Skip to main content

Introduction: Modeling the Fate of Chemicals in Products in the Total Environment

  • Chapter
  • First Online:
Modeling the Fate of Chemicals in Products

Part of the book series: Springer Theses ((Springer Theses))

Abstract

Academic and public interest has been poured into “chemicals in products (CiPs)”, that is, the chemicals of environmental and health concern intentionally added in industrial or consumer goods for additional functions. This chapter gives a comprehensive overview of the fate of CiPs in the “total” environment, that is, a system comprising the anthroposphere (human socioeconomic activities) and the physical environment (the totality of abiotic setting in which organisms and humans live) as two interconnected and interdependent components. Currently, industrial ecologists have well elucidated the anthropospheric fate of products whereas environmental chemists have well elucidated the environmental fate of chemicals. Nevertheless, there is still a need for an integrative, temporally resolved, and mechanistically sound modeling framework for chemicals plus products as an organic whole in the CiP issue.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. UNEP (2019) Global chemicals outlook II. From legacies to innovative solutions: implementing the 2030 agenda for sustainable development. United Nations Environment Programme, Nairobi

    Google Scholar 

  2. Alaee M, Arias P, Sjödin A, Bergman Å (2003) An overview of commercially used brominated flame retardants, their applications, their use patterns in different countries/regions and possible modes of release. Environ Int 29(6):683–689

    Article  CAS  Google Scholar 

  3. Covaci A, Harrad S, Abdallah MAE, Ali N, Law RJ, Herzke D, de Wit CA (2011) Novel brominated flame retardants: a review of their analysis, environmental fate and behaviour. Environ Int 37(2):532–556

    Article  CAS  Google Scholar 

  4. UNEP (2012) Global chemicals outlook I. Towards sound management of chemicals. United Nations Environment Programme, Nairobi

    Google Scholar 

  5. Attina TM, Hauser R, Sathyanarayana S, Hunt PA, Bourguignon J-P, Myers JP, DiGangi J, Zoeller RT, Trasande L (2016) Exposure to endocrine-disrupting chemicals in the USA: a population-based disease burden and cost analysis. Lancet Diabetes Endocrinol 4(12):996–1003

    Article  Google Scholar 

  6. Trasande L, Myers JP, DiGangi J, Bellanger M, Legler J, Skakkebaek NE, Heindel JJ, Zoeller RT, Hass U, Kortenkamp A, Hauser R, Grandjean P (2015) Estimating burden and disease costs of exposure to endocrine-disrupting chemicals in the European Union. J Clin Endocrinol Metab 100(4):1245–1255

    Article  CAS  Google Scholar 

  7. SAICM (2006) Overarching policy strategy of the strategic approach to international chemicals management (SAICM)

    Google Scholar 

  8. UNEP (2015) The chemicals in products programme. United Nations Environment Programme, Geneva

    Google Scholar 

  9. European Union (2006) Registration, evaluation, authorisation and restriction of chemicals (REACH). Regulation (EC) No 1907/2006

    Google Scholar 

  10. ECHA (2017) EU guidance on requirements for substances in articles (Version 4.0). European Chemicals Agency (ECHA), Helsinki

    Google Scholar 

  11. Tibben-Lembke RS (2002) Life after death: reverse logistics and the product life cycle. Int J Phys Distrib Logist Manag 32(3):223–244

    Article  Google Scholar 

  12. de Haes HU, van der Voet E, Kleijn R (1997) Substance flow analysis (SFA), an analytical tool for integrated chain management. In: Bringezu S, Fischer-Kowalski M, Kleijn R, Palm V (eds) Regional and national material flow accounting: from paradigm to sustainability, Proceedings of the ConAccount workshop, Leiden, The Netherlands, pp 32–42

    Google Scholar 

  13. Manahan SE (2000) Environmental chemistry, 8th edn. CRC Press, Boca Ration, FL

    Google Scholar 

  14. Schellnhuber HJ (1999) “Earth system” analysis and the second Copernican revolution. Nature 402(6761):C19–C23

    Article  CAS  Google Scholar 

  15. Eduljee GH (2001) Budget and source inventories. In: Harrad S (ed) Persistent organic pollutants: environmental behaviour and pathways of human exposure. Springer, US, Boston, MA, pp 1–28

    Google Scholar 

  16. Harrad SJ, Sewart AP, Alcock R, Boumphrey R, Burnett V, Duarte-Davidson R, Halsall C, Sanders G, Waterhouse K, Wild SR, Jones KC (1994) Polychlorinated biphenyls (PCBs) in the British environment: sinks, sources and temporal trends. Environ Pollut 85(2):131–146

    Article  CAS  Google Scholar 

  17. Abbasi G, Buser AM, Soehl A, Murray MW, Diamond ML (2015) Stocks and flows of PBDEs in products from use to waste in the US and Canada from 1970 to 2020. Environ Sci Technol 49(3):1521–1528

    Article  CAS  Google Scholar 

  18. Wania F, Su Y (2004) Quantifying the global fractionation of polychlorinated biphenyls. Ambio 33(3):161–168

    Article  Google Scholar 

  19. Wania F (2007) A global mass balance analysis of the source of perfluorocarboxylic acids in the Arctic Ocean. Environ Sci Technol 41(13):4529–4535

    Article  CAS  Google Scholar 

  20. Mackay D (2001) Multimedia environmental models: the fugacity approach, 2nd edn. CRC Press, Boca Raton, FL

    Book  Google Scholar 

  21. Li L, Wania F (2018) Elucidating the variability in the hexabromocyclododecane diastereomer profile in the global environment. Environ Sci Technol 52(18):10532–10542

    Article  CAS  Google Scholar 

  22. Baccini P, Brunner PH (2012) Metabolism of the anthroposphere: analysis, evaluation, design, 2nd edn. The MIT Press, Cambridge, MA and London

    Book  Google Scholar 

  23. Bringezu S, Moriguchi Y (2002) Material flow analysis. In: Ayres RU, Ayres LW (eds) A handbook of industrial ecology. Edward Elgar, Cheltenham, UK

    Google Scholar 

  24. Binder C, Bader H-P, Scheidegger R, Baccini P (2001) Dynamic models for managing durables using a stratified approach: the case of Tunja, Colombia. Ecol Econ 38(2):191–207

    Article  Google Scholar 

  25. Müller E, Hilty LM, Widmer R, Schluep M, Faulstich M (2014) Modeling metal stocks and flows: a review of dynamic material flow analysis methods. Environ Sci Technol 48(4):2102–2113

    Article  CAS  Google Scholar 

  26. Chen W, Graedel TE (2012) Anthropogenic cycles of the elements: a critical review. Environ Sci Technol 46(16):8574–8586

    Article  CAS  Google Scholar 

  27. Keller AA, McFerran S, Lazareva A, Suh S (2013) Global life cycle releases of engineered nanomaterials. J Nanoparticle Res 15(6):1692

    Article  Google Scholar 

  28. Brunner PH, Rechberger H (2004) Practical handbook of material flow analysis. CRC Press LLC, Boca Raton, Florida

    Google Scholar 

  29. Ayres RU, Kneese AV (1969) Production, consumption, and externalities. Am Econ Rev 59(3):282–297

    Google Scholar 

  30. Ayres RU (1978) Resources, environment and economics: applications of the materials/energy balance principle. Wiley and Sons, New York

    Google Scholar 

  31. Ayres RU (1989) Industrial metabolism. In: Ausubel JH, Sladovich HE (eds) Technology and Environment. National Academy Press, Washington, DC

    Google Scholar 

  32. Pauliuk S, Majeau-Bettez G, Müller DB, Hertwich EG (2015) Toward a practical ontology for socioeconomic metabolism. J Ind Ecol 20(6):1260–1272

    Article  Google Scholar 

  33. van der Voet E, Heijungs R, Mulder P, Huele R, Kleijn R, van Oers L (1995) Substance flows through the economy and environment of a region. Environ Sci Pollut Res 2(3):137–144

    Article  Google Scholar 

  34. Müller DB (2006) Stock dynamics for forecasting material flows—case study for housing in The Netherlands. Ecol Econ 59(1):142–156

    Article  Google Scholar 

  35. Bauer G, Deistler M, Gleiß A, Glenck E, Matyus T (1997) Identification of material flow systems. Environ Sci Pollut Res 4(2):105

    Article  CAS  Google Scholar 

  36. van der Voet E, Kleijn R, Huele R, Ishikawa M, Verkuijlen E (2002) Predicting future emissions based on characteristics of stocks. Ecol Econ 41(2):223–234

    Article  Google Scholar 

  37. Cooper T (1994) Beyond recycling: the longer life option. New Economics Foundation, London

    Google Scholar 

  38. Murakami S, Oguchi M, Tasaki T, Daigo I, Hashimoto S (2010) Lifespan of commodities, part I: the creation of a database and its review. J Ind Ecol 14(4):598–612

    Article  Google Scholar 

  39. Oguchi M, Murakami S, Tasaki T, Daigo I, Hashimoto S (2010) Lifespan of commodities, part II: methodologies for estimating lifespan distribution of commodities. J Ind Ecol 14(4):613–626

    Article  Google Scholar 

  40. Li Y-F, Scholtz M, Van Heyst B (2000) Global gridded emission inventories of α-hexachlorocyclohexane. J Geophys Res Atmos 105(D5):6621–6632

    Article  CAS  Google Scholar 

  41. Li Y-F, Scholtz MT, Van Heyst BJ (2003) Global gridded emission inventories of β-hexachlorocyclohexane. Environ Sci Technol 37(16):3493–3498

    Article  CAS  Google Scholar 

  42. Babbitt CW, Kahhat R, Williams E, Babbitt GA (2009) Evolution of product lifespan and implications for environmental assessment and management: a case study of personal computers in higher education. Environ Sci Technol 43(13):5106–5112

    Article  CAS  Google Scholar 

  43. Oguchi M, Fuse M (2015) Regional and longitudinal estimation of product lifespan distribution: a case study for automobiles and a simplified estimation method. Environ Sci Technol 49(3):1738–1743

    Article  CAS  Google Scholar 

  44. Eckelman MJ, Graedel T (2007) Silver emissions and their environmental impacts: a multilevel assessment. Environ Sci Technol 41(17):6283–6289

    Article  CAS  Google Scholar 

  45. Elshkaki A, Van der Voet E, Van Holderbeke M, Timmermans V (2004) The environmental and economic consequences of the developments of lead stocks in the Dutch economic system. Resour Conserv Recycl 42(2):133–154

    Article  Google Scholar 

  46. Chen W, Shi L, Qian Y (2010) Substance flow analysis of aluminium in mainland China for 2001, 2004 and 2007: exploring its initial sources, eventual sinks and the pathways linking them. Resour Conserv Recycl 54(9):557–570

    Article  Google Scholar 

  47. MacLeod M, Scheringer M, McKone TE, Hungerbuhler K (2010) The state of multimedia mass-balance modeling in environmental science and decision-making. Environ Sci Technol 44(22):8360–8364

    Article  CAS  Google Scholar 

  48. Mackay D, Arnot JA (2011) The application of fugacity and activity to simulating the environmental fate of organic contaminants. J Chem Eng Data 56(4):1348–1355

    Article  CAS  Google Scholar 

  49. Lewis GN (1901) The law of physico-chemical change. Proc Am Acad Arts Sci 37(3):49–69

    Article  Google Scholar 

  50. Mackay D (1979) Finding fugacity feasible. Environ Sci Technol 13(10):1218–1223

    Article  CAS  Google Scholar 

  51. Mackay D, Paterson S (1981) Calculating fugacity. Environ Sci Technol 15(9):1006–1014

    Article  CAS  Google Scholar 

  52. Mackay D, Paterson S (1982) Fugacity revisited. Environ Sci Technol 16(12):654A–660A

    CAS  Google Scholar 

  53. Webster E, Mackay D, Di Guardo A, Kane D, Woodfine D (2004) Regional differences in chemical fate model outcome. Chemosphere 55(10):1361–1376

    Article  CAS  Google Scholar 

  54. Mackay D, Webster E, Cousins I, Cahill T, Foster K, Gouin T (2001) An introduction to multimedia models (CEMC Report No. 200102). Canadian Environmental Modelling Centre, Peterborough

    Google Scholar 

  55. Wania F, Mackay D (1999) The evolution of mass balance models of persistent organic pollutant fate in the environment. Environ Pollut 100(1–3):223–240

    Article  CAS  Google Scholar 

  56. Mackay D, Di Guardo A, Paterson S, Cowan CE (1996) Evaluating the environmental fate of a variety of types of chemicals using the EQC model. Environ Toxicol Chem 15(9):1627–1637

    Article  CAS  Google Scholar 

  57. van de Meent D (1993) SIMPLEBOX: a generic multimedia fate evaluation model (RIVM Report 672720001). Rijksinstituut voor Volksgezondheid en Milieu (RIVM), Bilthoven

    Google Scholar 

  58. Wania F, Mackay D (1995) A global distribution model for persistent organic chemicals. Sci Total Environ 160:211–232

    Article  Google Scholar 

  59. Scheringer M, Wegmann F, Fenner K, Hungerbühler K (2000) Investigation of the cold condensation of persistent organic pollutants with a global multimedia fate model. Environ Sci Technol 34(9):1842–1850

    Article  CAS  Google Scholar 

  60. Hertwich EG (2001) Fugacity superposition: a new approach to dynamic multimedia fate modeling. Chemosphere 44(4):843–853

    Article  CAS  Google Scholar 

  61. Wöhrnschimmel H, MacLeod M, Hungerbuhler K (2013) Emissions, fate and transport of persistent organic pollutants to the Arctic in a changing global climate. Environ Sci Technol 47(5):2323–2330

    Article  CAS  Google Scholar 

  62. Mackay D, Celsie AK, Parnis JM (2015) The evolution and future of environmental partition coefficients. Environ Rev 24(1):101–113

    Article  Google Scholar 

  63. Cole JG, Mackay D (2000) Correlating environmental partitioning properties of organic compounds: the three solubility approach. Environ Toxicol Chem 19(2):265–270

    Article  CAS  Google Scholar 

  64. Schwarzenbach RP, Gschwend PM, Imboden DM (2003) Environmental organic chemistry, 2nd edn. Wiley & Sons Inc, Hoboken, NJ

    Google Scholar 

  65. Schellenberg K, Leuenberger C, Schwarzenbach RP (1984) Sorption of chlorinated phenols by natural sediments and aquifer materials. Environ Sci Technol 18(9):652–657

    Article  CAS  Google Scholar 

  66. Jafvert CT, Westall JC, Grieder E, Schwarzenbach RP (1990) Distribution of hydrophobic ionogenic organic compounds between octanol and water: organic acids. Environ Sci Technol 24(12):1795–1803

    Article  CAS  Google Scholar 

  67. Fenner K, Scheringer M, MacLeod M, Matthies M, McKone T, Stroebe M, Beyer A, Bonnell M, Le Gall AC, Klasmeier J (2005) Comparing estimates of persistence and long-range transport potential among multimedia models. Environ Sci Technol 39(7):1932–1942

    Article  CAS  Google Scholar 

  68. Wania F (2006) Potential of degradable organic chemicals for absolute and relative enrichment in the Arctic. Environ Sci Technol 40(2):569–577

    Article  CAS  Google Scholar 

  69. ECB (2003) Technical guidance document on risk assessment. European Chemicals Bureau (ECB), Italy

    Google Scholar 

  70. Pauliuk S, Wang T, Müller DB (2013) Steel all over the world: estimating in-use stocks of iron for 200 countries. Resour Conserv Recycl 71:22–30

    Article  Google Scholar 

  71. Breivik K, Vestreng V, Rozovskaya O, Pacyna JM (2006) Atmospheric emissions of some POPs in Europe: a discussion of existing inventories and data needs. Environ Sci Policy 9(7):663–674

    Article  CAS  Google Scholar 

  72. Breivik K, Sweetman A, Pacyna JM, Jones KC (2002) Towards a global historical emission inventory for selected PCB congeners—a mass balance approach: 1. global production and consumption. Sci Total Environ 290(1):181–198

    Google Scholar 

  73. Breivik K, Sweetman A, Pacyna JM, Jones KC (2002) Towards a global historical emission inventory for selected PCB congeners—a mass balance approach: 2. emissions. Sci Total Environ 290(1):199–224

    Article  CAS  Google Scholar 

  74. Breivik K, Sweetman A, Pacyna JM, Jones KC (2007) Towards a global historical emission inventory for selected PCB congeners—a mass balance approach: 3. an update. Sci Total Environ 377(2):296–307

    Article  CAS  Google Scholar 

  75. Wang Z, Cousins IT, Scheringer M, Buck RC, Hungerbühler K (2014) Global emission inventories for C4–C14 perfluoroalkyl carboxylic acid (PFCA) homologues from 1951 to 2030, Part I: production and emissions from quantifiable sources. Environ Int 70:62–75

    Article  CAS  Google Scholar 

  76. Wang Z, Boucher JM, Scheringer M, Cousins IT, Hungerbühler K (2017) Toward a comprehensive global emission inventory of C4–C10 perfluoroalkanesulfonic acids (PFSAs) and related precursors: focus on the life cycle of C8-based products and ongoing industrial transition. Environ Sci Technol 51(8):4482–4493

    Article  CAS  Google Scholar 

  77. Glüge J, Wang Z, Bogdal C, Scheringer M, Hungerbühler K (2016) Global production, use, and emission volumes of short-chain chlorinated paraffins—a minimum scenario. Sci Total Environ 573:1132–1146

    Article  CAS  Google Scholar 

  78. Breivik K, Alcock R (2002) Emission impossible? The challenge of quantifying sources and releases of POPs into the environment. Environ Int 28(3):137–138

    Article  CAS  Google Scholar 

  79. Breivik K, Czub G, McLachlan MS, Wania F (2010) Towards an understanding of the link between environmental emissions and human body burdens of PCBs using CoZMoMAN. Environ Int 36(1):85–91

    Article  CAS  Google Scholar 

  80. Wood SA, Armitage JM, Binnington MJ, Wania F (2016) Deterministic modeling of the exposure of individual participants in the National Health and Nutrition Examination Survey (NHANES) to polychlorinated biphenyls. Environ Sci Process Impacts 18(9):1157–1168

    Article  CAS  Google Scholar 

  81. Cao H, Tao S, Xu F, Coveney RM, Cao J, Li B, Liu W, Wang X, Hu J, Shen W (2004) Multimedia fate model for hexachlorocyclohexane in Tianjin, China. Environ Sci Technol 38(7):2126–2132

    Article  CAS  Google Scholar 

  82. Oguchi M, Daigo I (2017) Measuring the historical change in the actual lifetimes of consumer durables. In: Bakker C, Mugge R (eds) Product lifetimes and the environment 2017-conference proceedings. Delft University of Technology and IOS Press, pp 319–323

    Google Scholar 

  83. Thakur AK (1991) Model: mechanistic vs empirical. In: Rescigno A, Thakur AK (eds) New trends in pharmacokinetics. Springer, US, Boston, MA, pp 41–51

    Chapter  Google Scholar 

  84. Li L, Zhai Z, Liu J, Hu J (2015) Estimating industrial and domestic environmental releases of perfluorooctanoic acid and its salt in China. Chemosphere 129:100–109

    Article  CAS  Google Scholar 

  85. Xie S, Lu Y, Wang T, Liu S, Jones K, Sweetman A (2013) Estimation of PFOS emission from domestic sources in the eastern coastal region of China. Environ Int 59:336–343

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Li .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Li, L. (2020). Introduction: Modeling the Fate of Chemicals in Products in the Total Environment. In: Modeling the Fate of Chemicals in Products. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-15-0579-9_1

Download citation

Publish with us

Policies and ethics