Skip to main content

Lymphatic Vessel Pumping

  • Chapter
  • First Online:
Book cover Smooth Muscle Spontaneous Activity

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1124))

Abstract

The lymphatic system extends its network of vessels throughout most of the body. Lymphatic vessels carry a fluid rich in proteins, immune cells, and long-chain fatty acids known as lymph. It results from an excess of interstitial tissue fluid collected from the periphery and transported centrally against hydrostatic pressure and protein concentration gradients. Thus, this one-way transport system is a key component in the maintenance of normal interstitial tissue fluid volume, protein concentration and fat metabolism, as well as the mounting of adequate immune responses as lymph passes through lymph nodes. In most cases, lymph is actively propelled via rhythmical phasic contractions through a succession of valve-bordered chambers constituting the lymphatic vessels. This contraction/relaxation cycle, or lymphatic pumping, is initiated in the smooth muscle cells present in the vessel wall by a pacemaker mechanism generating voltage-gated Ca2+ channel-induced action potentials. The action potentials provide the depolarization and Ca2+ influx essential for the engagement of the contractile machinery leading to the phasic constrictions of the lymphatic chambers and forward movement of lymph. The spontaneous lymphatic constrictions can be observed in isolated vessels in the absence of any external stimulation, while they are critically regulated by physical means, such as lymph-induced transmural pressure and flow rate, as well as diffusible molecules released from the lymphatic endothelium, perivascular nerve varicosities, blood and surrounding tissues/cells. In this chapter, we describe the latest findings which are improving our understanding of the mechanisms underlying spontaneous lymphatic pumping and discuss current theories about their physiological initiation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schmid-Schonbein GW. Microlymphatics and lymph flow. Physiol Rev. 1990;70(4):987–1028.

    Article  CAS  PubMed  Google Scholar 

  2. Azzali G, Arcari ML. Ultrastructural and three-dimensional aspects of the lymphatic vessels of the absorbing peripheral lymphatic apparatus in Peyer’s patches of the rabbit. Anat Rec. 2000;258(1):71–9.

    Article  CAS  PubMed  Google Scholar 

  3. Casley-Smith JR. The role of the endothelial intercellular junctions in the functioning of the initial lymphatics. Angiologica. 1972;9(2):106–31.

    CAS  PubMed  Google Scholar 

  4. Baluk P, Fuxe J, Hashizume H, Romano T, Lashnits E, Butz S, et al. Functionally specialized junctions between endothelial cells of lymphatic vessels. J Exp Med. 2007;204(10):2349–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Mendoza E, Schmid-Schonbein GW. A model for mechanics of primary lymphatic valves. J Biomech Eng. 2003;125(3):407–14.

    Article  PubMed  Google Scholar 

  6. Ryan TJ. Structure and function of lymphatics. J Invest Dermatol. 1989;93(2 Suppl):18S–24S.

    Article  CAS  PubMed  Google Scholar 

  7. Schmid-Schonbein GW. The second valve system in lymphatics. Lymphat Res Biol. 2003;1(1):25–9; discussion 9–31

    Article  PubMed  Google Scholar 

  8. Schulte-Merker S, Sabine A, Petrova TV. Lymphatic vascular morphogenesis in development, physiology, and disease. J Cell Biol. 2011;193(4):607–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Leak L, Burke J. Ultrastructural studies on the lymphatic anchoring filaments. J Cell Biol. 1968;36:129–49.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Barrowman JA, Tso P, Kvietys PR, Granger DN. Gastrointestinal lymph and lymphatics. In: Johnston M, editor. Experimental biology of the lymphatic circulation. Amsterdam: Elsevier Science Publishers; 1985.

    Google Scholar 

  11. Casley-Smith JR. Electron microscopical observations on the dilated lymphatics in oedematous regions and their collapse following hyaluronidase administration. Br J Exp Pathol. 1967;48:680–6.

    CAS  Google Scholar 

  12. Yoffey JM, Courtice FC. Lymphatics, lymph and the lymphomyeloid complex. London: Academic Press; 1970.

    Google Scholar 

  13. Horstmann E. Uber die funktionelle Struktur der mesenterialen Lymphgefasse. Morphol Jahrb. 1952;91:483–510.

    Google Scholar 

  14. Florey HW. Observations on the contractility of lacteals. Part I. J Physiol. 1927;62:267–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Aukland K, Reed RK. Interstitial-lymphatic mechanisms in the control of extracellular fluid volume. Physiol Rev. 1993;73(1):1–78.

    Article  CAS  PubMed  Google Scholar 

  16. Grimaldi A, Moriondo A, Sciacca L, Guidali ML, Tettamanti G, Negrini D. Functional arrangement of rat diaphragmatic initial lymphatic network. Am J Physiol Heart Circ Physiol. 2006;291(2):H876–85.

    Article  CAS  PubMed  Google Scholar 

  17. Moriondo A, Mukenge S, Negrini D. Transmural pressure in rat initial subpleural lymphatics during spontaneous or mechanical ventilation. Am J Physiol Heart Circ Physiol. 2005;289(1):H263–9.

    Article  CAS  PubMed  Google Scholar 

  18. Negrini D, Ballard ST, Benoit JN. Contribution of lymphatic myogenic activity and respiratory movements to pleural lymph flow. J Appl Physiol (1985). 1994;76(6):2267–74.

    Article  CAS  Google Scholar 

  19. Negrini D, Del Fabbro M. Subatmospheric pressure in the rabbit pleural lymphatic network. J Physiol. 1999;520(Pt 3):761–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Negrini D, Moriondo A, Mukenge S. Transmural pressure during cardiogenic oscillations in rodent diaphragmatic lymphatic vessels. Lymphat Res Biol. 2004;2(2):69–81.

    Article  PubMed  Google Scholar 

  21. Nicoll PA, Hogan RD. Pressures associated with lymphatic capillary contraction. Microvasc Res. 1978;15(2):257–8.

    Article  CAS  PubMed  Google Scholar 

  22. Higuchi M, Fokin A, Masters TN, Robicsek F, Schmid-Schonbein GW. Transport of colloidal particles in lymphatics and vasculature after subcutaneous injection. J Appl Physiol (1985). 1999;86(4):1381–7.

    Article  CAS  Google Scholar 

  23. Trzewik J, Mallipattu SK, Artmann GM, Delano FA, Schmid-Schonbein GW. Evidence for a second valve system in lymphatics: endothelial microvalves. FASEB J. 2001;15(10):1711–7.

    Article  CAS  PubMed  Google Scholar 

  24. Farnsworth RH, Achen MG, Stacker SA. The evolving role of lymphatics in cancer metastasis. Curr Opin Immunol. 2018;53:64–73.

    Article  CAS  PubMed  Google Scholar 

  25. Al-Kofahi M, Becker F, Gavins FN, Woolard MD, Tsunoda I, Wang Y, et al. IL-1beta reduces tonic contraction of mesenteric lymphatic muscle cells, with the involvement of cycloxygenase-2 and prostaglandin E2. Br J Pharmacol. 2015;172(16):4038–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Aldrich MB, Sevick-Muraca EM. Cytokines are systemic effectors of lymphatic function in acute inflammation. Cytokine. 2013;64(1):362–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chen Y, Rehal S, Roizes S, Zhu HL, Cole WC, von der Weid PY. The pro-inflammatory cytokine TNF-alpha inhibits lymphatic pumping via activation of the NF-kappaB-iNOS signaling pathway. Microcirculation. 2017;24(3):e12364.

    Article  CAS  Google Scholar 

  28. Paniagua D, Jimenez L, Romero C, Vergara I, Calderon A, Benard M, et al. Lymphatic route of transport and pharmacokinetics of Micrurus fulvius (coral snake) venom in sheep. Lymphology. 2012;45(4):144–53.

    CAS  PubMed  Google Scholar 

  29. McLennan DN, Porter CJ, Edwards GA, Heatherington AC, Martin SW, Charman SA. The absorption of darbepoetin alfa occurs predominantly via the lymphatics following subcutaneous administration to sheep. Pharm Res. 2006;23(9):2060–6.

    Article  CAS  PubMed  Google Scholar 

  30. Chikly B. Who discovered the lymphatic system. Lymphology. 1997;30(4):186–93.

    CAS  PubMed  Google Scholar 

  31. Tso P, Balint JA. Formation and transport of chylomicrons by enterocytes to the lymphatics. Am J Phys. 1986;250(6 Pt 1):G715–26.

    CAS  Google Scholar 

  32. Phan CT, Tso P. Intestinal lipid absorption and transport. Front Biosci. 2001;6:D299–319.

    Article  CAS  PubMed  Google Scholar 

  33. Nordskog BK, Phan CT, Nutting DF, Tso P. An examination of the factors affecting intestinal lymphatic transport of dietary lipids. Adv Drug Deliv Rev. 2001;50(1–2):21–44.

    Article  CAS  PubMed  Google Scholar 

  34. Tso P, Nauli A, Lo CM. Enterocyte fatty acid uptake and intestinal fatty acid-binding protein. Biochem Soc Trans. 2004;32(Pt 1):75–8.

    Article  CAS  PubMed  Google Scholar 

  35. Borgstrom B, Laurell CB. Studies of lymph and lymph-proteins during absorption of fat and saline by rats. Acta Physiol Scand. 1953;29(2–3):264–80.

    Article  CAS  PubMed  Google Scholar 

  36. Simmonds WJ. The effect of fluid, electrolyte and food intake on thoracic duct lymph flow in unanaesthetized rats. Aust J Exp Biol Med Sci. 1954;32(3):285–99.

    Article  CAS  PubMed  Google Scholar 

  37. Zweifach BW, Prather JW. Micromanipulation of pressure in terminal lymphatics in the mesentery. Am J Phys. 1975;228(5):1326–35.

    Article  CAS  Google Scholar 

  38. Davis MJ, Rahbar E, Gashev AA, Zawieja DC, Moore JE Jr. Determinants of valve gating in collecting lymphatic vessels from rat mesentery. Am J Physiol Heart Circ Physiol. 2011;301(1):H48–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Chakraborty S, Davis MJ, Muthuchamy M. Emerging trends in the pathophysiology of lymphatic contractile function. Semin Cell Dev Biol. 2015;38:55–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Somlyo AP, Somlyo AV. Signal transduction and regulation in smooth muscle. Nature. 1994;372(6503):231–6.

    Article  CAS  PubMed  Google Scholar 

  41. Pfitzer G. Invited review: regulation of myosin phosphorylation in smooth muscle. J Appl Physiol. 2001;91(1):497–503.

    Article  CAS  PubMed  Google Scholar 

  42. Muthuchamy M, Gashev A, Boswell N, Dawson N, Zawieja D. Molecular and functional analyses of the contractile apparatus in lymphatic muscle. FASEB J. 2003;17(8):920–2.

    Article  CAS  PubMed  Google Scholar 

  43. von der Weid PY, Muthuchamy M. Regulatory mechanisms in lymphatic vessel contraction under normal and inflammatory conditions. Pathophysiology. 2010;17(4):263–76.

    Article  PubMed  Google Scholar 

  44. McHale NG, Roddie IC, Thornbury KD. Nervous modulation of spontaneous contractions in bovine mesenteric lymphatics. J Physiol Lond. 1980;309(461):461–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hanley CA, Elias RM, Johnston MG. Is endothelium necessary for transmural pressure-induced contractions of bovine truncal lymphatics? Microvasc Res. 1992;43(2):134–46.

    Article  CAS  PubMed  Google Scholar 

  46. Allen JM, McHale NG, Rooney BM. Effect of norepinephrine on contractility of isolated mesenteric lymphatics. Am J Phys. 1983;244(4):H479–86.

    CAS  Google Scholar 

  47. Azuma T, Ohhashi T, Sakaguchi M. Electrical activity of lymphatic smooth muscles. Proc Soc Exp Biol Med. 1977;155(2):270–3.

    Article  CAS  PubMed  Google Scholar 

  48. Kirkpatrick CT, McHale NG. Electrical and mechanical activity of isolated lymphatic vessels [proceedings]. J Physiol. 1977;272(1):33P–4P.

    CAS  PubMed  Google Scholar 

  49. Mislin H. Die motorik Lymphgefässe und der Regulation der Lymphherzen. Handbuch der Algemeinen Pathologie. 3/6. Berlin: Springer-Verlag; 1973. p. 219–38.

    Google Scholar 

  50. Mislin H. The lymphangion. In: Foldi M, Casley-Smith R, editors. Lymphangiology. Stuttgart: Schattauer-Verlag; 1983. p. 165–75.

    Google Scholar 

  51. Orlov RS, Borigora RP, Mundriko ES. Investigation of contractile and electrical activity of smooth muscle of lymphatic vessels. In: Bulbring EaS MF, editor. Physiology of smooth muscle. New York: Ranon; 1976. p. 147–52.

    Google Scholar 

  52. Chan AK, Vergnolle N, Hollenberg MD, von der Weid P-Y. Proteinase-activated receptor 2 modulates guinea-pig mesenteric lymphatic vessel pacemaker potential and contractile activity. J Physiol. 2004;560:563–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. van Helden DF. Pacemaker potentials in lymphatic smooth muscle of the guinea-pig mesentery. J Physiol. 1993;471:465–79.

    Article  PubMed  PubMed Central  Google Scholar 

  54. von der Weid PY, van Helden DF. Beta-adrenoceptor-mediated hyperpolarization in lymphatic smooth muscle of guinea pig mesentery. Am J Phys. 1996;270(5 Pt 2):H1687–95.

    Google Scholar 

  55. von der Weid PY, Lee S, Imtiaz MS, Zawieja DC, Davis MJ. Electrophysiological properties of rat mesenteric lymphatic vessels and their regulation by stretch. Lymphat Res Biol. 2014;12(2):66–75.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Hugues GA, Harper AA. The effect of Na+-K+-2Cl− cotransport inhibition and chloride channel blockers on membrane potential and contractility in rat lymphatic smooth muscle in vitro. J Physiol. 1999;518P:127P.

    Google Scholar 

  57. Ohhashi T, Azuma T. Effect of potassium on membrane potential and tension development in bovine mesenteric lymphatics. Microvasc Res. 1982;23(1):93–8.

    Article  CAS  PubMed  Google Scholar 

  58. Ohhashi T, Azuma T, Sakaguchi M. Transmembrane potentials in bovine lymphatic smooth muscle. Proc Soc Exp Biol Med. 1978;159:350–2.

    Article  CAS  PubMed  Google Scholar 

  59. Ward SM, McHale NG, Sanders KM. A method for recording transmembrane potentials in bovine mesenteric lymphatics. Ir J Med Sci. 1989;158:129 (abstract).

    Google Scholar 

  60. Telinius N, Mohanakumar S, Majgaard J, Kim S, Pilegaard H, Pahle E, et al. Human lymphatic vessel contractile activity is inhibited in vitro but not in vivo by the calcium channel blocker nifedipine. J Physiol. 2014;592(21):4697–714.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Zawieja SD, Castorena-Gonzalez JA, Scallan J, Davis MJ. Differences in L-type calcium channel activity partially underlie the regional dichotomy in pumping behavior by murine peripheral and visceral lymphatic vessels. Am J Physiol Heart Circ Physiol. 2018;314:H991–H1010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Scallan JP, Zawieja SD, Castorena-Gonzalez JA, Davis MJ. Lymphatic pumping: mechanics, mechanisms and malfunction. J Physiol. 2016;594:5749–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Allen JM, McHale NG. The effect of known K+-channel blockers on the electrical activity of bovine lymphatic smooth muscle. Pflugers Arch. 1988;411(2):167–72.

    Article  CAS  PubMed  Google Scholar 

  64. Cotton KD, Hollywood MA, McHale NG, Thornbury KD. Outward currents in smooth muscle cells isolated from sheep mesenteric lymphatics. J Physiol Lond. 1997;503:1–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Cotton KD, Hollywood MA, McHale NG, Thornbury KD. Ca2+ current and Ca(2+)-activated chloride current in isolated smooth muscle cells of the sheep urethra. J Physiol Lond. 1997;505:121–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Toland HM, McCloskey KD, Thornbury KD, McHale NG, Hollywood MA. Ca(2+)-activated Cl(−) current in sheep lymphatic smooth muscle. Am J Phys Cell Physiol. 2000;279(5):C1327–35.

    Article  CAS  Google Scholar 

  67. von der Weid P-Y. ATP-sensitive K+ channels in smooth muscle cells of guinea-pig mesenteric lymphatics: role in nitric oxide and beta-adrenoceptor agonist-induced hyperpolarizations. Br J Pharmacol. 1998;125(1):17–22.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Telinius N, Kim S, Pilegaard H, Pahle E, Nielsen J, Hjortdal V, et al. The contribution of K(+) channels to human thoracic duct contractility. Am J Physiol Heart Circ Physiol. 2014;307(1):H33–43.

    Article  CAS  PubMed  Google Scholar 

  69. von der Weid P-Y, Rahman M, Imtiaz MS, van Helden DF. Spontaneous transient depolarizations in lymphatic vessels of the guinea pig mesentery: pharmacology and implication for spontaneous contractility. Am J Physiol Heart Circ Physiol. 2008;295(5):H1989–2000.

    Article  PubMed  CAS  Google Scholar 

  70. Ward SM, Sanders KM, Thornbury KD, McHale NG. Spontaneous electrical activity in isolated bovine lymphatics recorded by intracellular microelectrodes. J Physiol. 1991;438:168P.

    Google Scholar 

  71. Beckett EA, Hollywood MA, Thornbury KD, McHale NG. Spontaneous electrical activity in sheep mesenteric lymphatics. Lymphat Res Biol. 2007;5(1):29–43.

    Article  CAS  PubMed  Google Scholar 

  72. Telinius N, Majgaard J, Kim S, Katballe N, Pahle E, Nielsen J, et al. Voltage-gated sodium channels contribute to action potentials and spontaneous contractility in isolated human lymphatic vessels. J Physiol. 2015;593(14):3109–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. van Helden DF, von der Weid P-Y, Crowe MJ. Electrophysiology of lymphatic smooth muscle. In: Bert J, Laine GA, McHale NG, Reed R, Winlove P, editors. Interstitium, connective tissue, and lymphatics. London: Portland Press; 1995. p. 221–36.

    Google Scholar 

  74. Atchison DJ, Johnston MG. Role of extra- and intracellular Ca2+ in the lymphatic myogenic response. Am J Phys. 1997;272:R326–R33.

    CAS  Google Scholar 

  75. McHale NG, Allen JM, Iggulden HL. Mechanism of alpha-adrenergic excitation in bovine lymphatic smooth muscle. Am J Phys. 1987;252(5 Pt 2):H873–8.

    CAS  Google Scholar 

  76. Hollywood MA, Cotton KD, Thorbury KD, McHale NG. Isolated sheep mesenteric lymphatic smooth muscle possess both T- and L-type calcium currents. J Physiol. 1997;501P:P109–10.

    Google Scholar 

  77. Lee S, Roizes S, von der Weid PY. Distinct roles of L- and T-type voltage-dependent Ca2+ channels in regulation of lymphatic vessel contractile activity. J Physiol. 2014;592(Pt 24):5409–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Hollywood MA, Cotton KD, Thorbury KD, McHale NG. Tetrodotoxin-sensitive sodium current in sheep lymphatic smooth muscle. J Physiol. 1997;503:13–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. McCloskey KD, Toland HM, Hollywood MA, Thorbury KD, McHale NG. Hyperpolarization-activated inward current in isolated sheep mesenteric lymphatic smooth muscle. J Physiol. 1999;521:201–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Negrini D, Marcozzi C, Solari E, Bossi E, Cinquetti R, Reguzzoni M, et al. Hyperpolarization-activated cyclic nucleotide-gated channels in peripheral diaphragmatic lymphatics. Am J Physiol Heart Circ Physiol. 2016;311(4):H892–903.

    Article  PubMed  Google Scholar 

  81. Fox JL, von der Weid PY. Effects of histamine on the contractile and electrical activity in isolated lymphatic vessels of the guinea-pig mesentery. Br J Pharmacol. 2002;136(8):1210–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. van Helden DF, von der Weid P-Y, Crowe MJ. Intracellular Ca2+ release: a basis for electrical pacemaking in lymphatic smooth muscle. In: Tomita T, Bolton TB, editors. Smooth muscle excitation. London: Academic Press; 1996. p. 355–73.

    Google Scholar 

  83. von der Weid P-Y, Zhao J, van Helden DF. Nitric oxide decreases pacemaker activity in lymphatic vessels of guinea pig mesentery. Am J Phys. 2001;280(6):H2707–16.

    Google Scholar 

  84. Imtiaz MS, Zhao J, Hosaka K, von der Weid PY, Crowe M, van Helden DF. Pacemaking through Ca2+ stores interacting as coupled oscillators via membrane depolarization. Biophys J. 2007;92(11):3843–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Lamb FS, Barna TJ. Chloride ion currents contribute functionally to norepinephrine-induced vascular contraction. Am J Phys. 1998;275:H151–60.

    CAS  Google Scholar 

  86. Yuan XJ. Role of calcium-activated chloride current in regulating pulmonary vasomotor tone. Am J Phys. 1997;272:L959–68.

    CAS  Google Scholar 

  87. Gui P, Zawieja SD, Li M, Bulley S, Jaggar JH, Rock JR, et al. The Ca2+-activated Cl- Channel TMEM16A(ANO1) modulates, but is not required for, pacemaking in mouse lymphatic vessels. FASEB J. 2016;30:726.3.

    Google Scholar 

  88. McHale NG, Roddie IC. The effect of transmural pressure on pumping activity in isolated bovine lymphatic vessels. J Physiol Lond. 1976;261(2):255–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Benoit JN, Zawieja DC, Goodman AH, Granger HJ. Characterization of intact mesenteric lymphatic pump and its responsiveness to acute edemagenic stress. Am J Phys. 1989;257:H2059–69.

    CAS  Google Scholar 

  90. van Helden DF. Spontaneous and noradrenaline-induced transient depolarizations in the smooth muscle of guinea-pig mesenteric vein. J Physiol. 1991;437(511):511–41.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Munn LL. Mechanobiology of lymphatic contractions. Semin Cell Dev Biol. 2015;38:67–74.

    Article  CAS  PubMed  Google Scholar 

  92. Ferrusi I, Zhao J, van Helden DF, von der Weid P-Y. Cyclopiazonic acid decreases spontaneous transient depolarizations in guinea pig mesenteric lymphatic vessels in endothelium-dependent and -independent manners. Am J Phys. 2004;286(6):H2287–95.

    CAS  Google Scholar 

  93. Atchison DJ, Rodela H, Johnston MG. Intracellular calcium stores modulation in lymph vessels depends on wall stretch. Can J Physiol Pharmacol. 1998;76(4):367–72.

    Article  CAS  PubMed  Google Scholar 

  94. Imtiaz MS, von der Weid PY, van Helden DF. Synchronization of Ca2+ oscillations: a coupled oscillator-based mechanism in smooth muscle. FEBS J. 2010;277(2):278–85.

    Article  CAS  PubMed  Google Scholar 

  95. Crowe MJ, von der Weid PY, Brock JA, Van Helden DF. Co-ordination of contractile activity in guinea-pig mesenteric lymphatics. J Physiol. 1997;500(Pt 1):235–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Zawieja DC, Davis KL, Schuster R, Hinds WM, Granger HJ. Distribution, propagation, and coordination of contractile activity in lymphatics. Am J Physiol Heart Circ Physiol. 1993;264(4 Pt 2):H1283–H91.

    Article  CAS  Google Scholar 

  97. McHale NG, Meharg MK. Co-ordination of pumping in isolated bovine lymphatic vessels. J Physiol. 1992;450:503–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Hirano Y, Fozzard HA, January CT. Characteristics of L- and T-type Ca2+ currents in canine cardiac Purkinje cells. Am J Phys. 1989;256(5 Pt 2):H1478–92.

    CAS  Google Scholar 

  99. Bradley JE, Anderson UA, Woolsey SM, Thornbury KD, McHale NG, Hollywood MA. Characterization of T-type calcium current and its contribution to electrical activity in rabbit urethra. Am J Phys Cell Physiol. 2004;286(5):C1078–88.

    Article  CAS  Google Scholar 

  100. Yanai Y, Hashitani H, Kubota Y, Sasaki S, Kohri K, Suzuki H. The role of Ni(2+)-sensitive T-type Ca(2+) channels in the regulation of spontaneous excitation in detrusor smooth muscles of the guinea-pig bladder. BJU Int. 2006;97(1):182–9.

    Article  CAS  PubMed  Google Scholar 

  101. Huser J, Blatter LA, Lipsius SL. Intracellular Ca2+ release contributes to automaticity in cat atrial pacemaker cells. J Physiol. 2000;524(Pt 2):415–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Zhou Z, Lipsius SL. T-type calcium current in latent pacemaker cells isolated from cat right atrium. J Mol Cell Cardiol. 1994;26(9):1211–9.

    Article  CAS  PubMed  Google Scholar 

  103. Fleig A, Penner R. The TRPM ion channel subfamily: molecular, biophysical and functional features. Trends Pharmacol Sci. 2004;25(12):633–9.

    Article  CAS  PubMed  Google Scholar 

  104. Harteneck C. Function and pharmacology of TRPM cation channels. Naunyn Schmiedeberg’s Arch Pharmacol. 2005;371(4):307–14.

    Article  CAS  Google Scholar 

  105. Nilius B, Mahieu F, Prenen J, Janssens A, Owsianik G, Vennekens R, et al. The Ca2+-activated cation channel TRPM4 is regulated by phosphatidylinositol 4,5-biphosphate. EMBO J. 2006;25(3):467–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Kim BJ, Lim HH, Yang DK, Jun JY, Chang IY, Park CS, et al. Melastatin-type transient receptor potential channel 7 is required for intestinal pacemaking activity. Gastroenterology. 2005;129(5):1504–17.

    Article  CAS  PubMed  Google Scholar 

  107. Kim BJ, So I, Kim KW. The relationship of TRP channels to the pacemaker activity of interstitial cells of Cajal in the gastrointestinal tract. J Smooth Muscle Res. 2006;42(1):1–7.

    Article  PubMed  Google Scholar 

  108. Sah R, Mesirca P, Van den Boogert M, Rosen J, Mably J, Mangoni ME, et al. Ion channel-kinase TRPM7 is required for maintaining cardiac automaticity. Proc Natl Acad Sci U S A. 2013;110(32):E3037–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Shi J, Mori E, Mori Y, Mori M, Li J, Ito Y, et al. Multiple regulation by calcium of murine homologues of transient receptor potential proteins TRPC6 and TRPC7 expressed in HEK293 cells. J Physiol. 2004;561(Pt 2):415–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Welsh DG, Morielli AD, Nelson MT, Brayden JE. Transient receptor potential channels regulate myogenic tone of resistance arteries. Circ Res. 2002;90(3):248–50.

    Article  CAS  PubMed  Google Scholar 

  111. Launay P, Fleig A, Perraud AL, Scharenberg AM, Penner R, Kinet JP. TRPM4 is a Ca2+-activated nonselective cation channel mediating cell membrane depolarization. Cell. 2002;109(3):397–407.

    Article  CAS  PubMed  Google Scholar 

  112. Bridenbaugh EA, Wang W, von der Weid P-Y, Zawieja DC. Detection of TRPV channel expression in rat lymphatic vessels. In: Andrade M, editor. Progress in lymphology XX. Salvador: Icone; 2005. p. 234–5.

    Google Scholar 

  113. Harwood CA, Mortimer PS. Causes and clinical manifestations of lymphatic failure. Clin Dermatol. 1995;13(5):459–71.

    Article  CAS  PubMed  Google Scholar 

  114. Rockson SG. Lymphedema. Am J Med. 2001;110(4):288–95.

    Article  CAS  PubMed  Google Scholar 

  115. Szuba A, Rockson SG. Lymphedema: classification, diagnosis and therapy. Vasc Med. 1998;3(2):145–56.

    Article  CAS  PubMed  Google Scholar 

  116. Browse NL, Stewart G. Lymphoedema: pathophysiology and classification. J Cardiovasc Surg. 1985;26(2):91–106.

    CAS  Google Scholar 

  117. Olszewski WL. Continuing discovery of the lymphatic system in the twenty-first century: a brief overview of the past. Lymphology. 2002;35(3):99–104.

    CAS  PubMed  Google Scholar 

  118. Piller NB. Lymphoedema, macrophages and benzopyrones. Lymphology. 1980;13(3):109–19.

    CAS  PubMed  Google Scholar 

  119. Kriederman BM, Myloyde TL, Witte MH, Dagenais SL, Witte CL, Rennels M, et al. FOXC2 haploinsufficient mice are a model for human autosomal dominant lymphedema-distichiasis syndrome. Hum Mol Genet. 2003;12(10):1179–85.

    Article  CAS  PubMed  Google Scholar 

  120. Petrova TV, Karpanen T, Norrmen C, Mellor R, Tamakoshi T, Finegold D, et al. Defective valves and abnormal mural cell recruitment underlie lymphatic vascular failure in lymphedema distichiasis. Nat Med. 2004;10(9):974–81.

    Article  CAS  PubMed  Google Scholar 

  121. Ferrell RE, Levinson KL, Esman JH, Kimak MA, Lawrence EC, Barmada MM, et al. Hereditary lymphedema: evidence for linkage and genetic heterogeneity. Hum Mol Genet. 1998;7(13):2073–8.

    Article  CAS  PubMed  Google Scholar 

  122. Irrthum A, Karkkainen MJ, Devriendt K, Alitalo K, Vikkula M. Congenital hereditary lymphedema caused by a mutation that inactivates VEGFR3 tyrosine kinase. Am J Hum Genet. 2000;67(2):295–301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Segerstrom K, Bjerle P, Graffman S, Nystrom A. Factors that influence the incidence of brachial oedema after treatment of breast cancer. Scand J Plast Reconstr Surg Hand Surg. 1992;26(2):223–7.

    Article  CAS  PubMed  Google Scholar 

  124. Modi S, Stanton AW, Svensson WE, Peters AM, Mortimer PS, Levick JR. Human lymphatic pumping measured in healthy and lymphoedematous arms by lymphatic congestion lymphoscintigraphy. J Physiol. 2007;583(Pt 1):271–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Taylor MJ. A new insight into the pathogenesis of filarial disease. Curr Mol Med. 2002;2(3):299–302.

    Article  CAS  PubMed  Google Scholar 

  126. Taylor MJ, Hoerauf A. Wolbachia bacteria of filarial nematodes. Parasitol Today. 1999;15(11):437–42.

    Article  CAS  PubMed  Google Scholar 

  127. Taylor MJ, Hoerauf A. A new approach to the treatment of filariasis. Curr Opin Infect Dis. 2001;14(6):727–31.

    Article  CAS  PubMed  Google Scholar 

  128. Taylor MJ, Cross HF, Bilo K. Inflammatory responses induced by the filarial nematode Brugia malayi are mediated by lipopolysaccharide-like activity from endosymbiotic Wolbachia bacteria. J Exp Med. 2000;191(8):1429–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Pfarr KM, Debrah AY, Specht S, Hoerauf A. Filariasis and lymphoedema. Parasite Immunol. 2009;31(11):664–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Kaiser L, Mupanomunda M, Williams JF. Brugia pahangi-induced contractility of bovine mesenteric lymphatics studied in vitro: a role for filarial factors in the development of lymphedema? Am J Trop Med Hyg. 1996;54(4):386–90.

    Article  CAS  PubMed  Google Scholar 

  131. Chakraborty S, Gurusamy M, Zawieja DC, Muthuchamy M. Lymphatic filariasis: perspectives on lymphatic remodeling and contractile dysfunction in filarial disease pathogenesis. Microcirculation. 2013;20(5):349–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. von der Weid PY. Review article: lymphatic vessel pumping and inflammation—the role of spontaneous constrictions and underlying electrical pacemaker potentials. Aliment Pharmacol Ther. 2001;15(8):1115–29.

    Article  PubMed  Google Scholar 

  133. Davis MJ, Lane MM, Davis AM, Durtschi D, Zawieja DC, Muthuchamy M, et al. Modulation of lymphatic muscle contractility by the neuropeptide substance P. Am J Physiol Heart Circ Physiol. 2008;295(2):H587–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Hosaka K, Rayner SE, von der Weid PY, Zhao J, Imtiaz MS, van Helden DF. Calcitonin gene-related peptide activates different signaling pathways in mesenteric lymphatics of guinea pigs. Am J Physiol Heart Circ Physiol. 2006;290(2):H813–22.

    Article  CAS  PubMed  Google Scholar 

  135. Rayner SE, van Helden DF. Evidence that the substance P-induced enhancement of pacemaking in lymphatics of the guinea-pig mesentery occurs through endothelial release of thromboxane A2. Br J Pharmacol. 1997;121(8):1589–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. von der Weid PY, Rehal S, Dyrda P, Lee S, Mathias R, Rahman M, et al. Mechanisms of VIP-induced inhibition of the lymphatic vessel pump. J Physiol. 2012;590(Pt 11):2677–91.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. Ferguson MK, DeFilippi VJ, Reeder LB. Characterization of contractile properties of porcine mesenteric and tracheobronchial lymphatic smooth muscle. Lymphology. 1994;27(2):71–81.

    CAS  PubMed  Google Scholar 

  138. Gashev AA, Davis MJ, Zawieja DC. Inhibition of the active lymph pump by flow in rat mesenteric lymphatics and thoracic duct. J Physiol. 2002;540(Pt 3):1023–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Gasheva OY, Zawieja DC, Gashev AA. Contraction-initiated NO-dependent lymphatic relaxation: a self-regulatory mechanism in rat thoracic duct. J Physiol. 2006;575(Pt 3):821–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Mizuno R, Koller A, Kaley G. Regulation of the vasomotor activity of lymph microvessels by nitric oxide and prostaglandins. Am J Phys. 1998;274(3 Pt 2):R790–6.

    CAS  Google Scholar 

  141. Rehal S, Blanckaert P, Roizes S, von der Weid PY. Characterization of biosynthesis and modes of action of prostaglandin E2 and prostacyclin in guinea pig mesenteric lymphatic vessels. Br J Pharmacol. 2009;158(8):1961–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Elias RM, Johnston MG. Modulation of fluid pumping in isolated bovine mesenteric lymphatics by a thromboxane/endoperoxide analogue. Prostaglandins. 1988;36(1):97–106.

    Article  CAS  PubMed  Google Scholar 

  143. Johnston MG, Kanalec A, Gordon JL. Effects of arachidonic acid and its cyclo-oxygenase and lipoxygenase products on lymphatic vessel contractility in vitro. Prostaglandins. 1983;25(1):85–98.

    Article  CAS  PubMed  Google Scholar 

  144. Johnston MG, Gordon JL. Regulation of lymphatic contractility by arachidonate metabolites. Nature. 1981;293(5830):294–7.

    Article  CAS  PubMed  Google Scholar 

  145. Johnston MG, Feuer C. Suppression of lymphatic vessel contractility with inhibitors of arachidonic acid metabolism. J Pharmacol Exp Ther. 1983;226(2):603–7.

    CAS  PubMed  Google Scholar 

  146. Plaku KJ, von der Weid PY. Mast cell degranulation alters lymphatic contractile activity through action of histamine. Microcirculation. 2006;13(3):219–27.

    Article  CAS  PubMed  Google Scholar 

  147. Mathias R, von der Weid PY. Involvement of the NO-cGMP-KATP channel pathway in the mesenteric lymphatic pump dysfunction observed in the guinea pig model of TNBS-induced ileitis. Am J Physiol Gastrointest Liver Physiol. 2013;304:G623–34.

    Article  CAS  PubMed  Google Scholar 

  148. Wu TF, Carati CJ, Macnaughton WK, von der Weid PY. Contractile activity of lymphatic vessels is altered in the TNBS model of guinea pig ileitis. Am J Physiol Gastrointest Liver Physiol. 2006;291(4):G566–74.

    Article  CAS  PubMed  Google Scholar 

  149. Liao S, Cheng G, Conner DA, Huang Y, Kucherlapati RS, Munn LL, et al. Impaired lymphatic contraction associated with immunosuppression. Proc Natl Acad Sci U S A. 2011;108(46):18784–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Gashev AA. Physiologic aspects of lymphatic contractile function: current perspectives. Ann N Y Acad Sci. 2002;979:178–87; discussion 88–96.

    Article  PubMed  Google Scholar 

  151. Hanley CA, Elias RM, Movat HZ, Johnston MG. Suppression of fluid pumping in isolated bovine mesenteric lymphatics by interleukin-1: interaction with prostaglandin E2. Microvasc Res. 1989;37(2):218–29.

    Article  CAS  PubMed  Google Scholar 

  152. Zawieja SD, Wang W, Wu X, Nepiyushchikh ZV, Zawieja DC, Muthuchamy M. Impairments in the intrinsic contractility of mesenteric collecting lymphatics in a rat model of metabolic syndrome. Am J Physiol Heart Circ Physiol. 2012;302(3):H643–53.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre-Yves von der Weid .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

von der Weid, PY. (2019). Lymphatic Vessel Pumping. In: Hashitani, H., Lang, R. (eds) Smooth Muscle Spontaneous Activity. Advances in Experimental Medicine and Biology, vol 1124. Springer, Singapore. https://doi.org/10.1007/978-981-13-5895-1_15

Download citation

Publish with us

Policies and ethics