Skip to main content

Transition Metal Dichalcogenides in Sensors

  • Chapter
  • First Online:
Book cover Two Dimensional Transition Metal Dichalcogenides

Abstract

Transition metal dichalcogenides (TMDs), an emerging 2D analogy of graphene, with their captivating physiochemical properties find applications in advanced point-of-care diagnosis of various health-related issues. Specially, multidimensional structures of TMDs and its structure-dependent electronic, optical and electrocatalytic properties are apt for the design of different types (electrochemical, photoluminescence and colorimetric) of biosensing devices. Henceforth, this chapter outlines the biosensing applications of TMDs and its recent developments. Introduction part of this chapter will give a brief knowledge about the principle mechanisms of the different sensing methods followed by the importance of TMDs. Second p art, particularly concerned to address the recent advances in the different TMDs-based biosensors for the detection of diverse analytes. Present challenges preceded by the suggestions of its amelioration for day-to-day life clinical applications and opportunities are proposed at the end.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Solanki PR, Kaushik A, Agrawal VV, Malhotra BD (2011) Nanostructured metal oxide-based biosensors. Npg Asia Mater 3:17

    Article  Google Scholar 

  2. Shi X, Gu W, Li B, Chen N, Zhao K, Xian Y (2014) Enzymatic biosensors based on the use of metal oxide nanoparticles. Microchim Acta 181(1):1–22

    Article  CAS  Google Scholar 

  3. George JM, Antony A, Mathew B (2018) Metal oxide nanoparticles in electrochemical sensing and biosensing: a review. Microchim Acta 185(7):358

    Article  CAS  Google Scholar 

  4. Xia Y (2016) Optical sensing and biosensing based on non-spherical noble metal nanoparticles. Anal Bioanal Chem 408(11):2813–2825

    Article  CAS  Google Scholar 

  5. Wang J (2012) Electrochemical biosensing based on noble metal nanoparticles. Microchim Acta 177(3):245–270

    Article  CAS  Google Scholar 

  6. Justino CIL, Gomes AR, Freitas AC, Duarte AC, Rocha-Santos TAP (2017) Graphene based sensors and biosensors. TrAC Trends Anal Chem 91:53–66

    Article  CAS  Google Scholar 

  7. Sha R, Badhulika S, Mulchandani A (2018) Graphene-based biosensors and their applications in biomedical and environmental monitoring. In: Schöning MJ, Poghossian A (eds) Label-free biosensing: advanced materials, devices and applications. Springer International Publishing, Cham, pp 261–290

    Google Scholar 

  8. Wang Z, Dai Z (2015) Carbon nanomaterial-based electrochemical biosensors: an overview. Nanoscale 7(15):6420–6431

    Article  CAS  Google Scholar 

  9. Li H, Shi Y, Chiu M-H, Li L-J (2015) Emerging energy applications of two-dimensional layered transition metal dichalcogenides. Nano Energy 18:293–305

    Article  CAS  Google Scholar 

  10. Peng W, Li Y, Zhang F, Zhang G, Fan X (2017) Roles of two-dimensional transition metal dichalcogenides as cocatalysts in photocatalytic hydrogen evolution and environmental remediation. Ind Eng Chem Res 56(16):4611–4626

    Article  CAS  Google Scholar 

  11. Elham R, Rasoul M, Martin P (2018) Nanohybrids of two-dimensional transition-metal dichalcogenides and titanium dioxide for photocatalytic applications. Chem A Eur. J. 24 (1):18–31

    Google Scholar 

  12. Bissett MA, Worrall SD, Kinloch IA, Dryfe RAW (2016) Comparison of two-dimensional transition metal dichalcogenides for electrochemical supercapacitors. Electrochim Acta 201:30–37

    Article  CAS  Google Scholar 

  13. Pumera M, Sofer Z, Ambrosi A (2014) Layered transition metal dichalcogenides for electrochemical energy generation and storage. J Mater Chem A 2(24):8981–8987

    Article  CAS  Google Scholar 

  14. Schmidt H, Wang S, Chu L, Toh M, Kumar R, Zhao W, Castro Neto AH, Martin J, Adam S, Özyilmaz B, Eda G (2014) Transport properties of monolayer mos2 grown by chemical vapor deposition. Nano Lett 14(4):1909–1913

    Article  CAS  Google Scholar 

  15. Zhenyu D, Zhenwei W, Xin H, Xi-Xiang Z, AH N (2017) Large-area chemical vapor deposited MoS2 with transparent conducting oxide contacts toward fully transparent 2D electronics. Adv Funct Mater 27(41):1703119

    Google Scholar 

  16. Okada M, Sawazaki T, Watanabe K, Taniguch T, Hibino H, Shinohara H, Kitaura R (2014) Direct chemical vapor deposition growth of WS2 atomic layers on hexagonal boron nitride. ACS Nano 8(8):8273–8277

    Article  CAS  Google Scholar 

  17. Ovchinnikov D, Allain A, Huang Y-S, Dumcenco D, Kis A (2014) Electrical transport properties of single-layer WS2. ACS Nano 8(8):8174–8181

    Article  CAS  Google Scholar 

  18. Iqbal MW, Iqbal MZ, Khan MF, Shehzad MA, Seo Y, Park JH, Hwang C, Eom J (2015) High-mobility and air-stable single-layer WS2 field-effect transistors sandwiched between chemical vapor deposition-grown hexagonal BN films. Sci Rep 5:10699

    Article  CAS  Google Scholar 

  19. Vattikuti SVP, Byon C, Reddy CV (2015) Synthesis of MoS2 multi-wall nanotubes using wet chemical method with H2O2 as growth promoter. Superlattices Microstruct 85:124–132

    Article  CAS  Google Scholar 

  20. Wet chemical thinning of molybdenum disulfide down to its monolayer (2014). APL Materials 2(9):092509

    Article  CAS  Google Scholar 

  21. Štengl V, Tolasz J, Popelková D (2015) Ultrasonic preparation of tungsten disulfide single-layers and quantum dots. RSC Advances 5(109):89612–89620

    Article  CAS  Google Scholar 

  22. Fu X, Ilanchezhiyan P, Mohan Kumar G, Cho HD, Zhang L, Chan AS, Lee DJ, Panin GN, Kang TW (2017) Tunable UV-visible absorption of SnS2 layered quantum dots produced by liquid phase exfoliation. Nanoscale 9(5):1820–1826

    Article  CAS  Google Scholar 

  23. Zhang X, Xiang J, Mu C, Wen F, Yuan S, Zhao J, Xu D, Su C, Liu Z (2017) SnS2 nanoflakes anchored graphene obtained by liquid phase exfoliation and MoS2 nanosheet composites as lithium and sodium battery anodes. Electrochim Acta 227:203–209

    Article  CAS  Google Scholar 

  24. Qiao W, Yan S, Song X, Zhang X, He X, Zhong W, Du Y (2015) Luminescent monolayer MoS2 quantum dots produced by multi-exfoliation based on lithium intercalation. Appl Surf Sci 359:130–136

    Article  CAS  Google Scholar 

  25. Fan X, Xu P, Zhou D, Sun Y, Li YC, Nguyen MAT, Terrones M, Mallouk TE (2015) Fast and efficient preparation of exfoliated 2H MoS2 nanosheets by sonication-assisted lithium intercalation and infrared laser-induced 1T to 2H phase reversion. Nano Lett 15(9):5956–5960

    Article  CAS  Google Scholar 

  26. Dong HH, Ju HD, Seob CJ, Minsu P, Seok ST (2014) Dual role of blue luminescent MoS2 quantum dots in fluorescence resonance energy transfer phenomenon. Small 10(19):3858–3862

    Article  CAS  Google Scholar 

  27. Feldman Y, Frey GL, Homyonfer M, Lyakhovitskaya V, Margulis L, Cohen H, Hodes G, Hutchison JL, Tenne R (1996) Bulk synthesis of inorganic fullerene-like MS2 (M = Mo, W) from the respective trioxides and the reaction mechanism. J Am Chem Soc 118(23):5362–5367

    Article  CAS  Google Scholar 

  28. Scheffer L, Rosentzveig R, Margolin A, Popovitz-Biro R, Seifert G, Cohen SR, Tenne R (2002) Scanning tunneling microscopy study of WS2 nanotubes. Phys Chem Chem Phys 4(11):2095–2098

    Article  CAS  Google Scholar 

  29. Lin Y-C, Dumcenco DO, Huang Y-S, Suenaga K (2014) Atomic mechanism of the semiconducting-to-metallic phase transition in single-layered MoS2. Nat Nanotechnol 9:391

    Article  CAS  Google Scholar 

  30. Qinbai Y, Qipeng L, Xiao Z, Chaoliang T, Hua Z (2018) Three-dimensional architectures constructed from transition-metal dichalcogenide nanomaterials for electrochemical energy storage and conversion. Angew Chem Int Ed 57(3):626–646

    Article  CAS  Google Scholar 

  31. Jun TR, M-MC C, Zdenek S, Martin P (2017) 1T-Phase WS2 protein-based biosensor. Adv Funct Mater 27 (5):1604923

    Google Scholar 

  32. Nayak AP, Yuan Z, Cao B, Liu J, Wu J, Moran ST, Li T, Akinwande D, Jin C, Lin J-F (2015) Pressure-modulated conductivity, carrier density, and mobility of multilayered tungsten disulfide. ACS Nano 9(9):9117–9123

    Article  CAS  Google Scholar 

  33. Barua S, Dutta HS, Gogoi S, Devi R, Khan R (2018) Nanostructured MoS2-based advanced biosensors: a review. ACS Appl Nano Mater 1(1):2–25

    Article  CAS  Google Scholar 

  34. Liu W, Wu X, Li X (2017) Gold nanorods on three-dimensional nickel foam: a non-enzymatic glucose sensor with enhanced electro-catalytic performance. RSC Adv 7(58):36744–36749. https://doi.org/10.1039/c7ra06909j

    Article  CAS  Google Scholar 

  35. Tee SY, Teng CP, Ye E (2017) Metal nanostructures for non-enzymatic glucose sensing. Mater Sci Eng, C 70:1018–1030

    Article  CAS  Google Scholar 

  36. Zhan H, Li J, Liu Z, Zheng Y, Jing Y (2015) A highly sensitive electrochemical OP biosensor based on electrodeposition of Au–Pd bimetallic nanoparticles onto a functionalized graphene modified glassy carbon electrode. Anal Methods 7(9):3903–3911

    Article  CAS  Google Scholar 

  37. Janyasupab M, Liu C-W, Zhang Y, Wang K-W, Liu C-C (2013) Bimetallic Pt–M (M = Cu, Ni, Pd, and Rh) nanoporous for H2O2 based amperometric biosensors. Sens Actuators B: Chem 179:209–214

    Article  CAS  Google Scholar 

  38. Ghodselahi T, Arsalani S, Neishaboorynejad T (2014) Synthesis and biosensor application of Ag@Au bimetallic nanoparticles based on localized surface plasmon resonance. Appl Surf Sci 301:230–234

    Article  CAS  Google Scholar 

  39. Liu Y, Zhang X, He D, Ma F, Fu Q, Hu Y (2016) An amperometric glucose biosensor based on a MnO2/graphene composite modified electrode. RSC Adv 6(22):18654–18661

    Article  CAS  Google Scholar 

  40. Ponnusamy R, Chakraborty B, Rout CS (2018) Pd-Doped WO3 Nanostructures as Potential Glucose Sensor with Insight from Electronic Structure Simulations. J Phys Chem B 122(10):2737–2746

    Article  CAS  Google Scholar 

  41. Chen H, Rim YS, Wang IC, Li C, Zhu B, Sun M, Goorsky MS, He X, Yang Y (2017) Quasi-two-dimensional metal oxide semiconductors based ultrasensitive potentiometric biosensors. ACS Nano 11(5):4710–4718

    Article  CAS  Google Scholar 

  42. Zhu Z (2017) An overview of carbon nanotubes and graphene for biosensing applications. Nano-Micro Lett 9(3):25

    Article  CAS  Google Scholar 

  43. Wang L, Zhang Q, Chen S, Xu F, Chen S, Jia J, Tan H, Hou H, Song Y (2014) Electrochemical sensing and biosensing platform based on biomass-derived macroporous carbon materials. Anal Chem 86(3):1414–1421

    Article  CAS  Google Scholar 

  44. Song J, Xu L, Zhou C, Xing R, Dai Q, Liu D, Song H (2013) Synthesis of graphene oxide based CuO nanoparticles composite electrode for highly enhanced nonenzymatic glucose detection. ACS Appl Mater Interfaces 5(24):12928–12934

    Article  CAS  Google Scholar 

  45. Zhang Q, Luo Q, Qin Z, Liu L, Wu Z, Shen B, Hu W (2018) Self-assembly of graphene-encapsulated Cu composites for nonenzymatic glucose sensing. ACS Omega 3(3):3420–3428

    Article  CAS  Google Scholar 

  46. Huang W, Ding S, Chen Y, Hao W, Lai X, Peng J, Tu J, Cao Y, Li X (2017) 3D NiO hollow sphere/reduced graphene oxide composite for high-performance glucose biosensor. Sci Rep 7(1):5220

    Article  CAS  Google Scholar 

  47. Shan C, Yang H, Han D, Zhang Q, Ivaska A, Niu L (2010) Graphene/AuNPs/chitosan nanocomposites film for glucose biosensing. Biosens Bioelectron 25(5):1070–1074

    Article  CAS  Google Scholar 

  48. Salimi A, Sharifi E, Noorbakhsh A, Soltanian S (2007) Immobilization of glucose oxidase on electrodeposited nickel oxide nanoparticles: direct electron transfer and electrocatalytic activity. Biosens Bioelectron 22(12):3146–3153

    Article  CAS  Google Scholar 

  49. Su S, Sun H, Xu F, Yuwen L, Fan C, Wang L (2014) Direct electrochemistry of glucose oxidase and a biosensor for glucose based on a glass carbon electrode modified with MoS2 nanosheets decorated with gold nanoparticles. Microchim Acta 181(13):1497–1503

    Article  CAS  Google Scholar 

  50. Li J, Yang Z, Tang Y, Zhang Y, Hu X (2013) Carbon nanotubes-nanoflake-like SnS2 nanocomposite for direct electrochemistry of glucose oxidase and glucose sensing. Biosens Bioelectron 41:698–703

    Article  CAS  Google Scholar 

  51. Li J, Yang Z, Zhang Y, Yu S, Xu Q, Qu Q, Hu X (2012) Tin disulfide nanoflakes decorated with gold nanoparticles for direct electrochemistry of glucose oxidase and glucose biosensing. Microchim Acta 179(3):265–272

    Article  CAS  Google Scholar 

  52. Lee K-T, Liang Y-C, Lin H-H, Li C-H, Lu S-Y (2016) Exfoliated SnS2 nanoplates for enhancing direct electrochemical glucose sensing. Electrochim Acta 219:241–250

    Article  CAS  Google Scholar 

  53. Zhong X, Yang H, Guo S, Li S, Gou G, Niu Z, Dong Z, Lei Y, Jin J, Li R, Ma J (2012) In situ growth of Ni–Fe alloy on graphene-like MoS2 for catalysis of hydrazine oxidation. J Mater Chem 22(28):13925–13927

    Article  CAS  Google Scholar 

  54. Chen Y-Y, Dong M, Wang J, Jiao H (2012) Mechanisms and energies of water gas shift reaction on Fe-, Co-, and Ni-Promoted MoS2 catalysts. J Phys Chem C 116(48):25368–25375

    Article  CAS  Google Scholar 

  55. Lin X, Ni Y, Kokot S (2016) Electrochemical and bio-sensing platform based on a novel 3D Cu nano-flowers/layered MoS2 composite. Biosens Bioelectron 79:685–692

    Article  CAS  Google Scholar 

  56. Huang J, He Y, Jin J, Li Y, Dong Z, Li R (2014) A novel glucose sensor based on MoS2 nanosheet functionalized with Ni nanoparticles. Electrochim Acta 136:41–46

    Article  CAS  Google Scholar 

  57. Ji S, Yang Z, Zhang C, Miao Y-E, Tjiu WW, Pan J, Liu T (2013) Nonenzymatic sensor for glucose based on a glassy carbon electrode modified with Ni(OH)2 nanoparticles grown on a film of molybdenum sulfide. Microchim Acta 180(11):1127–1134

    Article  CAS  Google Scholar 

  58. Wang T, Zhu H, Zhuo J, Zhu Z, Papakonstantinou P, Lubarsky G, Lin J, Li M (2013) Biosensor based on ultrasmall MoS2 nanoparticles for electrochemical detection of H2O2 released by cells at the nanomolar level. Anal Chem 85(21):10289–10295

    Article  CAS  Google Scholar 

  59. Yoon J, Lee T, Bapurao GB, Jo J, Oh B-K, Choi J-W (2017) Electrochemical H2O2 biosensor composed of myoglobin on MoS2 nanoparticle-graphene oxide hybrid structure. Biosens Bioelectron 93:14–20

    Article  CAS  Google Scholar 

  60. Karthik R, Vinoth Kumar J, Chen S-M, Sundaresan P, Mutharani B, Chi Chen Y, Muthuraj V (2018) Simple sonochemical synthesis of novel grass-like vanadium disulfide: A viable non-enzymatic electrochemical sensor for the detection of hydrogen peroxide. Ultrason Sonochem 48:473–481

    Article  CAS  Google Scholar 

  61. Sarkar A, Ghosh AB, Saha N, Bhadu GR, Adhikary B (2018) Newly designed amperometric biosensor for hydrogen peroxide and glucose based on vanadium sulfide nanoparticles. ACS Appl Nano Mater 1(3):1339–1347

    Article  CAS  Google Scholar 

  62. Zhu L, Zhang Y, Xu P, Wen W, Li X, Xu J (2016) PtW/MoS2 hybrid nanocomposite for electrochemical sensing of H2O2 released from living cells. Biosens Bioelectron 80:601–606

    Article  CAS  Google Scholar 

  63. Li K, Yan S, Chen H, Wang B, Li G, Shi Y, Xu X (2015) Facile solvothermal synthesis of hybrid SnS2/platinum nanoparticles for hydrogen peroxide biosensing. J Bionanoscience 9(5):335–340

    Article  CAS  Google Scholar 

  64. Loo AH, Bonanni A, Ambrosi A, Pumera M (2014) Molybdenum disulfide (MoS2) nanoflakes as inherently electroactive labels for DNA hybridization detection. Nanoscale 6(20):11971–11975

    Article  CAS  Google Scholar 

  65. Wang X, Nan F, Zhao J, Yang T, Ge T, Jiao K (2015) A label-free ultrasensitive electrochemical DNA sensor based on thin-layer MoS2 nanosheets with high electrochemical activity. Biosens Bioelectron 64:386–391

    Article  CAS  Google Scholar 

  66. Yang T, Chen M, Kong Q, Luo X, Jiao K (2017) Toward DNA electrochemical sensing by free-standing ZnO nanosheets grown on 2D thin-layered MoS2. Biosens Bioelectron 89:538–544

    Article  CAS  Google Scholar 

  67. Wang T, Zhu R, Zhuo J, Zhu Z, Shao Y, Li M (2014) Direct detection of DNA below ppb level based on thionin-functionalized layered MoS2 electrochemical sensors. Anal Chem 86(24):12064–12069

    Article  CAS  Google Scholar 

  68. Cao X (2014) Ultra-sensitive electrochemical DNA biosensor based on signal amplification using gold nanoparticles modified with molybdenum disulfide, graphene and horseradish peroxidase. Microchim Acta 181(9):1133–1141

    Article  CAS  Google Scholar 

  69. Tao Y, Le M, Huaiyin C, Shizhong L, Weihua L, Kui J (2016) Synthesis of thin-layered molybdenum disulfide-based polyaniline nanointerfaces for enhanced direct electrochemical DNA detection. Adv Mater Interfaces 3(7):1500700

    Article  CAS  Google Scholar 

  70. Shuai H-L, Huang K-J, Chen Y-X (2016) A layered tungsten disulfide/acetylene black composite based DNA biosensing platform coupled with hybridization chain reaction for signal amplification. J Mater Chem B 4(6):1186–1196

    Article  CAS  Google Scholar 

  71. Huang K-J, Liu Y-J, Wang H-B, Gan T, Liu Y-M, Wang L-L (2014) Signal amplification for electrochemical DNA biosensor based on two-dimensional graphene analogue tungsten sulfide–graphene composites and gold nanoparticles. Sens Actuators B: Chem 191:828–836

    Article  CAS  Google Scholar 

  72. Chu Y, Cai B, Ma Y, Zhao M, Ye Z, Huang J (2016) Highly sensitive electrochemical detection of circulating tumor DNA based on thin-layer MoS2/graphene composites. RSC Adv 6(27):22673–22678

    Article  CAS  Google Scholar 

  73. Zhao X, Xia X, Yu S, Wang C (2014) An electrochemical sensor for honokiol based on a glassy carbon electrode modified with MoS2/graphene nanohybrid film. Anal Methods 6(23):9375–9382

    Article  CAS  Google Scholar 

  74. Song H, Ni Y, Kokot S (2014) Investigations of an electrochemical platform based on the layered MoS2–graphene and horseradish peroxidase nanocomposite for direct electrochemistry and electrocatalysis. Biosens Bioelectron 56:137–143

    Article  CAS  Google Scholar 

  75. Huang K-J, Liu Y-J, Zhai Q-F (2015) Ultrasensitive biosensing platform based on layered vanadium disulfide–graphene composites coupling with tetrahedron-structured DNA probes and exonuclease III assisted signal amplification. J Mater Chem B 3(41):8180–8187

    Article  CAS  Google Scholar 

  76. Xia X, Zheng Z, Zhang Y, Zhao X, Wang C (2014) Synthesis of Ag-MoS2/chitosan nanocomposite and its application for catalytic oxidation of tryptophan. Sens Actuators B: Chem 192:42–50

    Article  CAS  Google Scholar 

  77. Yang R, Zhao J, Chen M, Yang T, Luo S, Jiao K (2015) Electrocatalytic determination of chloramphenicol based on molybdenum disulfide nanosheets and self-doped polyaniline. Talanta 131:619–623

    Article  CAS  Google Scholar 

  78. Li D, Liu X, Yi R, Zhang J, Su Z, Wei G (2018) Electrochemical sensor based on novel two-dimensional nanohybrids: MoS2 nanosheets conjugated with organic copper nanowires for simultaneous detection of hydrogen peroxide and ascorbic acid. Inorg Chem Front 5(1):112–119

    Article  CAS  Google Scholar 

  79. Wang L, Li J, Pan Y, Min L, Zhang Y, Hu X, Yang Z (2017) Platinum nanoparticle-assembled nanoflake-like tin disulfide for enzyme-based amperometric sensing of glucose. Microchim Acta 184(7):2357–2363. https://doi.org/10.1007/s00604-017-2209-0

    Article  CAS  Google Scholar 

  80. Lin X, Ni Y, Kokot S (2016) Electrochemical cholesterol sensor based on cholesterol oxidase and MoS2-AuNPs modified glassy carbon electrode. Sens Actuators B: Chem 233:100–106

    Article  CAS  Google Scholar 

  81. Huang K-J, Wang L, Liu Y-J, Gan T, Liu Y-M, Wang L-L, Fan Y (2013) Synthesis and electrochemical performances of layered tungsten sulfide-graphene nanocomposite as a sensing platform for catechol, resorcinol and hydroquinone. Electrochim Acta 107:379–387

    Article  CAS  Google Scholar 

  82. Yan P, Yu-Zhong Z, Yong L (2013) Layer-by-layer self-assembled multilayer films of single-walled carbon nanotubes and tin disulfide nanoparticles with chitosan for the fabrication of biosensors. J Appl Polym Sci 128(1):647–652

    Article  CAS  Google Scholar 

  83. Huang K-J, Liu Y-J, Shi G-W, Yang X-R, Liu Y-M (2014) Label-free aptamer sensor for 17β-estradiol based on vanadium disulfide nanoflowers and Au nanoparticles. Sens Actuators B: Chem 201:579–585

    Article  CAS  Google Scholar 

  84. Huang K-J, Liu Y-J, Zhang J-Z, Liu Y-M (2014) A novel aptamer sensor based on layered tungsten disulfide nanosheets and Au nanoparticles amplification for 17β-estradiol detection. Anal Methods 6(19):8011–8017

    Article  CAS  Google Scholar 

  85. Chand R, Ramalingam S, Neethirajan S (2018) A 2D transition-metal dichalcogenide MoS2 based novel nanocomposite and nanocarrier for multiplex miRNA detection. Nanoscale 10(17):8217–8225

    Article  CAS  Google Scholar 

  86. Liu X, Shuai H-L, Huang K-J (2015) A label-free electrochemical aptasensor based on leaf-like vanadium disulfide-Au nanoparticles for the sensitive and selective detection of platelet-derived growth factor BB. Anal Methods 7(19):8277–8284

    Article  CAS  Google Scholar 

  87. Sakthivel M, Sukanya R, Chen S-M, Dinesh B (2018) Synthesis of two-dimensional Sr-Doped MoSe2 nanosheets and their application for efficient electrochemical reduction of metronidazole. J Phys Chem C 122(23):12474–12484

    Article  CAS  Google Scholar 

  88. Wang Y, Zhuang Q, Ni Y (2015) Fabrication of riboflavin electrochemical sensor based on homoadenine single-stranded DNA/molybdenum disulfide–graphene nanocomposite modified gold electrode. J Electroanal Chem 736:47–54

    Article  CAS  Google Scholar 

  89. Yang T, Chen M, Nan F, Chen L, Luo X, Jiao K (2015) Enhanced electropolymerization of poly(xanthurenic acid)–MoS2 film for specific electrocatalytic detection of guanine and adenine. J Mater Chem B 3(24):4884–4891

    Article  CAS  Google Scholar 

  90. Singhal C, Khanuja M, Chaudhary N, Pundir CS, Narang J (2018) Detection of chikungunya virus DNA using two-dimensional MoS2 nanosheets based disposable biosensor. Sci Rep 8(1):7734

    Article  CAS  Google Scholar 

  91. Lin C, Zhu X, Feng J, Wu C, Hu S, Peng J, Guo Y, Peng L, Zhao J, Huang J, Yang J, Xie Y (2013) Hydrogen-incorporated TiS2 ultrathin nanosheets with ultrahigh conductivity for stamp-transferrable electrodes. J Am Chem Soc 135(13):5144–5151

    Article  CAS  Google Scholar 

  92. Gan X, Zhao H, Chen S, Yu H, Quan X (2015) Three-dimensional Porous HxTiS2 nanosheet-polyaniline nanocomposite electrodes for directly detecting trace Cu(II) Ions. Anal Chem 87(11):5605–5613

    Article  CAS  Google Scholar 

  93. Askim JR, Mahmoudi M, Suslick KS (2013) Optical sensor arrays for chemical sensing: the optoelectronic nose. Chem Soc Rev 42(22):8649–8682

    Article  CAS  Google Scholar 

  94. Mak KF, Lee C, Hone J, Shan J, Heinz TF (2010) Atomically Thin MoS2: a new direct-gap semiconductor. Phys Rev Lett 105(13):136805

    Article  CAS  Google Scholar 

  95. Shi J, Lyu J, Tian F, Yang M (2017) A fluorescence turn-on biosensor based on graphene quantum dots (GQDs) and molybdenum disulfide (MoS2) nanosheets for epithelial cell adhesion molecule (EpCAM) detection. Biosens Bioelectron 93:182–188

    Article  CAS  Google Scholar 

  96. Liu X, Li L, Wei Y, Zheng Y, Xiao Q, Feng B (2015) Facile synthesis of boron- and nitride-doped MoS2 nanosheets as fluorescent probes for the ultrafast, sensitive, and label-free detection of Hg2+. Analyst 140(13):4654–4661

    Article  CAS  Google Scholar 

  97. Karfa P, Madhuri R, Sharma PK (2017) Multifunctional fluorescent chalcogenide hybrid nanodots (MoSe2:CdS and WSe2:CdS) as electro catalyst (for oxygen reduction/oxygen evolution reactions) and sensing probe for lead. J Mater Chem A 5(4):1495–1508

    Article  CAS  Google Scholar 

  98. Wang Y, Ni Y (2014) Molybdenum disulfide quantum dots as a photoluminescence sensing platform for 2,4,6-trinitrophenol detection. Anal Chem 86(15):7463–7470

    Article  CAS  Google Scholar 

  99. Qian W, Xiaojie W, Yingnan J, Weiyi S, Chuanxi W, Minghui Y, Chi Z (2018) MoS2-QD-based dual-model photoluminescence sensing platform for effective determination of Al3+ and Fe3+ simultaneously in various environment. ChemistrySelect 3(8):2326–2331

    Article  CAS  Google Scholar 

  100. Wang Y, Hu J, Zhuang Q, Ni Y (2016) Label-free fluorescence sensing of lead(II) ions and sulfide ions based on luminescent molybdenum disulfide nanosheets. ACS Sustain Chem & Eng 4(5):2535–2541

    Article  CAS  Google Scholar 

  101. Huang J, Ye L, Gao X, Li H, Xu J, Li Z (2015) Molybdenum disulfide-based amplified fluorescence DNA detection using hybridization chain reactions. J Mater Chem B 3(11):2395–2401

    Article  CAS  Google Scholar 

  102. Sun X, Fan J, Fu C, Yao L, Zhao S, Wang J, Xiao J (2017) WS2 and MoS2 biosensing platforms using peptides as probe biomolecules. Sci Rep 7(1):10290

    Article  CAS  Google Scholar 

  103. Huang Y, Shi Y, Yang HY, Ai Y (2015) A novel single-layered MoS2 nanosheet based microfluidic biosensor for ultrasensitive detection of DNA. Nanoscale 7(6):2245–2249

    Article  CAS  Google Scholar 

  104. Jin K, Xie L, Tian Y, Liu D (2016) Au-modified monolayer MoS2 sensor for DNA detection. J Phys Chem C 120(20):11204–11209

    Article  CAS  Google Scholar 

  105. Xiang X, Shi J, Huang F, Zheng M, Deng Q, Xu J (2015) MoS2 nanosheet-based fluorescent biosensor for protein detection via terminal protection of small-molecule-linked DNA and exonuclease III-aided DNA recycling amplification. Biosens Bioelectron 74:227–232

    Article  CAS  Google Scholar 

  106. Xu B, Su Y, Li L, Liu R, Lv Y (2017) Thiol-functionalized single-layered MoS2 nanosheet as a photoluminescence sensing platform via charge transfer for dopamine detection. Sens Actuators B: Chem 246:380–388

    Article  CAS  Google Scholar 

  107. Yang Y, Liu T, Cheng L, Song G, Liu Z, Chen M (2015) MoS2-Based nanoprobes for detection of silver ions in aqueous solutions and bacteria. ACS Appl Mater Interfaces 7(14):7526–7533

    Article  CAS  Google Scholar 

  108. Zhu C, Zeng Z, Li H, Li F, Fan C, Zhang H (2013) Single-layer MoS2-based nanoprobes for homogeneous detection of biomolecules. J Am Chem Soc 135(16):5998–6001

    Article  CAS  Google Scholar 

  109. Kong R-M, Ding L, Wang Z, You J, Qu F (2015) A novel aptamer-functionalized MoS2 nanosheet fluorescent biosensor for sensitive detection of prostate specific antigen. Anal Bioanal Chem 407(2):369–377

    Article  CAS  Google Scholar 

  110. Singh P, Gupta R, Sinha M, Kumar R, Bhalla V (2016) MoS2 based digital response platform for aptamer based fluorescent detection of pathogens. Microchim Acta 183(4):1501–1506

    Article  CAS  Google Scholar 

  111. Singh C, Ali MA, Kumar V, Ahmad R, Sumana G (2018) Functionalized MoS2 nanosheets assembled microfluidic immunosensor for highly sensitive detection of food pathogen. Sens Actuators B: Chem 259:1090–1098

    Article  CAS  Google Scholar 

  112. Du C, Shang A, Shang M, Ma X, Song W (2018) Water-soluble VS2 quantum dots with unusual fluorescence for biosensing. Sens Actuators B: Chem 255:926–934

    Article  CAS  Google Scholar 

  113. Yin X, Cai J, Feng H, Wu Z, Zou J, Cai Q (2015) A novel VS2 nanosheet-based biosensor for rapid fluorescence detection of cytochrome c. New J Chem 39(3):1892–1898

    Article  CAS  Google Scholar 

  114. Dhenadhayalan N, Lin T-W, Lee H-L, Lin K-C (2018) Multisensing capability of MoSe2 quantum dots by tuning surface functional groups. ACS Appl Nano Mater 1(7):3453–3463

    Article  CAS  Google Scholar 

  115. Kyu Hyun H, Jun Young K, Seong Gi J, Changwon S, Jeongyong K, Jinsoo J (2017) Sensitive optical bio-sensing of p-type WSe2 hybridized with fluorescent dye attached DNA by doping and de-doping effects. Nanotechnology 28(43):435501

    Article  CAS  Google Scholar 

  116. Ying Z, Bing Z, Changfeng Z, Xiao Z, Chaoliang T, Hai L, Bo C, Jian Y, Junze C, Ying H, Lianhui W, Hua Z (2015) Single-layer transition metal dichalcogenide nanosheet-based nanosensors for rapid, sensitive, and multiplexed detection of DNA. Adv Mater 27(5):935–939

    Article  CAS  Google Scholar 

  117. Lin T, Zhong L, Song Z, Guo L, Wu H, Guo Q, Chen Y, Fu F, Chen G (2014) Visual detection of blood glucose based on peroxidase-like activity of WS2 nanosheets. Biosens Bioelectron 62:302–307

    Article  CAS  Google Scholar 

  118. Lin T, Zhong L, Guo L, Fu F, Chen G (2014) Seeing diabetes: visual detection of glucose based on the intrinsic peroxidase-like activity of MoS2 nanosheets. Nanoscale 6(20):11856–11862

    Article  CAS  Google Scholar 

  119. Guo X, Wang Y, Wu F, Ni Y, Kokot S (2015) A colorimetric method of analysis for trace amounts of hydrogen peroxide with the use of the nano-properties of molybdenum disulfide. Analyst 140(4):1119–1126

    Article  CAS  Google Scholar 

  120. Chen Q, Chen J, Gao C, Zhang M, Chen J, Qiu H (2015) Hemin-functionalized WS2 nanosheets as highly active peroxidase mimetics for label-free colorimetric detection of H2O2 and glucose. Analyst 140(8):2857–2863

    Article  CAS  Google Scholar 

  121. Wang Y, Hu J, Zhuang Q, Ni Y (2016) Enhancing sensitivity and selectivity in a label-free colorimetric sensor for detection of iron(II) ions with luminescent molybdenum disulfide nanosheet-based peroxidase mimetics. Biosens Bioelectron 80:111–117

    Article  CAS  Google Scholar 

  122. Yu J, Ma X, Yin W, Gu Z (2016) Synthesis of PVP-functionalized ultra-small MoS2 nanoparticles with intrinsic peroxidase-like activity for H2O2 and glucose detection. RSC Adv 6(84):81174–81183

    Article  CAS  Google Scholar 

  123. Nirala NR, Pandey S, Bansal A, Singh VK, Mukherjee B, Saxena PS, Srivastava A (2015) Different shades of cholesterol: gold nanoparticles supported on MoS2 nanoribbons for enhanced colorimetric sensing of free cholesterol. Biosens Bioelectron 74:207–213

    Article  CAS  Google Scholar 

  124. Lin LB, Lin ZH, Lu L, Yu Y, Lei LJ, Qun LH, Bing LN (2015) Size-dependent optical absorption of layered MoS2 and DNA oligonucleotides induced dispersion behavior for label-free detection of single-nucleotide polymorphism. Adv Func Mater 25(23):3541–3550

    Article  CAS  Google Scholar 

  125. Huang L, Zhu W, Zhang W, Chen K, Wang J, Wang R, Yang Q, Hu N, Suo Y, Wang J (2017) Layered vanadium(IV) disulfide nanosheets as a peroxidase-like nanozyme for colorimetric detection of glucose. Microchim Acta 185(1):7

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Dr. P. R sincerely thanks Science and Engineering Research Board (DST-SERB), Government of India, New Delhi for the award of National Post Doctoral Fellowship (PDF/2016/001002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chandra Sekhar Rout .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ponnusamy, R., Rout, C.S. (2019). Transition Metal Dichalcogenides in Sensors. In: Arul, N., Nithya, V. (eds) Two Dimensional Transition Metal Dichalcogenides. Springer, Singapore. https://doi.org/10.1007/978-981-13-9045-6_9

Download citation

Publish with us

Policies and ethics