Skip to main content

Role of Oxidative Stress, Mitochondrial Dysfunction, and Autophagy in Cardiovascular Disease: Its Pathogenesis and Amelioration by Different Small Natural Molecules

  • Chapter
  • First Online:
Book cover Modulation of Oxidative Stress in Heart Disease

Abstract

The biggest cause of global mortality today is cardiovascular diseases. Not only old people, but even the younger generation gets afflicted now. This chapter will focus on the role of oxidative stress, mitochondrial dysfunction, and autophagy on the pathogenesis of the various forms of cardiovascular diseases including heart failure, atherosclerosis, hypertension, myocardial infarction, and ischemia-reperfusion injury. Various cell signaling pathways get modulated under external or internal stress stimuli to induce ROS which begets the oxidative stress condition. The antioxidant defense mechanisms by which the delicate balance between prooxidants and antioxidants in the cell is maintained in equilibrium get disrupted, and the structural and functional entities of the cell collapse. Mitochondrial dysfunction is directly implicated in the above process, as it is both the cause and outcome of oxidative stress. When dysfunctional mitochondria accumulate inside the cell, autophagy comes to the rescue. But excessive autophagy again is a cause of concern as it paves the way for a second type of programmed cell death, distinct from apoptosis. Antioxidants have mostly been proven highly effective against the plethora of cardiovascular diseases, as they have been successful in attenuating the oxidative stress in the vascular cells, as well as that in the myocardial cells, and have restored the physiological conditions close to the normal state. So they have been routed to be important drug leads for the development of effective therapeutics against cardiovascular diseases. With minimal or no toxicity, natural molecules have remained in the forefront to be tested and tried in this regard. So this field has and will continue to have importance in the research fraternity for decades to come.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kelly BB, Fuster V (2010) Promoting cardiovascular health in the developing world: a critical challenge to achieve global health. National Academies Press, Washington, DC

    Google Scholar 

  2. Beaglehole R, Bonita R (2008) Global public health: a scorecard. Lancet 372(9654):1988–1996

    PubMed  Google Scholar 

  3. Prabhakaran D, Jeemon P, Roy A (2016) Cardiovascular diseases in India: current epidemiology and future directions. Circulation 133(16):1605–1620

    PubMed  Google Scholar 

  4. Farrugia G, Balzan R (2012) Oxidative stress and programmed cell death in yeast. Front Oncol 2:64

    PubMed  PubMed Central  Google Scholar 

  5. Matés JM, Segura JA, Alonso FJ, Márquez J (2012) Oxidative stress in apoptosis and cancer: an update. Arch Toxicol 86(11):1649–1665

    PubMed  Google Scholar 

  6. Lakshmi SV, Padmaja G, Kuppusamy P, Kutala VK (2009) Oxidative stress in cardiovascular disease. Indian J Biochem Biophys 46(6):421–440

    CAS  PubMed  Google Scholar 

  7. Sinha K, Das J, Pal PB, Sil PC (2013) Oxidative stress: the mitochondria-dependent and mitochondria-independent pathways of apoptosis. Arch Toxicol 87(7):1157–1180

    CAS  PubMed  Google Scholar 

  8. Cabiscol Català E, Tamarit Sumalla J, Ros Salvador J (2000) Oxidative stress in bacteria and protein damage by reactive oxygen species. Int Microbiol 3(1):3–8

    Google Scholar 

  9. Biliński T, Litwińska J, Błszczyński M, Bajus A (1989) Superoxide dismutase deficiency and the toxicity of the products of autooxidation of polyunsaturated fatty acids in yeast. Biochim Biophys Acta 1001(1):102–106

    PubMed  Google Scholar 

  10. Yakes FM, Van Houten B (1997) Mitochondrial DNA damage is more extensive and persists longer than nuclear DNA damage in human cells following oxidative stress. Proc Natl Acad Sci 94(2):514–519

    CAS  PubMed  Google Scholar 

  11. Matés JM, Segura JA, Alonso FJ, Márquez J (2010) Roles of dioxins and heavy metals in cancer and neurological diseases using ROS-mediated mechanisms. Free Radic Biol Med 49(9):1328–1341

    PubMed  Google Scholar 

  12. Halliwell B, Cross CE (1994) Oxygen-derived species: their relation to human disease and environmental stress. Environ Health Perspect 102(Suppl 10):5

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Sies H (1991) Oxidative stress: from basic research to clinical application. Am J Med 91(3):S31–S38

    Google Scholar 

  14. Turrens JF, Boveris A (1980) Generation of superoxide anion by the NADH dehydrogenase of bovine heart mitochondria. Biochem J 191(2):421–427

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Ueda S, Masutani H, Nakamura H, Tanaka T, Ueno M, Yodoi J (2002) Redox control of cell death. Antioxid Redox Signal 4(3):405–414

    CAS  PubMed  Google Scholar 

  16. Bai H, Hai C, Xi M, Liang X, Liu R (2010) Protective effect of maize silks (Maydis stigma) ethanol extract on radiation-induced oxidative stress in mice. Plant Foods Hum Nutr 65(3):271–276

    PubMed  Google Scholar 

  17. Altraja S, Mahlapuu R, Soomets U, Altraja A (2013) Cigarette smoke-induced differential regulation of glutathione metabolism in bronchial epithelial cells is balanced by an antioxidant tetrapeptide UPF1. Exp Toxicol Pathol 65(6):711–717

    CAS  PubMed  Google Scholar 

  18. Ahmad I, Kumar A, Shukla S, Prasad Pandey H, Singh C (2008) The involvement of nitric oxide in maneb- and paraquat-induced oxidative stress in rat polymorphonuclear leukocytes. Free Radic Res 42(10):849–862

    CAS  PubMed  Google Scholar 

  19. Morcillo P, Esteban MÁ, Cuesta A (2016) Heavy metals produce toxicity, oxidative stress and apoptosis in the marine teleost fish SAF-1 cell line. Chemosphere 144:225–233

    CAS  PubMed  Google Scholar 

  20. Pal S, Pal PB, Das J, Sil PC (2011) Involvement of both intrinsic and extrinsic pathways in hepatoprotection of arjunolic acid against cadmium induced acute damage in vitro. Toxicology 283(2–3):129–139

    CAS  PubMed  Google Scholar 

  21. Pal PB, Pal S, Das J, Sil PC (2012) Modulation of mercury-induced mitochondria-dependent apoptosis by glycine in hepatocytes. Amino Acids 42(5):1669–1683

    CAS  PubMed  Google Scholar 

  22. Pal PB, Sinha K, Sil PC (2013) Mangiferin, a natural xanthone, protects murine liver in Pb (II) induced hepatic damage and cell death via MAP kinase, NF-κB and mitochondria dependent pathways. PloS one 8(2):e56894

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Manna P, Roy A, Sil PC (2009) Prophylactic role of taurine on arsenic mediated oxidative renal dysfunction via MAPKs/NF-B and mitochondria dependent pathways. Free Radic Res 43(10):995–1007

    Google Scholar 

  24. Saha S, Rashid K, Sadhukhan P, Agarwal N, Sil PC (2016) Attenuative role of mangiferin in oxidative stress-mediated liver dysfunction in arsenic-intoxicated murines. Biofactors 42(5):515–532

    CAS  PubMed  Google Scholar 

  25. Das J, Ghosh J, Manna P, Sil PC (2011) Taurine suppresses doxorubicin-triggered oxidative stress and cardiac apoptosis in rat via up-regulation of PI3-K/Akt and inhibition of p53, p38-JNK. Biochem Pharmacol 81(7):891–909

    CAS  PubMed  Google Scholar 

  26. Das J, Ghosh J, Manna P, Sil PC (2012) Taurine protects rat testes against doxorubicin-induced oxidative stress as well as p53, Fas and caspase 12-mediated apoptosis. Amino Acids 42(5):1839–1855

    CAS  PubMed  Google Scholar 

  27. Das J, Sil PC (2012) Taurine ameliorates alloxan-induced diabetic renal injury, oxidative stress-related signaling pathways and apoptosis in rats. Amino Acids 43(4):1509–1523

    CAS  PubMed  Google Scholar 

  28. Das J, Ghosh J, Roy A, Sil PC (2012) Mangiferin exerts hepatoprotective activity against D-galactosamine induced acute toxicity and oxidative/nitrosative stress via Nrf2–NFκB pathways. Toxicol Appl Pharmacol 260(1):35–47

    CAS  PubMed  Google Scholar 

  29. Banerjee S, Sinha K, Chowdhury S, Sil PC (2018) Unfolding the mechanism of cisplatin induced pathophysiology in spleen and its amelioration by carnosine. Chem Biol Interact 279:159–170

    CAS  PubMed  Google Scholar 

  30. Das J, Ghosh J, Manna P, Sil PC (2010) Acetaminophen induced acute liver failure via oxidative stress and JNK activation: protective role of taurine by the suppression of cytochrome P450 2E1. Free Radic Res 44(3):340–355

    CAS  PubMed  Google Scholar 

  31. Ghosh J, Das J, Manna P, Sil PC (2011) The protective role of arjunolic acid against doxorubicin induced intracellular ROS dependent JNK-p38 and p53-mediated cardiac apoptosis. Biomaterials 32(21):4857–4866

    CAS  PubMed  Google Scholar 

  32. Bhattacharya S, Gachhui R, Sil PC (2011) Hepatoprotective properties of kombucha tea against TBHP-induced oxidative stress via suppression of mitochondria dependent apoptosis. Pathophysiology 18(3):221–234

    PubMed  Google Scholar 

  33. Sarkar MK, Sil PC (2010) Prevention of tertiary butyl hydroperoxide induced oxidative impairment and cell death by a novel antioxidant protein molecule isolated from the herb, Phyllanthus niruri. Toxicol in Vitro 24(6):1711–1719

    CAS  PubMed  Google Scholar 

  34. Gille G, Sigler K (1995) Oxidative stress and living cells. Folia Microbiol 40(2):131–152

    CAS  Google Scholar 

  35. Ghosh M, Das J, Sil PC (2012) D (+) galactosamine induced oxidative and nitrosative stress-mediated renal damage in rats via NF-κB and inducible nitric oxide synthase (iNOS) pathways is ameliorated by a polyphenol xanthone, mangiferin. Free Radic Res 46(2):116–132

    CAS  PubMed  Google Scholar 

  36. Manna P, Sinha M, Sil PC (2009) Protective role of arjunolic acid in response to streptozotocin-induced type-I diabetes via the mitochondrial dependent and independent pathways. Toxicology 257(1–2):53–63

    CAS  PubMed  Google Scholar 

  37. Manna P, Das J, Ghosh J, Sil PC (2010) Contribution of type 1 diabetes to rat liver dysfunction and cellular damage via activation of NOS, PARP, IκBα/NF-κB, MAPKs, and mitochondria-dependent pathways: prophylactic role of arjunolic acid. Free Radic Biol Med 48(11):1465–1484

    CAS  PubMed  Google Scholar 

  38. Bhattacharya S, Manna P, Gachhui R, Sil PC (2013) D-Saccharic acid 1, 4-lactone protects diabetic rat kidney by ameliorating hyperglycemia-mediated oxidative stress and renal inflammatory cytokines via NF-κB and PKC signaling. Toxicol Appl Pharmacol 267(1):16–29

    CAS  PubMed  Google Scholar 

  39. Reuter S, Gupta SC, Chaturvedi MM, Aggarwal BB (2010) Oxidative stress, inflammation, and cancer: how are they linked? Free Radic Biol Med 49(11):1603–1616

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Dai D-F, Rabinovitch PS, Ungvari Z (2012) Mitochondria and cardiovascular aging. Circ Res 110(8):1109–1124

    CAS  PubMed  Google Scholar 

  41. Kao S-H, Chao H-T, Wei Y-H (1998) Multiple deletions of mitochondrial DNA are associated with the decline of motility and fertility of human spermatozoa. Mol Hum Reprod 4(7):657–666

    CAS  PubMed  Google Scholar 

  42. Clayton DA (1984) Transcription of the mammalian mitochondrial genome. Annu Rev Biochem 53(1):573–594

    CAS  PubMed  Google Scholar 

  43. Ballinger SW (2005) Mitochondrial dysfunction in cardiovascular disease. Free Radic Biol Med 38(10):1278–1295

    CAS  PubMed  Google Scholar 

  44. Klionsky DJ, Emr SD (2000) Autophagy as a regulated pathway of cellular degradation. Science 290(5497):1717–1721

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Yoshimori T (2004) Autophagy: a regulated bulk degradation process inside cells. Biochem Biophys Res Commun 313(2):453–458

    CAS  PubMed  Google Scholar 

  46. Levine B, Klionsky DJ (2004) Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev Cell 6(4):463–477

    CAS  PubMed  Google Scholar 

  47. Yorimitsu T, Klionsky DJ (2005) Autophagy: molecular machinery for self-eating. Cell Death Differ 12(S2):1542

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Debnath J, Baehrecke EH, Kroemer G (2005) Does autophagy contribute to cell death? Autophagy 1(2):66–74

    CAS  PubMed  Google Scholar 

  49. Levine B, Yuan J (2005) Autophagy in cell death: an innocent convict? J Clin Invest 115(10):2679–2688

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Edinger AL, Thompson CB (2004) Death by design: apoptosis, necrosis and autophagy. Curr Opin Cell Biol 16(6):663–669

    CAS  PubMed  Google Scholar 

  51. Bobryshev YV (2006) Monocyte recruitment and foam cell formation in atherosclerosis. Micron 37(3):208–222

    CAS  PubMed  Google Scholar 

  52. Powers SK, Ji LL, Kavazis AN, Jackson MJ (2011) Reactive oxygen species: impact on skeletal muscle. Compr Physiol 1(2):941–969

    PubMed  PubMed Central  Google Scholar 

  53. Espinosa A, Henriquez-Olguin C, Jaimovich E (2016) Reactive oxygen species and calcium signals in skeletal muscle: A crosstalk involved in both normal signaling and disease. Cell Calcium 60(3):172–179

    CAS  PubMed  Google Scholar 

  54. Johar S, MacCarthy PA, Shah AM (2006) Oxidative stress and cardiovascular disease. In: Oxidative stress, disease and cancer. World Scientific, pp 519–535

    Google Scholar 

  55. Lüscher T, Barton M (1997) Biology of the endothelium. Clin Cardiol 20(11 Suppl 2):II-3

    Google Scholar 

  56. Landmesser U, Spiekermann S, Dikalov S, Tatge H, Wilke R, Kohler C, Harrison DG, Hornig B, Drexler H (2002) Vascular oxidative stress and endothelial dysfunction in patients with chronic heart failure: role of xanthine-oxidase and extracellular superoxide dismutase. Circulation 106(24):3073–3078

    CAS  PubMed  Google Scholar 

  57. Park JB, Schiffrin EL (2001) Small artery remodeling is the most prevalent (earliest?) form of target organ damage in mild essential hypertension. J Hypertens 19(5):921–930

    CAS  PubMed  Google Scholar 

  58. Rizzoni D, Porteri E, Guelfi D, Muiesan ML, Valentini U, Cimino A, Girelli A, Rodella L, Bianchi R, Sleiman I (2001) Structural alterations in subcutaneous small arteries of normotensive and hypertensive patients with non–insulin-dependent diabetes mellitus. Circulation 103(9):1238–1244

    CAS  PubMed  Google Scholar 

  59. Li J-M, Shah AM (2004) Endothelial cell superoxide generation: regulation and relevance for cardiovascular pathophysiology. Am J Physiol Regul Integr Comp Physiol 287(5):R1014–R1030

    CAS  PubMed  Google Scholar 

  60. Schächinger V, Britten M, Dimmeler S, Zeiher A (2001) NADH/NADPH oxidase p22 phox gene polymorphism is associated with improved coronary endothelial vasodilator function. Eur Heart J 22(1):96–101

    PubMed  Google Scholar 

  61. Zalba G, José GS, Beaumont FJ, Fortuño MA, Fortuño A, Díez J (2001) Polymorphisms and promoter overactivity of the p22 phox gene in vascular smooth muscle cells from spontaneously hypertensive rats. Circ Res 88(2):217–222

    CAS  PubMed  Google Scholar 

  62. Shokoji T, Nishiyama A, Fujisawa Y, Hitomi H, Kiyomoto H, Takahashi N, Kimura S, Kohno M, Abe Y (2003) Renal sympathetic nerve responses to tempol in spontaneously hypertensive rats. Hypertension 41(2):266–273

    CAS  PubMed  Google Scholar 

  63. Park JB, Touyz RM, Chen X, Schiffrin EL (2002) Chronic treatment with a superoxide dismutase mimetic prevents vascular remodeling and progression of hypertension in salt-loaded stroke-prone spontaneously hypertensive rats. Am J Hypertens 15(1):78–84

    CAS  PubMed  Google Scholar 

  64. Paravicini TM, Chrissobolis S, Drummond GR, Sobey CG (2004) Increased NADPH-oxidase activity and Nox4 expression during chronic hypertension is associated with enhanced cerebral vasodilatation to NADPH in vivo. Stroke 35(2):584–589

    CAS  PubMed  Google Scholar 

  65. Touyz RM (2004) Reactive oxygen species, vascular oxidative stress, and redox signaling in hypertension: what is the clinical significance? Hypertension 44(3):248–252

    CAS  PubMed  Google Scholar 

  66. Rueckschloss U, Quinn MT, Holtz J, Morawietz H (2002) Dose-dependent regulation of NAD (P) H oxidase expression by angiotensin II in human endothelial cells: protective effect of angiotensin II type 1 receptor blockade in patients with coronary artery disease. Arterioscler Thromb Vasc Biol 22(11):1845–1851

    CAS  PubMed  Google Scholar 

  67. Berry C, Anderson N, Kirk AJ, Dominiczak AF, Mcmurray JJ (2001) Renin angiotensin system inhibition is associated with reduced free radical concentrations in arteries of patients with coronary heart disease. Heart 86(2):217–220

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Morrow JD, Frei B, Longmire AW, Gaziano JM, Lynch SM, Shyr Y, Strauss WE, Oates JA, Roberts LJ (1995) Increase in circulating products of lipid peroxidation (F2-isoprostanes) in smokers—smoking as a cause of oxidative damage. N Engl J Med 332(18):1198–1203

    CAS  PubMed  Google Scholar 

  69. Reilly MP, Pratico D, Delanty N, DiMinno G, Tremoli E, Rader D, Kapoor S, Rokach J, Lawson J, FitzGerald GA (1998) Increased formation of distinct F2 isoprostanes in hypercholesterolemia. Circulation 98(25):2822–2828

    CAS  PubMed  Google Scholar 

  70. Yamaguchi Y, Kunitomo M, Haginaka J (2002) Assay methods of modified lipoproteins in plasma. J Chromatogr B 781(1–2):313–330

    CAS  Google Scholar 

  71. Warnholtz A, Nickenig G, Schulz E, Macharzina R, Brasen JH, Skatchkov M, Heitzer T, Stasch JP, Griendling KK, Harrison DG (1999) Increased NADH-oxidase–mediated superoxide production in the early stages of atherosclerosis: evidence for involvement of the renin-angiotensin system. Circulation 99(15):2027–2033

    CAS  PubMed  Google Scholar 

  72. Weiss D, Kools JJ, Taylor WR (2001) Angiotensin II–induced hypertension accelerates the development of atherosclerosis in apoE-deficient mice. Circulation 103(3):448–454

    CAS  PubMed  Google Scholar 

  73. Ohara Y, Peterson TE, Harrison DG (1993) Hypercholesterolemia increases endothelial superoxide anion production. J Clin Investig 91(6):2546–2551

    CAS  PubMed  Google Scholar 

  74. Mügge A, Elwell JH, Peterson TE, Hofmeyer TG, Heistad DD, Harrison DG (1991) Chronic treatment with polyethylene-glycolated superoxide dismutase partially restores endothelium-dependent vascular relaxations in cholesterol-fed rabbits. Circ Res 69(5):1293–1300

    PubMed  Google Scholar 

  75. Böger RH, Bode-Böger SM, Mügge A, Kienke S, Brandes R, Dwenger A, Frölich JC (1995) Supplementation of hypercholesterolaemic rabbits with L-arginine reduces the vascular release of superoxide anions and restores NO production. Atherosclerosis 117(2):273–284

    PubMed  Google Scholar 

  76. Miller FJ, Gutterman DD, Rios CD, Heistad DD, Davidson BL (1998) Superoxide production in vascular smooth muscle contributes to oxidative stress and impaired relaxation in atherosclerosis. Circ Res 82(12):1298–1305

    CAS  PubMed  Google Scholar 

  77. Praticò D, Tangirala RK, Rader DJ, Rokach J, FitzGerald GA (1998) Vitamin E suppresses isoprostane generation in vivo and reduces atherosclerosis in ApoE-deficient mice. Nat Med 4(10):1189

    PubMed  Google Scholar 

  78. Tangirala RK, Praticó D, FitzGerald GA, Chun S, Tsukamoto K, Maugeais C, Usher DC, Puré E, Rader DJ (2001) Reduction of isoprostanes and regression of advanced atherosclerosis by apolipoprotein E. J Biol Chem 276(1):261–266

    CAS  PubMed  Google Scholar 

  79. Febbraio M, Podrez EA, Smith JD, Hajjar DP, Hazen SL, Hoff HF, Sharma K, Silverstein RL (2000) Targeted disruption of the class B scavenger receptor CD36 protects against atherosclerotic lesion development in mice. J Clin Investig 105(8):1049–1056

    CAS  PubMed  Google Scholar 

  80. Cyrus T, Witztum JL, Rader DJ, Tangirala R, Fazio S, Linton MF, Funk CD (1999) Disruption of the 12/15-lipoxygenase gene diminishes atherosclerosis in apo E–deficient mice. J Clin Investig 103(11):1597–1604

    CAS  PubMed  Google Scholar 

  81. Galis ZS, Sukhova GK, Lark MW, Libby P (1994) Increased expression of matrix metalloproteinases and matrix degrading activity in vulnerable regions of human atherosclerotic plaques. J Clin Investig 94(6):2493–2503

    CAS  PubMed  Google Scholar 

  82. Faia KL, Davis WP, Marone AJ, Foxall TL (2002) Matrix metalloproteinases and tissue inhibitors of metalloproteinases in hamster aortic atherosclerosis: correlation with in-situ zymography. Atherosclerosis 160(2):325–337

    CAS  PubMed  Google Scholar 

  83. Dhalla AK, Hill MF, Singal PK (1996) Role of oxidative stress in transition of hypertrophy to heart failure. J Am Coll Cardiol 28(2):506–514

    CAS  PubMed  Google Scholar 

  84. Nakamura K, Fushimi K, Kouchi H, Mihara K, Miyazaki M, Ohe T, Namba M (1998) Inhibitory effects of antioxidants on neonatal rat cardiac myocyte hypertrophy induced by tumor necrosis factor-alpha and angiotensin II. Circulation 98(8):794–799

    CAS  Google Scholar 

  85. MacCarthy PA, Grieve DJ, Li JM, Dunster C, Kelly FJ, Shah AM (2001) Impaired endothelial regulation of ventricular relaxation in cardiac hypertrophy: role of reactive oxygen species and NADPH oxidase. Circulation 104(24):2967–2974

    CAS  PubMed  Google Scholar 

  86. Park YM, Park MY, Suh YL, Park JB (2004) NAD(P)H oxidase inhibitor prevents blood pressure elevation and cardiovascular hypertrophy in aldosterone-infused rats. Biochem Biophys Res Commun 313(3):812–817

    CAS  PubMed  Google Scholar 

  87. Siwik DA, Pagano PJ, Colucci WS (2001) Oxidative stress regulates collagen synthesis and matrix metalloproteinase activity in cardiac fibroblasts. Am J Physiol Cell Physiol 280(1):C53–C60

    CAS  PubMed  Google Scholar 

  88. Bendall JK, Cave AC, Heymes C, Gall N, Shah AM (2002) Pivotal role of a gp91(phox)-containing NADPH oxidase in angiotensin II-induced cardiac hypertrophy in mice. Circulation 105(3):293–296

    CAS  Google Scholar 

  89. Heymes C, Bendall JK, Ratajczak P, Cave AC, Samuel JL, Hasenfuss G, Shah AM (2003) Increased myocardial NADPH oxidase activity in human heart failure. J Am Coll Cardiol 41(12):2164–2171

    CAS  PubMed  Google Scholar 

  90. Palace V, Kumar D, Hill MF, Khaper N, Singal PK (1999) Regional differences in non-enzymatic antioxidants in the heart under control and oxidative stress conditions. J Mol Cell Cardiol 31(1):193–202

    CAS  PubMed  Google Scholar 

  91. Prasad K, Lee P, Mantha SV, Kalra J, Prasad M, Gupta JB (1992) Detection of ischemia-reperfusion cardiac injury by cardiac muscle chemiluminescence. Mol Cell Biochem 115(1):49–58

    CAS  PubMed  Google Scholar 

  92. Jolly SR, Kane WJ, Bailie MB, Abrams GD, Lucchesi BR (1984) Canine myocardial reperfusion injury. Its reduction by the combined administration of superoxide dismutase and catalase. Circ Res 54(3):277–285

    CAS  PubMed  Google Scholar 

  93. Temsah RM, Netticadan T, Chapman D, Takeda S, Mochizuki S, Dhalla NS (1999) Alterations in sarcoplasmic reticulum function and gene expression in ischemic-reperfused rat heart. Am J Physiol 277(2 Pt 2):H584–H594

    CAS  PubMed  Google Scholar 

  94. Chen EP, Bittner HB, Davis RD, Van Trigt P, Folz RJ (1998) Physiologic effects of extracellular superoxide dismutase transgene overexpression on myocardial function after ischemia and reperfusion injury. J Thoracic Cardiovasc Surg 115(2):450–458. Discussion 458–459

    CAS  PubMed  Google Scholar 

  95. Yoshida T, Maulik N, Engelman RM, Ho YS, Das DK (2000) Targeted disruption of the mouse Sod I gene makes the hearts vulnerable to ischemic reperfusion injury. Circ Res 86(3):264–269

    CAS  PubMed  Google Scholar 

  96. Sethi R, Takeda N, Nagano M, Dhalla NS (2000) Beneficial effects of vitamin E treatment in acute myocardial infarction. J Cardiovasc Pharmacol Ther 5(1):51–58

    CAS  PubMed  Google Scholar 

  97. Kinugawa S, Tsutsui H, Hayashidani S, Ide T, Suematsu N, Satoh S, Utsumi H, Takeshita A (2000) Treatment with dimethylthiourea prevents left ventricular remodeling and failure after experimental myocardial infarction in mice: role of oxidative stress. Circ Res 87(5):392–398

    CAS  PubMed  Google Scholar 

  98. Sia YT, Lapointe N, Parker TG, Tsoporis JN, Deschepper CF, Calderone A, Pourdjabbar A, Jasmin JF, Sarrazin JF, Liu P, Adam A, Butany J, Rouleau JL (2002) Beneficial effects of long-term use of the antioxidant probucol in heart failure in the rat. Circulation 105(21):2549–2555

    CAS  PubMed  Google Scholar 

  99. Spinale FG (2002) Matrix metalloproteinases: regulation and dysregulation in the failing heart. Circ Res 90(5):520–530

    CAS  PubMed  Google Scholar 

  100. Cox MJ, Hawkins UA, Hoit BD, Tyagi SC (2004) Attenuation of oxidative stress and remodeling by cardiac inhibitor of metalloproteinase protein transfer. Circulation 109(17):2123–2128

    CAS  PubMed  Google Scholar 

  101. Marzetti E, Csiszar A, Dutta D, Balagopal G, Calvani R, Leeuwenburgh C (2013) Role of mitochondrial dysfunction and altered autophagy in cardiovascular aging and disease: from mechanisms to therapeutics. Am J Physiol Heart Circ Physiol 305(4):H459–H476

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Dutta D, Calvani R, Bernabei R, Leeuwenburgh C, Marzetti E (2012) Contribution of impaired mitochondrial autophagy to cardiac aging: mechanisms and therapeutic opportunities. Circ Res 110(8):1125–1138

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Calvani R, Joseph AM, Adhihetty PJ, Miccheli A, Bossola M, Leeuwenburgh C, Bernabei R, Marzetti E (2013) Mitochondrial pathways in sarcopenia of aging and disuse muscle atrophy. Biol Chem 394(3):393–414

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Schafer A, Reichert AS (2009) Emerging roles of mitochondrial membrane dynamics in health and disease. Biol Chem 390(8):707–715

    PubMed  Google Scholar 

  105. Benard G, Rossignol R (2008) Ultrastructure of the mitochondrion and its bearing on function and bioenergetics. Antioxid Redox Signal 10(8):1313–1342

    CAS  PubMed  Google Scholar 

  106. Aon MA, Cortassa S (2012) Mitochondrial network energetics in the heart. Wiley Interdiscip Rev Syst Biol Med 4(6):599–613

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Twig G, Hyde B, Shirihai OS (2008) Mitochondrial fusion, fission and autophagy as a quality control axis: the bioenergetic view. Biochim Biophys Acta 1777(9):1092–1097

    CAS  PubMed  Google Scholar 

  108. Chen H, Detmer SA, Ewald AJ, Griffin EE, Fraser SE, Chan DC (2003) Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development. J Cell Biol 160(2):189–200

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Cipolat S, Martins de Brito O, Dal Zilio B, Scorrano L (2004) OPA1 requires mitofusin 1 to promote mitochondrial fusion. Proc Natl Acad Sci USA 101(45):15927–15932

    CAS  PubMed  Google Scholar 

  110. Smirnova E, Griparic L, Shurland DL, van der Bliek AM (2001) Dynamin-related protein Drp1 is required for mitochondrial division in mammalian cells. Mol Biol Cell 12(8):2245–2256

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Stojanovski D, Koutsopoulos OS, Okamoto K, Ryan MT (2004) Levels of human Fis1 at the mitochondrial outer membrane regulate mitochondrial morphology. J Cell Sci 117(Pt 7):1201–1210

    CAS  PubMed  Google Scholar 

  112. Ong SB, Hall AR, Hausenloy DJ (2013) Mitochondrial dynamics in cardiovascular health and disease. Antioxid Redox Signal 19(4):400–414

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Ong SB, Subrayan S, Lim SY, Yellon DM, Davidson SM, Hausenloy DJ (2010) Inhibiting mitochondrial fission protects the heart against ischemia/reperfusion injury. Circulation 121(18):2012–2022

    CAS  PubMed  Google Scholar 

  114. Chen L, Gong Q, Stice JP, Knowlton AA (2009) Mitochondrial OPA1, apoptosis, and heart failure. Cardiovasc Res 84(1):91–99

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Makino A, Scott BT, Dillmann WH (2010) Mitochondrial fragmentation and superoxide anion production in coronary endothelial cells from a mouse model of type 1 diabetes. Diabetologia 53(8):1783–1794

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Yu T, Sheu SS, Robotham JL, Yoon Y (2008) Mitochondrial fission mediates high glucose-induced cell death through elevated production of reactive oxygen species. Cardiovasc Res 79(2):341–351

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Huss JM, Kelly DP (2005) Mitochondrial energy metabolism in heart failure: a question of balance. J Clin Invest 115(3):547–555

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Hom JR, Quintanilla RA, Hoffman DL, de Mesy Bentley KL, Molkentin JD, Sheu SS, Porter GA Jr (2011) The permeability transition pore controls cardiac mitochondrial maturation and myocyte differentiation. Dev Cell 21(3):469–478

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Pennanen C, Parra V, Lopez-Crisosto C, Morales PE, Del Campo A, Gutierrez T, Rivera-Mejias P, Kuzmicic J, Chiong M, Zorzano A, Rothermel BA, Lavandero S (2014) Mitochondrial fission is required for cardiomyocyte hypertrophy mediated by a Ca2+-calcineurin signaling pathway. J Cell Sci 127(Pt 12):2659–2671

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Xu X, Duan S, Yi F, Ocampo A, Liu GH, Izpisua Belmonte JC (2013) Mitochondrial regulation in pluripotent stem cells. Cell Metab 18(3):325–332

    CAS  PubMed  Google Scholar 

  121. Salabei JK, Hill BG (2013) Mitochondrial fission induced by platelet-derived growth factor regulates vascular smooth muscle cell bioenergetics and cell proliferation. Redox Biol 1:542–551

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Sharp WW, Fang YH, Han M, Zhang HJ, Hong Z, Banathy A, Morrow E, Ryan JJ, Archer SL (2014) Dynamin-related protein 1 (Drp1)-mediated diastolic dysfunction in myocardial ischemia-reperfusion injury: therapeutic benefits of Drp1 inhibition to reduce mitochondrial fission. FASEB J 28(1):316–326

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Chen Y, Liu Y, Dorn GW 2nd (2011) Mitochondrial fusion is essential for organelle function and cardiac homeostasis. Circ Res 109(12):1327–1331

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Papanicolaou KN, Khairallah RJ, Ngoh GA, Chikando A, Luptak I, O'Shea KM, Riley DD, Lugus JJ, Colucci WS, Lederer WJ, Stanley WC, Walsh K (2011) Mitofusin-2 maintains mitochondrial structure and contributes to stress-induced permeability transition in cardiac myocytes. Mol Cell Biol 31(6):1309–1328

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Papanicolaou KN, Ngoh GA, Dabkowski ER, O’Connell KA, Ribeiro RF Jr, Stanley WC, Walsh K (2012) Cardiomyocyte deletion of mitofusin-1 leads to mitochondrial fragmentation and improves tolerance to ROS-induced mitochondrial dysfunction and cell death. Am J Physiol Heart Circ Physiol 302(1):H167–H179

    CAS  PubMed  Google Scholar 

  126. Piquereau J, Caffin F, Novotova M, Prola A, Garnier A, Mateo P, Fortin D, Huynhle H, Nicolas V, Alavi MV, Brenner C, Ventura-Clapier R, Veksler V, Joubert F (2012) Down-regulation of OPA1 alters mouse mitochondrial morphology, PTP function, and cardiac adaptation to pressure overload. Cardiovasc Res 94(3):408–417

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Olichon A, Baricault L, Gas N, Guillou E, Valette A, Belenguer P, Lenaers G (2003) Loss of OPA1 perturbates the mitochondrial inner membrane structure and integrity, leading to cytochrome c release and apoptosis. J Biol Chem 278(10):7743–7746

    CAS  PubMed  Google Scholar 

  128. Ihara S, Maeda-Takekoshi F, Takekoshi M, Yokoyama M, Sakuma S, Watanabe Y (1991) Evidence that the tyrosine kinase domain of a small fraction of epidermal growth factor receptor molecules is exposed on the outer surface of A431 cells. Cell Struct Funct 16(3):217–223

    CAS  PubMed  Google Scholar 

  129. Gegg ME, Cooper JM, Chau KY, Rojo M, Schapira AH, Taanman JW (2010) Mitofusin 1 and mitofusin 2 are ubiquitinated in a PINK1/parkin-dependent manner upon induction of mitophagy. Hum Mol Genet 19(24):4861–4870

    CAS  PubMed  PubMed Central  Google Scholar 

  130. de Brito OM, Scorrano L (2008) Mitofusin 2 tethers endoplasmic reticulum to mitochondria. Nature 456(7222):605–610

    PubMed  Google Scholar 

  131. Chen KH, Guo X, Ma D, Guo Y, Li Q, Yang D, Li P, Qiu X, Wen S, Xiao RP, Tang J (2004) Dysregulation of HSG triggers vascular proliferative disorders. Nat Cell Biol 6(9):872–883

    CAS  PubMed  Google Scholar 

  132. Guo YH, Chen K, Gao W, Li Q, Chen L, Wang GS, Tang J (2007) Overexpression of Mitofusin 2 inhibited oxidized low-density lipoprotein induced vascular smooth muscle cell proliferation and reduced atherosclerotic lesion formation in rabbit. Biochem Biophys Res Commun 363(2):411–417

    CAS  PubMed  Google Scholar 

  133. Guo X, Chen KH, Guo Y, Liao H, Tang J, Xiao RP (2007) Mitofusin 2 triggers vascular smooth muscle cell apoptosis via mitochondrial death pathway. Circ Res 101(11):1113–1122

    CAS  PubMed  Google Scholar 

  134. Hall AR, Burke N, Dongworth RK, Hausenloy DJ (2014) Mitochondrial fusion and fission proteins: novel therapeutic targets for combating cardiovascular disease. Br J Pharmacol 171(8):1890–1906

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Klionsky DJ, Baehrecke EH, Brumell JH, Chu CT, Codogno P, Cuervo AM, Debnath J, Deretic V, Elazar Z, Eskelinen EL, Finkbeiner S, Fueyo-Margareto J, Gewirtz D, Jaattela M, Kroemer G, Levine B, Melia TJ, Mizushima N, Rubinsztein DC, Simonsen A, Thorburn A, Thumm M, Tooze SA (2011) A comprehensive glossary of autophagy-related molecules and processes (2nd edition). Autophagy 7(11):1273–1294

    PubMed  PubMed Central  Google Scholar 

  136. Dai DF, Rabinovitch PS, Ungvari Z (2012) Mitochondria and cardiovascular aging. Circ Res 110(8):1109–1124

    CAS  PubMed  Google Scholar 

  137. Twig G, Elorza A, Molina AJ, Mohamed H, Wikstrom JD, Walzer G, Stiles L, Haigh SE, Katz S, Las G, Alroy J, Wu M, Py BF, Yuan J, Deeney JT, Corkey BE, Shirihai OS (2008) Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. EMBO J 27(2):433–446

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Carreira RS, Lee Y, Ghochani M, Gustafsson AB, Gottlieb RA (2010) Cyclophilin D is required for mitochondrial removal by autophagy in cardiac cells. Autophagy 6(4):462–472

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Hirota Y, Kang D, Kanki T (2012) The physiological role of mitophagy: new insights into phosphorylation events. Int J Cell Biol 2012:354914

    PubMed  PubMed Central  Google Scholar 

  140. Canto C, Gerhart-Hines Z, Feige JN, Lagouge M, Noriega L, Milne JC, Elliott PJ, Puigserver P, Auwerx J (2009) AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature 458(7241):1056–1060

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Karbowski M, Kurono C, Wozniak M, Ostrowski M, Teranishi M, Nishizawa Y, Usukura J, Soji T, Wakabayashi T (1999) Free radical-induced megamitochondria formation and apoptosis. Free Radic Biol Med 26(3–4):396–409

    CAS  PubMed  Google Scholar 

  142. Terman A, Kurz T, Navratil M, Arriaga EA, Brunk UT (2010) Mitochondrial turnover and aging of long-lived postmitotic cells: the mitochondrial-lysosomal axis theory of aging. Antioxid Redox Signal 12(4):503–535

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Taneike M, Yamaguchi O, Nakai A, Hikoso S, Takeda T, Mizote I, Oka T, Tamai T, Oyabu J, Murakawa T, Nishida K, Shimizu T, Hori M, Komuro I, Takuji Shirasawa TS, Mizushima N, Otsu K (2010) Inhibition of autophagy in the heart induces age-related cardiomyopathy. Autophagy 6(5):600–606

    CAS  PubMed  Google Scholar 

  144. Lesnefsky EJ, Moghaddas S, Tandler B, Kerner J, Hoppel CL (2001) Mitochondrial dysfunction in cardiac disease: ischemia–reperfusion, aging, and heart failure. J Mol Cell Cardiol 33(6):1065–1089

    CAS  PubMed  Google Scholar 

  145. Matsui Y, Takagi H, Qu X, Abdellatif M, Sakoda H, Asano T, Levine B, Sadoshima J (2007) Distinct roles of autophagy in the heart during ischemia and reperfusion: roles of AMP-activated protein kinase and Beclin 1 in mediating autophagy. Circ Res 100(6):914–922

    CAS  PubMed  Google Scholar 

  146. Hamacher-Brady A, Brady NR, Gottlieb RA (2006) Enhancing macroautophagy protects against ischemia/reperfusion injury in cardiac myocytes. J Biol Chem 281(40):29776–29787

    CAS  PubMed  Google Scholar 

  147. Xie Z, Lau K, Eby B, Lozano P, He C, Pennington B, Li H, Rathi S, Dong Y, Tian R, Kem D, Zou MH (2011) Improvement of cardiac functions by chronic metformin treatment is associated with enhanced cardiac autophagy in diabetic OVE26 mice. Diabetes 60(6):1770–1778

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Akazawa H, Komazaki S, Shimomura H, Terasaki F, Zou Y, Takano H, Nagai T, Komuro I (2004) Diphtheria toxin-induced autophagic cardiomyocyte death plays a pathogenic role in mouse model of heart failure. J Biol Chem 279(39):41095–41103

    CAS  PubMed  Google Scholar 

  149. Ungvari Z, Bailey-Downs L, Gautam T, Sosnowska D, Wang M, Monticone RE, Telljohann R, Pinto JT, de Cabo R, Sonntag WE, Lakatta EG, Csiszar A (2011) Age-associated vascular oxidative stress, Nrf2 dysfunction, and NF-{kappa}B activation in the nonhuman primate Macaca mulatta. J Gerontol A Biol Sci Med Sci 66(8):866–875

    PubMed  Google Scholar 

  150. Ungvari Z, Csiszar A (2012) The emerging role of IGF-1 deficiency in cardiovascular aging: recent advances. J Gerontol A Biol Sci Med Sci 67(6):599–610

    PubMed  Google Scholar 

  151. Sonntag WE, Csiszar A, deCabo R, Ferrucci L, Ungvari Z (2012) Diverse roles of growth hormone and insulin-like growth factor-1 in mammalian aging: progress and controversies. J Gerontol A Biol Sci Med Sci 67(6):587–598

    PubMed  Google Scholar 

  152. Csiszar A, Labinskyy N, Perez V, Recchia FA, Podlutsky A, Mukhopadhyay P, Losonczy G, Pacher P, Austad SN, Bartke A, Ungvari Z (2008) Endothelial function and vascular oxidative stress in long-lived GH/IGF-deficient Ames dwarf mice. Am J Physiol Heart Circ Physiol 295(5):H1882–H1894

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Hao CN, Geng YJ, Li F, Yang T, Su DF, Duan JL, Li Y (2011) Insulin-like growth factor-1 receptor activation prevents hydrogen peroxide-induced oxidative stress, mitochondrial dysfunction and apoptosis. Apoptosis 16(11):1118–1127

    CAS  PubMed  Google Scholar 

  154. Zhang D, Mott JL, Farrar P, Ryerse JS, Chang SW, Stevens M, Denniger G, Zassenhaus HP (2003) Mitochondrial DNA mutations activate the mitochondrial apoptotic pathway and cause dilated cardiomyopathy. Cardiovasc Res 57(1):147–157

    CAS  PubMed  Google Scholar 

  155. Dai DF, Johnson SC, Villarin JJ, Chin MT, Nieves-Cintron M, Chen T, Marcinek DJ, Dorn GW 2nd, Kang YJ, Prolla TA, Santana LF, Rabinovitch PS (2011) Mitochondrial oxidative stress mediates angiotensin II-induced cardiac hypertrophy and Galphaq overexpression-induced heart failure. Circ Res 108(7):837–846

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Pepe M, Mamdani M, Zentilin L, Csiszar A, Qanud K, Zacchigna S, Ungvari Z, Puligadda U, Moimas S, Xu X, Edwards JG, Hintze TH, Giacca M, Recchia FA (2010) Intramyocardial VEGF-B167 gene delivery delays the progression towards congestive failure in dogs with pacing-induced dilated cardiomyopathy. Circ Res 106(12):1893–1903

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Doughan AK, Harrison DG, Dikalov SI (2008) Molecular mechanisms of angiotensin II-mediated mitochondrial dysfunction: linking mitochondrial oxidative damage and vascular endothelial dysfunction. Circ Res 102(4):488–496

    CAS  PubMed  Google Scholar 

  158. Kimura S, Zhang GX, Nishiyama A, Shokoji T, Yao L, Fan YY, Rahman M, Abe Y (2005) Mitochondria-derived reactive oxygen species and vascular MAP kinases: comparison of angiotensin II and diazoxide. Hypertension 45(3):438–444

    CAS  PubMed  Google Scholar 

  159. Davis RC, Hobbs FD, Lip GY (2000) ABC of heart failure. History and epidemiology. BMJ 320(7226):39–42

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Vasanthi HR, ShriShriMal N, Das DK (2012) Phytochemicals from plants to combat cardiovascular disease. Curr Med Chem 19(14):2242–2251

    CAS  PubMed  Google Scholar 

  161. Kong Y, Trabucco SE, Zhang H (2014) Oxidative stress, mitochondrial dysfunction and the mitochondria theory of aging. Interdiscip Top Gerontol 39:86–107

    PubMed  Google Scholar 

  162. Liu Z, Xu S, Huang X, Wang J, Gao S, Li H, Zhou C, Ye J, Chen S, Jin ZG, Liu P (2015) Cryptotanshinone, an orally bioactive herbal compound from Danshen, attenuates atherosclerosis in apolipoprotein E-deficient mice: role of lectin-like oxidized LDL receptor-1 (LOX-1). Br J Pharmacol 172(23):5661–5675

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Xu Y, Liu Q, Xu Y, Liu C, Wang X, He X, Zhu N, Liu J, Wu Y, Li Y, Li N, Feng T, Lai F, Zhang M, Hong B, Jiang JD, Si S (2014) Rutaecarpine suppresses atherosclerosis in ApoE-/- mice through upregulating ABCA1 and SR-BI within RCT. J Lipid Res 55(8):1634–1647

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Jia S, Hu C (2010) Pharmacological effects of rutaecarpine as a cardiovascular protective agent. Molecules 15(3):1873–1881

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Cimen I, Kocaturk B, Koyuncu S, Tufanli O, Onat UI, Yildirim AD, Apaydin O, Demirsoy S, Aykut ZG, Nguyen UT, Watkins SM, Hotamisligil GS, Erbay E (2016) Prevention of atherosclerosis by bioactive palmitoleate through suppression of organelle stress and inflammasome activation. Sci Transl Med 8(358):358ra126

    PubMed  Google Scholar 

  166. Luo Y, Sun G, Dong X, Wang M, Qin M, Yu Y, Sun X (2015) Isorhamnetin attenuates atherosclerosis by inhibiting macrophage apoptosis via PI3K/AKT activation and HO-1 induction. PLoS One 10(3):e0120259

    PubMed  PubMed Central  Google Scholar 

  167. Miura Y, Chiba T, Tomita I, Koizumi H, Miura S, Umegaki K, Hara Y, Ikeda M, Tomita T (2001) Tea catechins prevent the development of atherosclerosis in apoprotein E-deficient mice. J Nutr 131(1):27–32

    CAS  PubMed  Google Scholar 

  168. Babu PV, Liu D (2008) Green tea catechins and cardiovascular health: an update. Curr Med Chem 15(18):1840–1850

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Punithavathi VR, Stanely Mainzen Prince P (2011) The cardioprotective effects of a combination of quercetin and alpha-tocopherol on isoproterenol-induced myocardial infarcted rats. J Biochem Mol Toxicol 25(1):28–40

    CAS  PubMed  Google Scholar 

  170. Joshipura KJ, Ascherio A, Manson JE, Stampfer MJ, Rimm EB, Speizer FE, Hennekens CH, Spiegelman D, Willett WC (1999) Fruit and vegetable intake in relation to risk of ischemic stroke. JAMA 282(13):1233–1239

    CAS  PubMed  Google Scholar 

  171. Gorinstein S, Caspi A, Libman I, Lerner HT, Huang D, Leontowicz H, Leontowicz M, Tashma Z, Katrich E, Feng S, Trakhtenberg S (2006) Red grapefruit positively influences serum triglyceride level in patients suffering from coronary atherosclerosis: studies in vitro and in humans. J Agric Food Chem 54(5):1887–1892

    CAS  PubMed  Google Scholar 

  172. Rangel-Huerta OD, Pastor-Villaescusa B, Aguilera CM, Gil A (2015) A systematic review of the efficacy of bioactive compounds in cardiovascular disease: phenolic compounds. Nutrients 7(7):5177–5216

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Reis JF, Monteiro VV, de Souza Gomes R, do Carmo MM, da Costa GV, Ribera PC, Monteiro MC (2016) Action mechanism and cardiovascular effect of anthocyanins: a systematic review of animal and human studies. J Transl Med 14(1):315

    PubMed  PubMed Central  Google Scholar 

  174. Wallace TC (2011) Anthocyanins in Cardiovascular Disease. Adv Nutr 2(1):1–7

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Wallace TC, Slavin M, Frankenfeld CL (2016) Systematic review of anthocyanins and markers of cardiovascular disease. Nutrients 8(1)

    PubMed Central  Google Scholar 

  176. Scolaro B, Soo Jin Kim H, de Castro IA (2018) Bioactive compounds as an alternative for drug co-therapy: overcoming challenges in cardiovascular disease prevention. Crit Rev Food Sci Nutr 58(6):958–971

    CAS  PubMed  Google Scholar 

  177. Bonnefont-Rousselot D (2016) Resveratrol and cardiovascular diseases. Nutrients 8(5)

    PubMed Central  Google Scholar 

  178. Vidavalur R, Otani H, Singal PK, Maulik N (2006) Significance of wine and resveratrol in cardiovascular disease: French paradox revisited. Exp Clin Cardiol 11(3):217–225

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Qin M, Luo Y, Meng XB, Wang M, Wang HW, Song SY, Ye JX, Pan RL, Yao F, Wu P, Sun GB, Sun XB (2015) Myricitrin attenuates endothelial cell apoptosis to prevent atherosclerosis: An insight into PI3K/Akt activation and STAT3 signaling pathways. Vasc Pharmacol 70:23–34

    CAS  Google Scholar 

  180. Honarbakhsh S, Schachter M (2009) Vitamins and cardiovascular disease. Br J Nutr 101(8):1113–1131

    CAS  PubMed  Google Scholar 

  181. Al-Yahya MA, Mothana RA, Al-Said MS, El-Tahir KE, Al-Sohaibani M, Rafatullah S (2013) Citrus medica “Otroj”: attenuates oxidative stress and cardiac dysrhythmia in isoproterenol-induced cardiomyopathy in rats. Nutrients 5(11):4269–4283

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parames C. Sil .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chatterjee, S., Hossain, U., Sil, P.C. (2019). Role of Oxidative Stress, Mitochondrial Dysfunction, and Autophagy in Cardiovascular Disease: Its Pathogenesis and Amelioration by Different Small Natural Molecules. In: Chakraborti, S., Dhalla, N., Dikshit, M., Ganguly, N. (eds) Modulation of Oxidative Stress in Heart Disease. Springer, Singapore. https://doi.org/10.1007/978-981-13-8946-7_19

Download citation

Publish with us

Policies and ethics