11): 2278–2324.

    Article  Google Scholar 

  37. Hochreiter, S., and J. Schmidhuber. 1997. Long short-term memory. Neural Computation 9 (8): 1735–1780.

    Article  Google Scholar 

  38. Cho, K., B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, and Y. Bengio. 2014. Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv preprint arXiv:1406.1078.

  39. Chung, J., C. Gulcehre, K. Cho, and Y. Bengio. 2014. Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555.

  40. Bahdanau, D., K. Cho, and Y. Bengio. 2014. Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473.

  41. Akhtar, S., A. Kumar, A. Ekbal, and P. Bhattacharyya. 2016. A hybrid deep learning architecture for sentiment analysis. In Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers 482–493. Osaka, Japan: The COLING 2016 Organizing Committee.

    Google Scholar 

  42. Johnson R, and T. Zhang. 2015. Effective use of word order for text categorization with convolutional neural networks. In Proceedings of the Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (NAACL-HLT 2015).

    Google Scholar 

  43. Salinca, A. 2017. Convolutional neural networks for sentiment classification on business reviews. arXiv preprint arXiv:1710.05978.

  44. Rani, S., and P. Kumar. 2018. Deep learning based sentiment analysis using convolution neural network. Arabian Journal for Science and Engineering.

    Google Scholar 

  45. Xu, J., D. Chen, X. Qiu, and X. Huang. 2016. Cached long short-term memory neural networks for document-level sentiment classification. In Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing.

    Google Scholar 

  46. Wang, Y., A. Sun, J. Han, Y. Liu, and X. Zhu. 2018. Sentiment analysis by capsules. In Proceedings of the 2018 World Wide Web Conference on World Wide Web, 1165–1174. International World Wide Web Conferences Steering Committee.

    Google Scholar 

  47. Zadeh, A., M. Chen, S. Poria, E. Cambria, and L.-P. Morency. 2017. Tensor fusion network for multimodal sentiment analysis. In Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing.

    Google Scholar 

  48. Nguyen, D., K. Vo, D. Pham, M. Nguyen, and T. Quan. 2017. A deep architecture for sentiment analysis of news articles. In International Conference on Computer Science, Applied Mathematics and Applications, 129–140. Cham: Springer.

    Google Scholar 

  49. Liu, P., X. Qiu, and X. Huang. 2016. Recurrent neural network for text classification with multi-task learning. arXiv preprint arXiv:1605.05101.

  50. Zhou X, X. Wan, J. Xiao. 2016. Attention-based LSTM network for cross-lingual sentiment classification. In Proceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP 2016).

    Google Scholar 

  51. Yang, Z., D. Yang, C. Dyer, X. He, A. Smola, and E. Hovy. 2016. Hierarchical attention networks for document classification. In Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, 1480–1489.

    Google Scholar 

  52. Baziotis, C., N. Pelekis, and C. Doulkeridis. 2017. Datastories at semeval-2017 task 4: Deep lstm with attention for message-level and topic-based sentiment analysis. In Proceedings of the 11th International Workshop on Semantic Evaluation (SemEval-2017), 747–754.

    Google Scholar 

  53. Poria, S., I. Chaturvedi, E. Cambria, and A. Hussain. 2016. Convolutional MKL based multimodal emotion recognition and sentiment analysis. In 2016 IEEE 16th International Conference on Data Mining (ICDM), 439–448. IEEE.

    Google Scholar 

  54. Wang, B. 2018. Disconnected recurrent neural networks for text categorization. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics, vol. 1: Long Papers, 2311–2320.

    Google Scholar 

  55. Chen, T., R. Xu, Y. He, and X. Wang. 2017. Improving sentiment analysis via sentence type classification using BiLSTM-CRF and CNN. Expert Systems with Applications 72: 221–230.

    Article  Google Scholar 

  56. Cliche, M. 2017. BB_twtr at SemEval-2017 Task 4: Twitter sentiment analysis with CNNs and LSTMs. arXiv preprint arXiv:1704.06125.

  57. Yin Y, Y. Song, M. Zhang. 2017. Document-level multi-aspect sentiment classification as machine comprehension. In Proceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP 2017).

    Google Scholar 

  58. Xue, W, and T. Li. 2018. Aspect based sentiment analysis with gated convolutional networks. arXiv preprint arXiv:1805.07043.

  59. Zhu, P., and T. Qian. 2018. Enhanced aspect level sentiment classification with auxiliary memory. In Proceedings of the 27th International Conference on Computational Linguistics, 1077–1087.

    Google Scholar 

  60. Wang, W., S.J. Pan, and D. Dahlmeier. 2018. Memory networks for fine-grained opinion mining. Artificial Intelligence 265: 1–17.

    Article  Google Scholar 

  61. Huang, B., Y. Ou, and K.M. Carley. 2018. Aspect level sentiment classification with attention-over-attention neural networks. arXiv preprint arXiv:1804.06536.

  62. Zheng, S, and R. Xia. 2018. Left-center-right separated neural network for aspect-based sentiment analysis with rotatory attention. arXiv preprint arXiv:1802.00892.

  63. Wang, B, and W. Lu. 2018. Learning latent opinions for aspect-level sentiment classification. In Thirty-Second AAAI Conference on Artificial Intelligence.

    Google Scholar 

  64. Zhang, M., Y. Zhang, and D.T. Vo. 2016. Gated neural networks for targeted sentiment analysis. In AAAI, 3087–3093.

    Google Scholar 

  65. Poria, S., E. Cambria, and A. Gelbukh. 2016. Aspect extraction for opinion mining with a deep convolutional neural network. Knowledge-Based Systems 108: 42–49.

    Article  Google Scholar 

  66. Chen, X, and C. Cardie. 2018. Multinomial adversarial networks for multi-domain text classification. arXiv preprint arXiv:1802.05694.

  67. Ji, J., C. Luo, X. Chen, L. Yu, and P. Li. 2018. Cross-domain sentiment classification via a bifurcated-LSTM. In Pacific-Asia Conference on Knowledge Discovery and Data Mining, 681–693. Cham: Springer.

    Chapter  Google Scholar 

  68. Ruder, S, and B. Plank. 2018. Strong baselines for neural semi-supervised learning under domain shift. arXiv preprint arXiv:1804.09530.

  69. Li, Z, Y. Zhang, Y. Wei, Y. Wu, and Q. Yang. 2017. End-to-end adversarial memory network for cross-domain sentiment classification. In Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI 2017).

    Google Scholar 

  70. Li, Z., Y. Wei, Y. Zhang, and Q. Yang. 2018. Hierarchical attention transfer network for cross-domain sentiment classification. In Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, AAAI 2018, New Orleans, Lousiana, USA, 2–7 Feb 2018.

    Google Scholar 

  71. Nam, H, and B. Han. 2016. Learning multi-domain convolutional neural networks for visual tracking. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 4293–4302.

    Google Scholar 

  72. Baevski, A., Edunov, S., Liu, Y., Zettlemoyer, L. and Auli, M., 2019. Cloze-driven Pretraining of Self-attention Networks. arXiv preprint arXiv:1903.07785.

  73. Johnson, R. and Zhang, T. 2017. Deep pyramid convolutional neural networks for text categorization. In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, vol. 1: Long Papers, 562–570.

    Google Scholar 

  74. dos Santos, C. 2014. Think positive: Towards Twitter sentiment analysis from scratch. In Proceedings of the 8th International Workshop on Semantic Evaluation (SemEval 2014), 647–651.

    Google Scholar 

  75. Deriu, J., M. Gonzenbach, F. Uzdilli, A. Lucchi, V.D. Luca, and M. Jaggi. 2016. Swisscheese at semeval-2016 task 4: Sentiment classification using an ensemble of convolutional neural networks with distant supervision. In Proceedings of the 10th International Workshop on Semantic Evaluation (No. CONF, 1124–1128).

    Google Scholar 

  76. Rouvier, M., and B. Favre. 2016. SENSEI-LIF at SemEval-2016 task 4: Polarity embedding fusion for robust sentiment analysis. In Proceedings of the 10th International Workshop on Semantic Evaluation (SemEval-2016), 202–208.

    Google Scholar 

  77. Gray, S., A. Radford, and D.P. Kingma. 2017. Gpu kernels for block-sparse weights. arXiv preprint arXiv:1711.09224.

  78. Howard, J., and S. Ruder. 2018. Universal language model fine-tuning for text classification. arXiv preprint arXiv:1801.06146.

  79. Johnson, R., and T. Zhang. 2016. Supervised and semi-supervised text categorization using LSTM for region embeddings. arXiv preprint arXiv:1602.02373.

  80. Baziotis, C., N. Pelekis, and C. Doulkeridis. 2017. Datastories at semeval-2017 task 4: Deep lstm with attention for message-level and topic-based sentiment analysis. In Proceedings of the 11th International Workshop on Semantic Evaluation (SemEval-2017), 747–754.

    Google Scholar 

  81. Yu, Z., and G. Liu. 2019. Sliced recurrent neural networks (online) arXiv.org. Available at: https://arxiv.org/abs/1807.02291. Accessed 11 Apr 2019.

  82. Xu, S., H. Liang, and T. Baldwin. 2016. Unimelb at semeval-2016 tasks 4a and 4b: An ensemble of neural networks and a word2vec based model for sentiment classification. In Proceedings of the 10th International Workshop on Semantic Evaluation (SemEval-2016), 183–189.

    Google Scholar 

  83. Rouvier, M. 2017. LIA at SemEval-2017 task 4: An ensemble of neural networks for sentiment classification. In Proceedings of the 11th International Workshop on Semantic Evaluation (SemEval-2017), 760–765.

    Google Scholar 

  84. Liu, X., P. He, W. Chen, and J. Gao. 2019. Multi-task deep neural networks for natural language understanding. arXiv preprint arXiv:1901.11504.

  85. Tang, D., F. Wei, B. Qin, T. Liu, and M. Zhou. 2014. Coooolll: A deep learning system for twitter sentiment classification. In Proceedings of the 8th International Workshop on Semantic Evaluation (SemEval 2014), 208–212.

    Google Scholar 

  86. Kar, S., S. Maharjan, and T. Solorio. 2017. RiTUAL-UH at SemEval-2017 task 5: Sentiment analysis on financial data using neural networks. In Proceedings of the 11th International Workshop on Semantic Evaluation (SemEval-2017), 877–882.

    Google Scholar 

  87. Khalil, T., and S.R. El-Beltagy. 2016. Niletmrg at semeval-2016 task 5: Deep convolutional neural networks for aspect category and sentiment extraction. In Proceedings of the 10th International Workshop on Semantic Evaluation (SEMEVAL-2016), 271–276.

    Google Scholar 

  88. Wang, W., S.J. Pan, D. Dahlmeier, and X. Xiao. 2016. Recursive neural conditional random fields for aspect-based sentiment analysis. arXiv preprint arXiv:1603.06679.

  89. Socher, R., A. Perelygin, J. Wu, J. Chuang, C.D. Manning, A. Ng, and C. Potts. 2013. Recursive deep models for semantic compositionality over a sentiment treebank. In Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, 1631–1642.

    Google Scholar 

  90. Liu, F., T. Cohn, and T. Baldwin. 2018. Recurrent entity networks with delayed memory update for targeted aspect-based sentiment analysis. arXiv preprint arXiv:1804.11019.

  91. Patro, B.N., V.K. Kurmi, S. Kumar, and V.P. Namboodiri. 2018. Learning semantic sentence embeddings using pair-wise discriminator. arXiv preprint arXiv:1806.00807.

  92. Brahma, S. 2019. Improved sentence modeling using suffix bidirectional LSTM. (online) Export.arxiv.org. Available at: http://export.arxiv.org/abs/1805.07340. Accessed 11 Apr 2019.

  93. Peters, M.E., M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee, and L. Zettlemoyer. 2018. Deep contextualized word representations. arXiv preprint arXiv:1802.05365.

  94. Saeidi, M., G. Bouchard, M. Liakata, and S. Riedel. 2016. Sentihood: Targeted aspect based sentiment analysis dataset for urban neighbourhoods. arXiv preprint arXiv:1610.03771.

  95. Tang, D., B. Qin, and T. Liu. 2016. Aspect level sentiment classification with deep memory network. arXiv preprint arXiv:1605.08900.

  96. He, R., W.S. Lee, H.T. Ng, and D. Dahlmeier. 2018. Effective attention modeling for aspect-level sentiment classification. In Proceedings of the 27th International Conference on Computational Linguistics, 1121–1131.

    Google Scholar 

  97. Wang, Y., M. Huang, and L. Zhao. 2016. Attention-based LSTM for aspect-level sentiment classification. In Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, 606–615.

    Google Scholar 

  98. He, R., W.S. Lee, H.T. Ng, and D. Dahlmeier. 2018. Exploiting document knowledge for aspect-level sentiment classification. arXiv preprint arXiv:1806.04346.

  99. Ma, D., S. Li, X. Zhang, and H. Wang. 2017. Interactive attention networks for aspect-level sentiment classification. arXiv preprint arXiv:1709.00893.

  100. Ma, Y., H. Peng, and E. Cambria. 2018. Targeted aspect-based sentiment analysis via embedding commonsense knowledge into an attentive LSTM. In Thirty-Second AAAI Conference on Artificial Intelligence.

    Google Scholar 

  101. Li, Z., Y. Wei, Y. Zhang, X. Zhang, X. Li, and Q. Yang, Q. 2018. Exploiting coarse-to-fine task transfer for aspect-level sentiment classification. arXiv preprint arXiv:1811.10999.

  102. Li, L., Y. Liu, and A. Zhou. 2018. Hierarchical attention based position-aware network for aspect-level sentiment analysis. In Proceedings of the 22nd Conference on Computational Natural Language Learning, 181–189.

    Google Scholar 

  103. Moro, G., A. Pagliarani, R. Pasolini, and C. Sartori. 2018. Cross-domain & in-domain sentiment analysis with memory-based deep neural networks. In Proceedings of the 10th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management.

    Google Scholar 

  104. Aggarwal, U., and G. Aggarwal. 2017. Sentiment Analysis: A Survey. International Journal of Computer Sciences and Engineering 5 (5): 222–225.

    Google Scholar 

  105. Chen, P., Z. Sun, L. Bing, and W. Yang. 2017. Recurrent attention network on memory for aspect sentiment analysis. In Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, 452–461.

    Google Scholar 

  106. Liu, Q., Y. Zhang, and J. Liu. 2018. Learning domain representation for multi-domain sentiment classification. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, (Long Papers), vol. 1, 541–550.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tariq Abdullah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ahmet, A., Abdullah, T. (2020). Recent Trends and Advances in Deep Learning-Based Sentiment Analysis. In: Agarwal, B., Nayak, R., Mittal, N., Patnaik, S. (eds) Deep Learning-Based Approaches for Sentiment Analysis. Algorithms for Intelligent Systems. Springer, Singapore. https://doi.org/10.1007/978-981-15-1216-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-1216-2_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-1215-5

  • Online ISBN: 978-981-15-1216-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics