Skip to main content

Microalgae Chlorella as a Sustainable Feedstock for Bioethanol Production

  • Chapter
  • First Online:
Green Engineering for Campus Sustainability

Abstract

Microlgae can serve as an excellent feedstock for bioethanol production. The microalgae cells of Chlorella were cultivated and acid hydrolyzed to extract the glucose content in the cells. Production of bioethanol was achieved by fermentation process with the use of yeast Saccharomyces cerevisiae. The bioethanol content was determined by gas chromatography–mass spectrometry (GC-MS). The effect of different parameters such as sulphuric acid concentration, temperature and time on acid hydrolysis was studied. The maximum glucose concentration of 5.382 ± 0.063 g/l was obtained with the conditions of 2.0 M sulphuric acid, 30 °C and 30 min of incubation time. On the other hand, the highest ethanol concentration of 1.126 g/l was obtained with 15% v/v yeast inoculum concentration. Meanwhile, the bioethanol production reached its maximum after 24 h with ethanol concentration and yield of 1.020 g/l and 0.190 g/g glucose, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Asaduzzaman, M. (2007). Standardization of yeast growth curves from several curves with different initial sizes. Thesis of the Degree of Master of Science, Chalmers University of Technology and Goteborg University.

    Google Scholar 

  • Atidiya, H. B., Sing, K. P., Hanif, M., & Mahlia, T. M. I. (2015). Effect of acid pretreatment of enzymatic hydrolysis in bioethanol production from rice straw. International Journal of Technology, 1, 3–10.

    Article  Google Scholar 

  • Ajani, A. O., Agarry, S. E., & Agbede, O. O. (2011). A comparative kinetic study of acidic hydrolysis of wastes cellulose from agricultural derived biomass. Journal of Applied Science and Environmental Management, 15(4), 531–537.

    CAS  Google Scholar 

  • Brownbridge, G. Azadi, P. Smallbone, A. Bhave, A. Taylor, B.J., & Kraft, M. (2013). Algae under uncertainty: the future of the algal biodiesel economy. Cambridge Centre for Computational Chemical Engineering, 1–23. ISSN 1473 – 4273.

    Google Scholar 

  • Brownbridge, G., Azadi, P., Smallbone, A., Bhave, A., Taylor, B. J., & Kraft, M. (2014). The future viability of algae-derived biodiesel under economic and technical uncertainties. Bioresource Technology, 151, 166–173.

    Article  CAS  Google Scholar 

  • Burlew, J. S. (Ed.). (1976). Algal culture: From laboratory to pilot plant. USA: Carnegie Institution of Washington.

    Google Scholar 

  • Chia, S. R., Ong, H. C., Chew, K. W., Show, P. L., Phang, S. M., Ling, T. C., et al. (2018). Sustainable approaches for algae utilization in bioenergy production. Renewable Energy, Part B, 129, 838–852.

    Article  CAS  Google Scholar 

  • Chen, R., Yue, Z., Deitz, L., Liu, Y., Mulbry, W., & Liao, W. (2012). Use of an algal hydrolysate to improve enzymatic hydrolysis of lignocellulose. Bioresource Technology, 108, 149–157.

    Article  CAS  Google Scholar 

  • Cho, Y., Kim, H., & Kim, S. (2013). Bioethanol production from brown seaweed, Undaria pinnatifida, using NaCl acclimated yeast. Bioprocess and Biosystems Engineering, 36, 713–719.

    Article  CAS  Google Scholar 

  • Driver, T., Bajhaiya, A., & Pittman, J. K. (2014). Potential of bioenergy production from microalgae. Current Sustainable/Renewable Energy Reports, 1, 94–103.

    Article  Google Scholar 

  • ExxonMobil. (2014). The outlook for energy: A View to 2040. Retrieved August 8, 2016, from, http://cdn.exxonmobil.com/~/media/Reports/Outlook%20For%20Energy/2015/2015Outlook-for-Energy_print-resolution.pdf.

  • Fogg, G. E., & Thake, B. (1987). Algal culture and phytoplankton ecology (3RD ed.). USA: The University of Wisconsin Press.

    Google Scholar 

  • Forssberg, B. (2010). Opportunities: biogas, the greenest and cleanest renewable fuel. Reviews in Environmental Science & Biotechnology, 9, 307–309.

    Article  Google Scholar 

  • Fu, C., Hung, T., Chen, J., Su, C., & Wu, W. (2010). Hydrolysis of microalgae cell walls for production of reducing sugar and lipid extraction. Bioresource Technology, 101, 8750–8754.

    Article  CAS  Google Scholar 

  • Gibdons, W. R., & Westby, C. A. (1986). Effects of inoculum size on solid-phase fermentation of fodder beets for fuel ethanol production. Applied and Environmental Microbiology, 52, 960–962.

    Google Scholar 

  • Guo, H., Daroch, M., Liu, L., Qiu, G., Geng, S., & Wang, G. (2013). Biochemical features and bioethanol production of microlalgae from coastal waters of Pearl River Delta. Bioresource Technology, 127, 422–428.

    Article  CAS  Google Scholar 

  • Harun, R., Danquah, M., & Forde, G. M. (2010). Microalgal biomass as a fermentation feedstock for bioethanol production. Journal of Chemical Technology & Biotechnology, 85, 199–203.

    CAS  Google Scholar 

  • Harun, R., & Danquah, M. K. (2011a). Enzymatic hydrolysis of microalgal biomass for bioethanol production. Chemical Engineering Journal, 168, 1079–1084.

    Article  CAS  Google Scholar 

  • Harun, R., & Danquah, M. K. (2011b). Influence of acid pre-treatment on microalgal biomass for bioethanol production. Process Biochemistry, 46(1), 304–309.

    Article  CAS  Google Scholar 

  • Held, P. (2010). Monitoring growth of beer brewing strains of Saccharomyces cerevisiae. http://www.biotek.com/assets/tech_resources/SynergyH1_Yeast_Growth_App_Note.pdf.

  • Hernández, D., Riaño, B., Coca, M., & García-González, M. C. (2015). Saccharification of carbohydrates in microalgal biomass by physical, chemical and enzymatic pre-treatments as a previous step for bioethanol production. Chemical Engineering Journal, 262, 939–945.

    Article  Google Scholar 

  • Ho, S., Huang, S., Chen, C., Hasunuma, T., Kondo, A., & Chang, J. (2013a). Bioethanol production using carbohydrate-rich microalgae biomass as feedstock. Bioresource Technology, 135, 191–198.

    Article  CAS  Google Scholar 

  • Ho, S., Li, P., Liu, C., & Chang, J. (2013b). Bioprocess development on microalgae-based CO2 fixation and bioethanol production using Scenedesmus obliquus CNW-N. Bioresource Technology, 145, 142–149.

    Article  CAS  Google Scholar 

  • Ho, S., Ye, X., Hasunnuma, T., Chang, J., & Kondo, A. (2014). Perspectives on engineering strategies for improving biofuel production from microalgae–A critical review. Biotechnology Advances, 32, 1448–1459.

    Article  CAS  Google Scholar 

  • Hong, L. S., Ibrahim, D., & Omar, I. C. (2013). Effect of physical parameters on second generation bio-ethanol production from oil palm frond by Saccharomyces cerevisiae. BioResources, 8(1), 969–980.

    Google Scholar 

  • John, R. P., Anisha, G. S., Nampoothiri, K. M., & Pandey, A. (2011). Micro and macroalgal biomass: a renewable source for bioethanol. Bioresource Technology, 102, 186–193.

    Article  CAS  Google Scholar 

  • Jambo, S. A., Abdulla, R. Mohd, Azhar, S. H., Marbawi, H., Gansau, J. A., & Ravindra, P. (2016). A review on third generation bioethanol feedstock. Renewable and Sustainable Energy Reviews, 65, 756–769.

    Article  CAS  Google Scholar 

  • Kim, H., Ra, C. H., & Kim, S. (2013). Ethanol production from seaweed (Undaria pinnatifida) using yeast acclimated to specific sugars. Biotechnology and Bioprocess Engineering, 18, 533–537.

    Article  CAS  Google Scholar 

  • Kirrolia, A., Bishnoi, N. R., & Singh, R. (2013). Microalgae as a boon for sustainable energy production and its future research and development aspects. Renewable and Sustainable Energy Reviews, 20, 642–656.

    Article  CAS  Google Scholar 

  • Kiran, B., Kumar, R., & Deshmukh, D. (2014). Perspectives of microalgal biofuels as a renewable source of energy. Energy Conversion and Management, 88, 1228–1244.

    Article  CAS  Google Scholar 

  • Klein, B. C., Chagas, M. F., Junqueira, T. L., Rezende, M. C. A. F., Cardos, T. F., Cavalett, O., et al. (2018). Techno-economic and environmental assessment of renewable jet fuel production in integrated Brazilian sugarcane biorefineries. Applied Energy, 209, 290–305.

    Article  CAS  Google Scholar 

  • Laopaiboon, P., Thani, A., Leelavatcharamas, V., & Laopaiboon, L. (2009). Acid hydrolysis of sugarcane bagasse for lactic acid production. Bioresources Techonology, 101(3), 1036–1043.

    Article  Google Scholar 

  • Lange, N., & Steinbüchel, A. (2011). Β-carotene production by Saccharomyces cerevisiae with regard to plasmid stability and culture media. Applied Microbiology and Biotechnology, 91, 1611–1622.

    Article  CAS  Google Scholar 

  • Lee, C. G., Choi, W. Y., Kang, D. H., & Lee, H. Y. (2014). Simultaneous production of biodiesel and bioethanol through mixotropic cultivation of Chlorella sp., Indian J Geo-Marine Sci, 43(10), 519–528.

    Google Scholar 

  • Leupold, M., Hindersin, S., Gust, G., Kerner, M., & Hanelt, D. (2013). Influence of mixing and shear stress on Chlorella vulgaris, Scenedesmus obliquus, and Chlamydomonas reinhardtii. Journal of Applied Phycology, 25, 485–495.

    Article  CAS  Google Scholar 

  • Liu, G., Qiao, L., Zhang, H., Zhao, D., & Su, X. (2014a). The effects of illumination factors on the growth and HCO -3 fixation of microalgae in an experiment culture system. Energy, 78, 40–47.

    Google Scholar 

  • Liu, J., Sun, Z., & Gerken, H. (Eds.). (2014b). Recent Advances in Microalgal Biotechnology. USA: OMICS Group.

    Google Scholar 

  • Makarevičienė, V., Andrulevičiūtė, V., Skorupskaitė, V., & Kasperovičienė, J. (2011). Cultivation of microalgae Chlorella sp. and Scenedesmus sp. as a potentional biofuel feedstock. Environmental Research, Engineering and Management, 3(57), 21–27.

    Google Scholar 

  • Mansa, R. F., Chen, W., Yeo, S., Farm, Y., Bakar, Hafeza Abu, & Sipaut, C. S. (2013). Fermentation study on macroalgae Eucheuma cottonii for bioethanol production via varying acid hydrolysis. Advances in biofuels (pp. 219–239). New York: Springer Science + Business.

    Chapter  Google Scholar 

  • Markou, G., Angelidaki, I., Nerantzis, E., & Georgakakis, D. (2013). Bioethanol production by carbohydrate-enriched biomass of Arthrospira (Spirulina) platensis. Energies, 6, 3937–3950.

    Article  CAS  Google Scholar 

  • Manzoor, A., Khokhar, Z., Hussain, A. Uzma, Ahmad, S. A., Syed, Q., & Baig, S. (2012). Dilute sulfuric acid: A cheap acid for optimization of bagasse pretreatment. Science International (Lahore), 24(1), 41–45.

    CAS  Google Scholar 

  • Medawar, W., Strehaiano, P., & Delia, M. (2003). Yeast growth: Lag phase modeling in alcoholic media. Food Microbiology, 20, 527–532.

    Article  CAS  Google Scholar 

  • Minh, N. P., & Dao, D. T. A. (2013). Investigation of Saccharomyces cerevisiae in fermented mulberry juice. International Journal of Science & Technology Research, 2(11), 329–338.

    Google Scholar 

  • Miranda, J. R., Passarinho, P. C., & Gouveia, L. (2012). Pre-treatment optimization of Scenedesmus obliquus microalga for bioethanol production. Bioresource Technology, 104, 342–348.

    Article  CAS  Google Scholar 

  • Mohr, A., & Raman, S. (2013). Lessons from first generation biofuels and implications of the sustainability appraisal of secondary generation biofuels. Energy Policy, 63, 114–122.

    Article  Google Scholar 

  • Mutripah, S., Meinita, M. D. N., Kang, J., Jeong, G., Susanto, A., Prabowo, R. E., et al. (2014). Bioethanol production from the hydrolysate of Palmaria palmate using sulfuric acid and fermentation with brewer’s yeast. Journal of Applied Phycology, 26, 687–693.

    Article  CAS  Google Scholar 

  • Naik, S. N., Goud, V. V., Rout, P. K., & Dalai, A. K. (2010). Production of first and second generation biofuels: A comprehensive review. Renewable and Sustainable Energy Reviews, 14, 578–597.

    Article  CAS  Google Scholar 

  • Pancha, I., Chokshi, K., Maurya, R., Bhattacharya, S., Bachani, P., & Mishra, S. (2016). Comparative evaluation of chemical and enzymatic saccharification of mixotrophically grown de-oiled microalgal biomass for reducing sugar production. Bioresource Technology, 204, 9–16.

    Article  CAS  Google Scholar 

  • Pienkos, P., & Darzins, A. (2009). The promise and challenges of microalgal-derived biofuels. Biofuels, Bioproducts and Biorefining, 3, 431–440.

    Article  CAS  Google Scholar 

  • Proskurina, S., Junginger, M., Heinimö, J., Tekinel, B., & Vakkilainen, E. (2018). Global biomass trade for energy— Part 2: Production and trade streams of wood pellets, liquid biofuels, charcoal, industrial roundwood and emerging energy biomass. Biofuels, Bioproducts and Biorefining. https://doi.org/10.1002/bbb.1858.

  • da Ribeiro, L. A., Silva, P. P., Mata, T. M., & Martins, A. A. (2014). Prospects of using microalgae for biofuels production: results of a Delphi study. Renewable Energy, 75, 799–804.

    Article  Google Scholar 

  • Salar, R. K., Gahlawat, S. K., Siwach, P., Duhan, J. S. (Eds.). (2013). Biotechnology: Prospects and applications. India: Springer.

    Google Scholar 

  • Sarkar, N., & Aikat, K. (2013). Kinetic study of acid hydrolysis of rice straw. The Scientist World Journal, 2013, 1–8.

    Google Scholar 

  • Saucedo-Luna, J., Castro-Montoya, A. J., Rico, J. L., & Campos-Garcia, J. (2010). Optimization of acid hydrolysis of bagasse from Agave tequilana Weber. Revista Mexicana de Ingeniería Química, 9(1), 91–97.

    CAS  Google Scholar 

  • Scholz, M. J., Riley, M. R., & Cuello, J. L. (2013). Acid hydrolysis and fermentation of microalgal starches to ethanol by the yeast Saccharomyces cerevisiae. Biomass and Bioenergy, 48, 59–65.

    Article  CAS  Google Scholar 

  • Sevda, S. B., & Rodrigues, L. (2011). Fermentative behavior of Saccharomyces strains during guava (Psidium guajava L) must fermentation and optimization of guava wine production. Journal of Food Processing & Technology, 2(4), 1–9.

    Google Scholar 

  • Talukder, M. M. R., Das, P., & Wu, J. C. (2012). Microalgae (Nannochloropsis salina) biomass to lactic acid and lipid. Biochemical Engineering Journal, 68, 109–113.

    Article  CAS  Google Scholar 

  • Thenmozhi, R., & Victoria, J. (2013). Optimization and improvement of ethanol production by the incorporation of organic wastes. Advances in Applied Science Research, 4(5), 119–123.

    CAS  Google Scholar 

  • Tuantet, K., Janssen, M., Temmink, H., Zeeman, G., Wijffels, R. H., & Buisman, C. J. N. (2014). Microalgae growth on concentrated human urine. Journal of Applied Phycology, 26, 287–297.

    Article  CAS  Google Scholar 

  • Wan, C Md, Alam, Asraful, Zhao, X. Q., Zhang, X. Y., Guo, S. L., Ho, S. H., et al. (2015). Current progress and future prospect of microalgal biomass harvest using various flocculation technologies. Bioresource Technology, 184, 251–257.

    Article  CAS  Google Scholar 

  • Wang, H., Ji, C., Bi, S., Zhou, P., Chen, L., & Liu, T. (2014). Joint production of biodiesel and bioethanol from filamentous oleaginous microalgae Tribonema sp. Bioresource Technology, 172, 169–173.

    Google Scholar 

  • Yu, M., Li, J., Chang, S., Du, R., Li, S., Zhang, L., et al. (2014). Optimization of ethanol production from NaOH-pretreated solid state fermented sweet sorghum bagasse. Energies, 7, 4054–4067.

    Article  Google Scholar 

  • Zhou, N., Zhang, Y., Wu, X., Gong, X., & Wang, Q. (2011). Hydrolysis of Chlorella biomass for fermentable sugars in the presence of HCl and MgCl2. Bioresource Technology, 102, 10158–10161.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rahmath Abdulla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Abdulla, R., King, T.K., Jambo, S.A., Faik, A.A. (2020). Microalgae Chlorella as a Sustainable Feedstock for Bioethanol Production. In: Yaser, A. (eds) Green Engineering for Campus Sustainability. Springer, Singapore. https://doi.org/10.1007/978-981-13-7260-5_7

Download citation

Publish with us

Policies and ethics