Skip to main content

Fluid Management for Neurocritical Care

  • Chapter
  • First Online:
Book cover Neurocritical Care
  • 1154 Accesses

Abstract

Fluid management in neurocritically ill patients has an impact on the neurological outcome. The blood-brain barrier (BBB) plays an important role in brain volume regulation, because an intact BBB is only water permeable and electrolyte filtration is strictly regulated. In contrast, BBB disruption leads to impaired autoregulation and induces an increase in transcapillary hydrostatic pressure (P C). Therefore, the control of P C may be an important therapeutic target. In clinical practice, intensivists should pay attention to the fluid osmolality before infusion. In fact, physiological plasma osmolality is 288 ± 5 mOsm/kg, whereas the osmolality of 4% albumin is only 260 mOsm/kg, which represents a hypotonic solution. Infusing such a hypotonic fluid under a disrupted BBB may result in a brain edema. Therefore, albumin administration in patients with acute brain injury should not be recommended routinely. Furthermore, although many investigations and meta-analysis with respect to osmotherapy were published, its beneficial evidence on outcome was not yet shown to be reliable. In both the resuscitation and maintenance phases, the most recommended fluid to be used in neurocritical care is simply the crystalloid. Additionally, hemodynamic monitoring is necessary for patients with acute brain injury, as the volume status is correlated to the neurological outcome. Finally, both the transpulmonary thermodilution and the arterial pulse contour analysis techniques seem feasible to guide fluid management for neurocritical care.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stokum JA, Gerzanich V, Simard JM. Molecular pathophysiology of cerebral edema. J Cereb Blood Flow Metab. 2016;36:513–38.

    Article  CAS  Google Scholar 

  2. Katayama Y, Mori T, Maeda T, Kawamata T. Pathogenesis of the mass effect of cerebral contusions: rapid increase in osmolality within the contusion necrosis. Acta Neurochir Suppl. 1998;71:289–92.

    CAS  PubMed  Google Scholar 

  3. Asgeirsson B, Grände PO. Effects of arterial and venous pressure alterations on transcapillary fluid exchange during raised tissue pressure. Intensive Care Med. 1994;20:567–72.

    Article  CAS  Google Scholar 

  4. Asgeirsson B, Grände PO. Local vascular response to elevation of an organ above the heart. Acta Physiol Scand. 1996;156:9–18.

    Article  CAS  Google Scholar 

  5. Grände PO, Asgeirsson B, Nordström CH. Physiological principles for volume regulation of a tissue enclosed in a rigid shell with application to the injured brain. J Trauma. 1997;42:S23–31.

    Article  Google Scholar 

  6. Mascia L, Grasso S, Fiore T, Bruno F, Berardino M, Ducati A. Cerebro-pulmonary interactions during the application of low levels of positive end-expiratory pressure. Intensive Care Med. 2005;31:373–9.

    Article  Google Scholar 

  7. Deeren DH, Dits H, Malbrain ML. Correlation between intra-abdominal and intracranial pressure in nontraumatic brain injury. Intensive Care Med. 2005;31:1577–81.

    Article  Google Scholar 

  8. De laet I, Citerio G, Malbrain ML. The influence of intraabdominal hypertension on the central nervous system: current insights and clinical recommendations: Is it all in the head? Acta Clin Belg. 2007;62(Suppl 1):89–97.

    Article  Google Scholar 

  9. Kamine TH, Papavassiliou E, Schneider BE. Effect of abdominal insufflation for laparoscopy on intracranial pressure. JAMA Surg. 2014;149:380–2.

    Article  Google Scholar 

  10. Herrler T, Tischer A, Mayer A, Feiler S, Guba M, Nowak S, et al. The intrinsic renal compartment syndrome: new perspectives in kidney transplantation. Transplantation. 2010;89:40–6.

    Article  Google Scholar 

  11. Chowdhury AH, Cox EF, Francis ST, Lobo DN. A randomized, controlled, double-blind crossover study on the effects of 2-L infusions of 0.9% saline and plasma-lyte® 148 on renal blood flow velocity and renal cortical tissue perfusion in healthy volunteers. Ann Surg. 2012;256:18–24.

    Article  Google Scholar 

  12. Allen SJ. Fluid therapy and outcome: balance is best. J Extra Corner Technol. 2014;46:28–32.

    Google Scholar 

  13. Raghunathan K, Nailer P, Konoske R. What is the ideal crystalloid? Curr Opin Crit Care. 2015;21:309–14.

    Article  Google Scholar 

  14. O’Dell E, Tibby SM, Durward A, Murdoch IA. Hyperchloremia is the dominant cause of metabolic acidosis in the postresuscitation phase of pediatric meningococcal sepsis. Crit Care Med. 2007;35:2390–4.

    Article  Google Scholar 

  15. Roquilly A, Loutrel O, Cinotti R, Rosenczweig E, Flet L, Mahe PJ, et al. Balanced versus chloride-rich solutions for fluid resuscitation in brain-injured patients: a randomized double-blind pilot study. Crit Care. 2013;17:R77.

    Article  Google Scholar 

  16. Kazim SF, Enam SA, Shamim MS. Possible detrimental effects of neurosurgical irrigation fluids on neural tissue: an evidence based analysis of various irrigants used in contemporary neurosurgical practice. Int J Surg. 2010;88:586–90.

    Article  Google Scholar 

  17. Rossaint R, Bouillon B, Cerny V, Coats TJ, Duranteau J, Fernández-Mondéjar E, et al. The European guideline on management of major bleeding and coagulopathy following trauma: fourth edition. Crit Care. 2016;20:100.

    Article  Google Scholar 

  18. Elliott MB, Jallo JJ, Barbe MF, Tuma RF. Hypertonic saline attenuates tissue loss and astrocyte hypertrophy in a model of traumatic brain injury. Brain Res. 2009;1305:183–91.

    Article  CAS  Google Scholar 

  19. Zeng WX, Han YL, Zhu GF, Huang LQ, Deng YY, Wang QS, et al. Hypertonic saline attenuates expression of Notch signaling and proinflammatory mediators in active microglia in experimentally induced cerebral ischemia and hypoxic BV-2 microglia. BMC Neurosci. 2017;18:32.

    Article  Google Scholar 

  20. Kamel H, Navi BB, Nakagawa K, Hemphill JC III, Ko NU. Hypertonic saline versus mannitol for the treatment of elevated intracranial pressure: a meta-analysis of randomized clinical trials. Crit Care Med. 2011;39:554–9.

    Article  CAS  Google Scholar 

  21. Mangat HS, Chiu YL, Gerber LM, Alimi M, Ghajar J, Härtl R. Hypertonic saline reduces cumulative and daily intracranial pressure burdens after severe traumatic brain injury. J Neurosurg. 2015;122:202–10.

    Article  Google Scholar 

  22. Finfer S, Bellomo R, Boyce N, French J, Myburgh J, Norton R, et al. A comparison of albumin and saline for fluid resuscitation in the intensive care unit. N Engl J Med. 2004;350:2247–56.

    Article  CAS  Google Scholar 

  23. Myburgh J, Cooper DJ, Finfer S, Bellomo R, Norton R, Bishop N, et al. Saline or albumin for fluid resuscitation in patients with traumatic brain injury. N Engl J Med. 2007;357:874–84.

    Article  CAS  Google Scholar 

  24. Cooper DJ, Myburgh J, Heritier S, Finfer S, Bellomo R, Billot L, et al. Albumin resuscitation for traumatic brain injury: is intracranial hypertension the cause of increased mortality? J Neurotrauma. 2013;30:512–8.

    Article  Google Scholar 

  25. Ginsberg MD. Neuroprotection for ischemic stroke: past, present and future. Neuropharmacology. 2008;55:363–89.

    Article  CAS  Google Scholar 

  26. Ginsberg MD, Hill MD, Palesch YY, Ryckborst KJ, Tamariz D. The ALIAS pilot trial: a dose-escalation and safety study of albumin therapy for acute ischemic stroke-I: physiological responses and safety results. Stroke. 2006;37:2100–6.

    Article  Google Scholar 

  27. Palesch YY, Hill MD, Ryckborst KJ, Tamariz D, Ginsberg MD. The ALIAS pilot trial: a dose-escalation and safety study of albumin therapy for acute ischemic stroke-II: neurologic outcome and efficacy analysis. Stroke. 2006;37:2107–14.

    Article  CAS  Google Scholar 

  28. Ginsberg MD, Palesch YY, Martin RH, Hill MD, Moy CS, Waldman BD, et al. The albumin in acute stroke (ALIAS) multicenter clinical trial: safety analysis of part1 and rationale and design of part2. Stroke. 2011;42:119–27.

    Article  CAS  Google Scholar 

  29. Ginsberg MD, Palesch YY, Hill MD, Martin RH, Moy CS, Barsan WG, et al. High-dose albumin treatment for acute ischaemic stroke (ALIAS) Part2: a randomized, double-blind, phase 3, placebo-controlled trial. Lancet Neurol. 2013;12:1049–58.

    Article  CAS  Google Scholar 

  30. Hartog C, Reinhart K. Hydroxyethyl starch solutions are unsafe in critically ill patients. Intensive Care Med. 2009;35:1337–42.

    Article  CAS  Google Scholar 

  31. Le Roux P, Menon DK, Citerio G, Vespa P, Bader MK, Brophy GM, et al. Consensus summary statement of the International Multidisciplinary Consensus Conference on Multimodality Monitoring in Neurocritical Care: a statement for healthcare professionals from the Neurocritical Care Society and the European Society of Intensive Care Medicine. Intensive Care Med. 2014;40:1189–209.

    Article  Google Scholar 

  32. Clifton GL, Miller ER, Choi SC, Levin HS. Fluid thresholds and outcome from severe brain injury. Crit Care Med. 2002;30:739–45.

    Article  Google Scholar 

  33. Zhao Z, Wang D, Jia Y, Tian Y, Wang Y, Wei Y, et al. Analysis of the association of fluid balance and short-term outcome in traumatic brain injury. J Neurol Sci. 2016;364:12–8.

    Article  Google Scholar 

  34. Heywood JT, Fonarow GC, Costanzo MR, Mathur VS, Wigneswaran JR, Wynne J, et al. High prevalence of renal dysfunction and its impact on outcome in 118,465 patients hospitalized with acute decompensated heart failure: a report from the ADHERE database. J Card Fail. 2007;13:422–30.

    Article  Google Scholar 

  35. Nohria A, Hasselblad V, Stebbins A, Pauly DF, Fonarow GC, Shah M, et al. Cardiorenal interactions: insights from the ESCAPE trial. J Am Coll Cardiol. 2008;51:1268–74.

    Article  Google Scholar 

  36. Damman K, Navis G, Smidle TD, Voors AA, van der Bij W, van Veldhuisen DJ, et al. Decreased cardiac output, venous congestion and the association with renal impairment in patients with cardiac dysfunction. Eur J Heart Fail. 2007;9:872–8.

    Article  Google Scholar 

  37. Doty JM, Saggi BH, Sugerman HJ, Blocher CR, Pin R, Fakhry I, et al. Effect of increased renal venous pressure on renal function. J Trauma. 1999;47:1000–3.

    Article  CAS  Google Scholar 

  38. Grände PO, Romner B. Osmotherapy in brain edema: a questionable therapy. J Neurosurg Anesthesiol. 2012;24:407–12.

    Article  Google Scholar 

  39. Stiver SI. Complications of decompressive craniectomy for traumatic brain injury. Neurosurg Focus. 2009;26:E7.

    Article  Google Scholar 

  40. Laville M, Burst V, Peri A, Verbalis JG. Hyponatremia secondary to the syndrome of inappropriate secretion of antidiuretic hormone (SIADH): therapeutic decision-making in real-life case. Clin Kidney J. 2013;6(Suppl 1):i1–20.

    Article  CAS  Google Scholar 

  41. Diringer MN, Zazulia AR. Hyponatremia in neurologic patients: consequences and approaches to treatment. Neurologist. 2006;12:117–26.

    Article  Google Scholar 

  42. Seifi A, Mowla A, Vaziri MM, Talei AR, Namazy MR. Insulin adsorbance to polyvinylchloride (PVC) surfaces of fluid container and infusion-set. Middle East J Anaesthesiol. 2004;17:975–81.

    CAS  PubMed  Google Scholar 

  43. Jacobi J, Bircher N, Krinsley J, Agus M, Braithwaite SS, Deutschman C, et al. Guidelines for the use of an insulin infusion for the management of hyperglycemia in critically ill patients. Crit Care Med. 2012;40:3251–76.

    Article  Google Scholar 

  44. Ferrada P, Evans D, Wolfe L, Anand RJ, Vanguri P, Mayglothling J, et al. Findings of a randomized controlled trial using limited transthoracic echocardiogram (LTTE) as a hemodynamic monitoring tool in the trauma bay. J Trauma Acute Care Surg. 2014;76:31–7.

    Article  Google Scholar 

  45. Moretti R, Pizzi B. Inferior vena cava distensibility as a predictor of fluid responsiveness in patients with subarachnoid hemorrhage. Neurocrit Care. 2010;13:3–9.

    Article  Google Scholar 

  46. Osman D, Ridel C, Ray P, Monnet X, Anguel N, Richard C, et al. Cardiac filling pressure are not appropriate to predict hemodynamic response to volume challenge. Crit Care Med. 2007;35:64–8.

    Article  Google Scholar 

  47. Mutoh T, Kazumata K, Terasaka S, Taki Y, Suzuki A, Ishikawa T. Early intensive versus minimally intensive approach to postoperative hemodynamic management after subarachnoid hemorrhage. Stroke. 2014;45:1280–4.

    Article  Google Scholar 

  48. Tagami T, Kuwamoto K, Watanabe A, Unemoto K, Yokobori S, Matsumoto G, et al. Optimal range of global end-diastolic volume for fluid management after aneurysmal subarachnoid hemorrhage: a multicenter prospective cohort study. Crit Care Med. 2014;42:1348–56.

    Article  Google Scholar 

  49. Belzberg H, Wo CC, Demetriades D, Shoemaker WC. Effects of age and obesity on hemodynamics, tissue oxygenation, and outcome after trauma. J Trauma. 2007;62:1192–200.

    Article  Google Scholar 

  50. Nicholls TP, Shoemaker WC, Wo CC, Gruen JP, Amar A, Dang AB. Survival, hemodynamics, and tissue oxygenation after head trauma. J Am Coll Surg. 2006;202:120–30.

    Article  Google Scholar 

  51. Rzheutskaya RE. Characteristics of hemodynamic disorders in patients with severe traumatic brain injury. Crit Care Res Pract. 2012;2012:606179. https://doi.org/10.1155/2012/606179.

    Article  PubMed  PubMed Central  Google Scholar 

  52. So JS, Yun JH. The combined use of cardiac output and intracranial pressure monitoring to maintain optimal cerebral perfusion pressure and minimize complications for severe traumatic brain injury. Korean J Neurotrauma. 2017;13:96–102.

    Article  Google Scholar 

  53. Lin X, Xu Z, Wang P, Xu Y, Zhang G. Role of PiCCO monitoring for the integrated management of neurogenic pulmonary edema following traumatic brain injury: a case report and literature review. Exp Ther Med. 2016;12:2341–7.

    Article  CAS  Google Scholar 

  54. Monnet X, Rienzo M, Osman D, Anguel N, Richard C, Pinsky MR, et al. Passive leg raising predicts fluid responsiveness in the critically ill. Crit Care Med. 2006;34:1402–7.

    Article  Google Scholar 

  55. Monnet X, Teboul JL. Passive leg raising. Intensive Care Med. 2008;34:659–63.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akira Utagawa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Utagawa, A. (2019). Fluid Management for Neurocritical Care. In: Kinoshita, K. (eds) Neurocritical Care . Springer, Singapore. https://doi.org/10.1007/978-981-13-7272-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-7272-8_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-7271-1

  • Online ISBN: 978-981-13-7272-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics