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Abstract
The respiratory system is connected to the cardiovascular system physically and 
physiologically. This chapter overviews the morphogenesis and epithelial devel-
opment of the lung. The airway branching structure is formed as development 
progresses and is controlled by reciprocal mesenchymal-epithelial interactions. 
During the branching process, the distal terminal buds are thought to contain a 
population of multipotent epithelial progenitors that are more proliferative than 
proximal cells. This predominant proliferation in the distal tip leads to the lung 
bud extension toward the distal end. As the bronchial tree extends further, descen-
dants of these multipotent cells give rise to lineage-restricted progenitors in the 
conducting airways. Notch signaling is used repeatedly to organize three epithe-
lial cell types: Club, ciliated, and neuroendocrine (NE) cells. The Notch-mediated 
fate selection of Club/ciliated cells and of the size of NE cell clusters is regulated 
by different mechanisms. The Club/ciliated cell fate decision is mediated exclu-
sively by Notch2 in response to Jag1. In contrast, all three Notch receptors con-
tribute to robustly regulate the NE cell-cluster size. High-resolution whole-mount 
imaging of the developing lung revealed that the NE cell cluster appears at the 
stereotypic positions at the bifurcating area of the branching airways. Moreover, 
the 4D imaging, 3D plus live-imaging, method for developing lung epithelial 
cells discovered dynamics of NE cell clustering in which NE cells appear at 
inter-bifurcation area as solitary cells and migrate toward the branching points to 
form clusters. Further analyses determined that Notch signaling regulates the 
number of solitary NE cells in a lateral-inhibition fashion.
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3.1  Introduction

The lung facilitates gas exchange by maximizing ventilation efficiency and the sur-
face area of interface to the capillaries. The developing lung forms an intricate, but 
stereotypic, branching airway structure and arrayed epithelial cells (Fig. 3.1). Air 
from the external environment includes viruses, bacteria, and toxic chemical com-
pounds, which means that the airways may become damaged and need to be repaired 
rapidly. For these reasons, the lung is a useful model organ for studying cellular 
events that are conserved between organogenesis in the embryo and tissue regenera-
tion in the adult.

3.2  Morphogenesis and Epithelial Progenitors

For the last two decades, extensive studies using mouse models have revealed bio-
logical processes and genes that regulate lung development. Although there are sig-
nificant differences in tissue size, the lungs in human and mouse display similar 
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Fig. 3.1 The structure of the lung airways and their epithelial components
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histology and pathology [1], suggesting that the mouse lung may be a useful model 
system for investigating organ biology and human disease. Lung development relies 
on reciprocal mesenchymal-epithelial interactions orchestrated by temporal and 
spatial expression waves of multiple secreted factors and their downstream effectors 
[2]. Airway branching morphogenesis takes place at E11.5–16.5 in the mouse and 
at 5–17 weeks in human embryo (known as pseudoglandular stage, during which 
most of airway branching morphogenesis takes place); it is thought that the terminal 
buds contain a population of multipotent epithelial progenitors (Fig. 3.2) [3]. While 
the buds extend and branch in a genetically coordinated stereotypic pattern [4], the 
progenitors give rise to lineage-restricted descendants that produce at least seven 
major cell types in the ‘stalk’ region [3, 5]. Thus, the early stalks form the proximal 
airway, then the distal airways, and finally the alveoli [6]. In the proximal airway, 
the tracheal epithelium consists of the basal, goblet, Club (secretory), and ciliated 
cells. Smaller bronchi contain the latter two cell types and pulmonary neuroendo-
crine (NE) cells. The distal-most airway, the alveolus, is lined with thin layers of flat 
Type I cells and cuboidal Type II cells (Fig. 3.1).

3.3  Notch Signaling Controls Both Epithelial Cell Fates 
and Distributions

One of the outstanding questions in the field is how epithelial cells interact and 
exchange information to generate and maintain the appropriate balance in their 
respective cell numbers and distributions. Using genetic engineering methods, we 
have performed stepwise removal of the components of Notch signaling, a key sig-
naling in cell fate decisions in developing lung epithelium, and revealed that Notch 
signaling is used reiteratively to organize three major epithelial cell types: Club, 
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differentiated cells in 
developing airways during 
pseudoglandular stage
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ciliated, and NE cells [7, 8]. We also identified significant differences between the 
selection of Club/ciliated cells and the size regulation of NE cell clusters. The Club/
ciliated cell fate decision is mediated exclusively by Notch2  in response to Jag1 
with negligible contributions from Notch1 and 3 (Fig. 3.3a). In contrast, all three 
Notch receptors respond to Dll1 and contribute in an additive manner to regulate NE 
cell cluster numbers and size (Fig. 3.3b). These results indicate that two distinct 
Notch signaling pathways, involving Jag1-Notch2 and Dll1-Notch123 signaling, 
respectively, coordinate the number and distribution of the major epithelial cell 
types of the conducting airway in lung organogenesis. However, at the time we were 
unable to clarify the Notch-mediated mechanism by which the NE cell number and 
cluster size are regulated.

3.4  Development of NE Cell Clusters on Bifurcating Area 
of Branching Airways

The pulmonary NE cells are thought to function as chemoreceptors and as a compo-
nent of the stem cell niche and are also the cells of origin in small-cell lung cancer. 
NE cells often localize at bifurcation points of airway tubes, forming small clusters 
called neuroepithelial bodies (NEBs). These are referred to as “nodal” NEBs [9] 
whereas NEBs in inter-bifurcation regions are called “internodal” (Fig. 3.4). Despite 

a

b

Fig. 3.3 Loss of Notch signaling phenotypes within airway epithelium. (a) Immunostainings for 
Club (CC10, Red) and ciliated (Foxj1, Green) cells of epithelial Notch1 or 2 conditional KO lung. 
(b) Schematic diagrams of the proposed regulatory mechanisms involved in Notch-mediated cell 
fate determination during bronchial epithelial development. In the pseudoglandular stage, epithe-
lial progenitors (purple) located at the distal tip produce descendants that differentiate into Club 
(pink), ciliated (green), SPNC (red) and NE (blue) cells
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the functional importance of NE cells and NEBs, their developmental course 
remains unclear in part because of technical limitations in obtaining high-resolution 
images and quantitative analysis of the behavior of epithelial cells in the context of 
a 3D branching morphology. We have established methods for 3D mapping of lung 
epithelial cells and ex vivo 4D imaging of the developing lung [10].

To accurately map the positions of all NEBs throughout the entire respiratory 
tree, we used two-photon microscopy to image whole-mount lungs in a transgenic 
mouse strain, RetEGFP/+; SHHCre/+; R26RH2B-mCherry mice visualizing NE cells in the 
epithelium (EGFP+; mCherry+) and neuronal cells in the mesenchyme (EGFP+; 
mCherry−). Lungs were collected at E14.5, E15.5, and E16.5 and cleared using 
clear, unobstructed brain imaging cocktail (CUBIC) solution [11]. The 3D architec-
ture of mCherry+ lung epithelium was extracted computationally from 3D image 
stacks by removal of mesenchymal signals, and data on the positions of all epithelial 
and NE cells were recorded (Fig. 3.5a). These 3D imaging and quantitative analyses 
revealed that nodal NEBs are significantly larger than internodal NEBs at each 
stage. We redefined the localization of nodal NEBs by close examination of their 
positions within the entire geometric architecture of the airway tubes (Fig. 3.5b). 
These geometric analyses revealed that nodal NEBs are located at stereotypic posi-
tions in airway branching structures.

3.5  Notch-Hes1 Signaling Is Required for Restricted 
Differentiation of Solitary NE Cells

To determine the mechanisms of Notch-mediated NEB development, we geneti-
cally ablated Hes1 gene, which is the target of Notch signaling and a regulator of 
NE cell development [12], from endodermal epithelium by generating SHHCre/+; 

Fig. 3.4 Immu-
nohistochemistry of the NE 
cell marker CGRP (brown) 
for E18.5 mouse lung. The 
arrowheads indicate the 
NEBs on bifurcation points 
(black) or inter-bifurcation 
region (gray)
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Hes1f/f mice. Ascl1-positive primordial NE cells were examined at E13.5. Compared 
with normal epithelium, the Hes1-deficient epithelium showed abundant NE cells 
that tended to adjoin each other at the proximal region in Hes1-deficient epithelium 
(Fig. 3.6a). The punctate distribution of NE cells in the normal E13.5 lung and the 
disruption of this pattern in Hes1 mutants suggest that Notch-Hes1 signaling sup-
presses NE cell fate in a classical lateral inhibition fashion (Fig. 3.6b). To analyze 
the effect of Hes1 depletion in NEB formation, we performed NEB 3D mapping by 
generating SHHCre/+; R26RH2B-mCherry; RetEGFP/+; Hes1f/f embryos and imaged the cra-
nial lobes at E16.5. In contrast to the wide distribution of NE cells at E13.5, we 
noted markedly enlarged NEBs throughout the proximal to distal airways (Fig. 3.6c).

3.6  Directional Migration of NE Cells Toward Bifurcation 
Points Creates Nodal NEBs

We hypothesized that NE cells emerge as solitary cells and, subsequently, migrate 
toward a bifurcation point to form NEBs. To test this hypothesis, we established a 
4D imaging method for the developing lung, involving 3D plus time-lapse imaging 
of living tissue. We cultured E13.5 cranial lobes at the air-liquid interface on a mem-
brane filter that becomes transparent in liquid (Fig. 3.7a). In these 4D images, NE 
cells initially appear as individual cells, in line with our expectations. These cells 
subsequently migrated toward a bifurcation point located in a more distal region and 
accumulated there to form an NEB (Fig.  3.7b). Some NE cells also clustered at 
inter-bifurcation areas. These observations support the idea that NE cells emerge as 
solitary cells via Notch-mediated cell fate selection and, subsequently, migrate 
toward bifurcation points on the basement membrane to form nodal NEBs (Fig. 3.8). 
Internodal NEBs may be generated by a population of cells that are arrested during 
this migration. In this study, we described a spatial relationship between 3D branch-
ing morphology and nodal NEB localization. We also provided direct evidence 
showing that cell-autonomous Notch-Hes1 signaling inhibits NE cell differentiation 
in a classical lateral inhibition fashion, giving rise to a limited number of NE cells. 
Our results suggest the presence of at least three factors (or combinations of factors) 
that control NE cell clustering, working to attract them to the distal trap at bifurca-
tion points and induce their aggregation [10]. We are now investigating molecular 
mechanisms explaining directional migration and clustering at the bifurcating area 
of the developing airways.

Given that NE cells are thought to be the cells of origin in highly malignant 
small-cell lung cancers, investigating the molecular mechanisms of NE cell migra-
tion may provide important clues toward the development of new therapeutic 
approaches to mitigate this malignancy.
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