Skip to main content

Fever in the Neuro-ICU

  • Chapter
  • First Online:
  • 1266 Accesses

Abstract

Fever is defined by elevation in core body temperature above the daily range for an individual. It is a characteristic feature of a number of noninfectious diseases such as inflammatory, autoimmune, and autoregulatory disorder, as well as numerous infectious conditions. Fever is a recognized disorder in the setting of acute brain and nervous system disorders. The pathogenesis of fever, etiology, evaluation, and management are discussed in this chapter.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Lee-Chiong TL Jr, Stitt JT. Disorders of temperature regulation. Compr Ther. 1995;21:697–704.

    PubMed  Google Scholar 

  2. Mortola JP. Gender and the circadian pattern of body temperature in normoxia and hypoxia. Respir Physiol Neurobiol. 2017;245:4–12.

    Article  Google Scholar 

  3. Mackowiak PA, Wasserman SS, Levine MM. A critical appraisal of 98.6 degrees F, the upper limit of the normal body temperature, and other legacies of Carl Reinhold August Wunderlich. JAMA. 1992;268:1578–80.

    Article  CAS  Google Scholar 

  4. Niven DJ, Gaudet JE, Laupland KB, et al. Accuracy of peripheral thermometers for estimating temperature: a systematic review and meta-analysis. Ann Intern Med. 2015;163:768–77.

    Article  Google Scholar 

  5. Horowitz HW. Fever of unknown origin or fever of too many origins? N Engl J Med. 2013;368:197–9.

    Article  CAS  Google Scholar 

  6. de Kleijn EM, Vandenbroucke JP, van der Meer JW. Fever of unknown origin (FUO). I A. prospective multicenter study of 167 patients with FUO, using fixed epidemiologic entry criteria. The Netherlands FUO Study Group. Medicine (Baltimore). 1997;76:392–400.

    Article  Google Scholar 

  7. Dinarello CA. Infection, fever, and exogenous and endogenous pyrogens: some concepts have changed. J Endotoxin Res. 2004;10:201–22.

    CAS  PubMed  Google Scholar 

  8. Schlievert PM, Shands KN, Dan BB, Schmid GP, Nishimura RD. Identification and characterization of an exotoxin from Staphylococcus aureus associated with toxic-shock syndrome. J Infect Dis. 1981;143:509–16.

    Article  CAS  Google Scholar 

  9. Parsonnet J, Gillis ZA, Pier GB. Induction of interleukin-1 by strains of Staphylococcus aureus from patients with nonmenstrual toxic shock syndrome. J Infect Dis. 1986;154:55–63.

    Article  CAS  Google Scholar 

  10. Albrecht RF, Wass CT, Lanier WL. Occurrence of potentially detrimental temperature alterations in hospitalized patients at risk for brain injury. Mayo Clin Proc. 1998;73:629–35.

    Article  Google Scholar 

  11. Ginsberg MD, Busto R. Combating hyperthermia in acute stroke: a significant clinical concern. Stroke. 1998;29:529–34.

    Article  CAS  Google Scholar 

  12. Thompson HJ, Pinto-Martin J, Bullock MR. Neurogenic fever after traumatic brain injury: an epidemiological study. J Neurol Neurosurg Psychiatry. 2003;74:614–9.

    Article  CAS  Google Scholar 

  13. Thompson HJ, Tkacs NC, Saatman KE, et al. Hyperthermia following traumatic brain injury: a critical evaluation. Neurobiol Dis. 2003;12:163–73.

    Article  Google Scholar 

  14. Kinoshita K, Chatzipanteli K, Vitarbo E, et al. Interleukin-1beta messenger ribonucleic acid and protein levels after fluid-percussion brain injury in rats: importance of injury severity and brain temperature. Neurosurgery. 2002;51:195–203; discussion 203.

    Article  Google Scholar 

  15. Dietrich WD, Chatzipanteli K, Vitarbo E, et al. The role of inflammatory processes in the pathophysiology and treatment of brain and spinal cord trauma. Acta Neurochir Suppl. 2004;89:69–74.

    CAS  PubMed  Google Scholar 

  16. Suehiro E, Fujisawa H, Ito H, et al. Brain temperature modifies glutamate neurotoxicity in vivo. J Neurotrauma. 1999;16:285–97.

    Article  CAS  Google Scholar 

  17. Takagi K, Ginsberg MD, Globus MY, et al. Effect of hyperthermia on glutamate release in ischemic penumbra after middle cerebral artery occlusion in rats. Am J Phys. 1994;267:H1770–6.

    CAS  Google Scholar 

  18. Morimoto T, Ginsberg MD, Dietrich WD, et al. Hyperthermia enhances spectrin breakdown in transient focal cerebral ischemia. Brain Res. 1997;746:43–51.

    Article  CAS  Google Scholar 

  19. Kim Y, Truettner J, Zhao W, et al. The influence of delayed postischemic hyperthermia following transient focal ischemia: alterations of gene expression. J Neurol Sci. 1998;159:1–10.

    Article  CAS  Google Scholar 

  20. Sharma HS, Hoopes PJ. Hyperthermia induced pathophysiology of the central nervous system. Int J Hyperth. 2003;19:325–54.

    Article  CAS  Google Scholar 

  21. Rossi S, Zanier ER, Mauri I, et al. Brain temperature, body core temperature, and intracranial pressure in acute cerebral damage. J Neurol Neurosurg Psychiatry. 2001;71:448–54.

    Article  CAS  Google Scholar 

  22. Laver S, Farrow C, Turner D, Nolan J. Mode of death after admission to an intensive care unit following cardiac arrest. Intensive Care Med. 2004;30:2126–8.

    Article  Google Scholar 

  23. Hovdenes J, Laake JH, Aaberge L, Haugaa H, Bugge JF. Therapeutic hypothermia after out-of-hospital cardiac arrest: experiences with patients treated with percutaneous coronary intervention and cardiogenic shock. Acta Anaesthesiol Scand. 2007;51:137–42.

    Article  CAS  Google Scholar 

  24. Skulec R, Kovarnik T, Dostalova G, Kolar J, Linhart A. Induction of mild hypothermia in cardiac arrest survivors presenting with cardiogenic shock syndrome. Acta Anaesthesiol Scand. 2008;52:188–94.

    Article  CAS  Google Scholar 

  25. Zeiner A, Holzer M, Sterz F, et al. Hyperthermia after cardiac arrest is associated with an unfavorable neurologic outcome. Arch Intern Med. 2001;161:2007–12.

    Article  CAS  Google Scholar 

  26. Gebhardt K, Guyette FX, Doshi AA, et al. Prevalence and effect of fever on outcome following resuscitation from cardiac arrest. Resuscitation. 2013;84:1062–7.

    Article  Google Scholar 

  27. Grossestreuer AV, Gaieski DF, Donnino MW, Wiebe DJ, Abella BS. Magnitude of temperature elevation is associated with neurologic and survival outcomes in resuscitated cardiac arrest patients with postrewarming pyrexia. J Crit Care. 2017;38:78–83.

    Article  Google Scholar 

  28. Writing Group Members, Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, et al. Heart disease and stroke statistics-2016 update: a report from the American Heart Association. Circulation. 2016;133:e38–360.

    Google Scholar 

  29. Hypothermia after Cardiac Arrest Study Group. Mild therapeutic hypothermia to improve the neurologic outcome after cardiac arrest. N Engl J Med. 2002;346:549–56.

    Article  Google Scholar 

  30. Polderman KH. Application of therapeutic hypothermia in the ICU: opportunities and pitfalls of a promising treatment modality, part 1: indications and evidence. Intensive Care Med. 2004;30:556–75.

    Article  Google Scholar 

  31. Kliegel A, Losert H, Sterz F, et al. Cold simple intravenous infusions preceding special endovascular cooling for faster induction of mild hypothermia after cardiac arrest--a feasibility study. Resuscitation. 2005;64:347–51.

    Article  Google Scholar 

  32. Al-Senani FM, Graffagnino C, Grotta JC, et al. A prospective, multicenter pilot study to evaluate the feasibility and safety of using the CoolGard System and Icy catheter following cardiac arrest. Resuscitation. 2004;62:143–50.

    Article  Google Scholar 

  33. Wang Y, Lim LL, Levi C, et al. Influence of admission body temperature on stroke mortality. Stroke. 2000;31:404–9.

    Article  CAS  Google Scholar 

  34. Schwarz S, Hafner K, Aschoff A, et al. Incidence and prognostic significance of fever following intracerebral hemorrhage. Neurology. 2000;54:354–61.

    Article  CAS  Google Scholar 

  35. Frosini M, Sesti C, Valoti M, et al. Rectal temperature and prostaglandin E2 increase in cerebrospinal fluid of conscious rabbits after intracerebroventricular injection of hemoglobin. Exp Brain Res. 1999;126:252–8.

    Article  CAS  Google Scholar 

  36. Hemmen TM, Raman R, Guluma KZ, Meyer BC, Gomes JA, Cruz-Flores S, et al. Intravenous thrombolysis plus hypothermia for acute treatment of ischemic stroke (ICTuS-L): final results. Stroke. 2010;41(10):2265–70.

    Article  Google Scholar 

  37. Guluma KZ, Oh H, Yu SW, Meyer BC, Rapp K, Lyden PD. Effect of endovascular hypothermia on acute ischemic edema: morphometric analysis of the ICTuS trial. Neurocrit Care. 2008;8(1):42–7.

    Article  Google Scholar 

  38. Krassioukov AV, Karlsson AK, Wecht JM, Wuermser LA, Mathias CJ, Marino RJ, et al. Assessment of autonomic dysfunction following spinal cord injury: rationale for additions to international standards for neurological assessment. J Rehabil Res Dev. 2007;44:103–12.

    Article  Google Scholar 

  39. Beraldo PS, Neves EG, Alves CM, et al. Pyrexia in hospitalised spinal cord injury patients. Paraplegia. 1993;31:186–91.

    CAS  PubMed  Google Scholar 

  40. Dietrich WD, Bramlett HM. Hyperthermia and central nervous system injury. Prog Brain Res. 2007;162:201–17.

    Article  CAS  Google Scholar 

  41. Montgomerie JZ. Infections in patients with spinal cord injuries. Clin Infect Dis. 1997;25:1285–90.

    Article  CAS  Google Scholar 

  42. Sugarman B, Brown D, Musher D. Fever and infection in spinal cord injury patients. JAMA. 1982;248:66–70.

    Article  CAS  Google Scholar 

  43. Commichau C, Scarmeas N, Mayer SA. Risk factors for fever in the neurologic intensive care unit. Neurology. 2003;60:837–41.

    Article  Google Scholar 

  44. Weir B, Disney L, Grace M, et al. Daily trends in white blood cell count and temperature after subarachnoid hemorrhage from aneurysm. Neurosurgery. 1989;25:161–5.

    Article  CAS  Google Scholar 

  45. Simpson RK Jr, Fischer DK, Ehni BL. Neurogenic hyperthermia in subarachnoid hemorrhage. South Med J. 1989;82:1577–8.

    Article  Google Scholar 

  46. Oliveira-Filho J, Ezzeddine MA, Segal AZ, et al. Fever in subarachnoid hemorrhage: relationship to vasospasm and outcome. Neurology. 2001;56:1299–304.

    Article  CAS  Google Scholar 

  47. Dorhout Mees SM, Luitse MJ, van den Bergh WM, et al. Fever after aneurysmal subarachnoid hemorrhage: relation with extent of hydrocephalus and amount of extravasated blood. Stroke. 2008;39:2141–3.

    Article  Google Scholar 

  48. Badjatia N, Fernandez L, Fernandez A, et al. Impact of therapeutic normothermia on outcome after subarachnoid hemorrhage. Paper presented at: 60th Annual Meeting of the American Academy of Neurology, April 16, 2008, Chicago.

    Google Scholar 

  49. Badjatia N, Fernandez L, Schmidt JM, Lee K, Claassen J, Connolly ES, Mayer SA. Impact of induced normothermia on outcome after subarachnoid hemorrhage: a case-control study. Neurosurgery. 2010;66(4):696–700; discussion 700–1.

    Article  Google Scholar 

  50. Fernandez A, Schmidt JM, Claassen J, et al. Fever after subarachnoid hemorrhage: risk factors and impact on outcome. Neurology. 2007;68:1013–9.

    Article  CAS  Google Scholar 

  51. Andrews PJ, Sleeman DH, Statham PF, et al. Predicting recovery in patients suffering from traumatic brain injury by using admission variables and physiological data: a comparison between decision tree analysis and logistic regression. J Neurosurg. 2002;97:326–36.

    Article  Google Scholar 

  52. Konstantinidis A, Inaba K, Dubose J, et al. The impact of nontherapeutic hypothermia on outcomes after severe traumatic brain injury. J Trauma. 2011;71:1627–31.

    PubMed  Google Scholar 

  53. Andrews PJ1, Sinclair HL, Rodriguez A, et al. Eurotherm3235 trial collaborators. Hypothermia for intracranial hypertension after traumatic brain injury. N Engl J Med. 2015;373(25):2403–12.

    Article  CAS  Google Scholar 

  54. Cairns CJ, Andrews PJ. Management of hyperthermia in traumatic brain injury. Curr Opin Crit Care. 2002;8:106–10.

    Article  Google Scholar 

  55. Stocchetti N, Rossi S, Zanier ER, et al. Pyrexia in head-injured patients admitted to intensive care. Intensive Care Med. 2002;28:1555–62.

    Article  Google Scholar 

  56. Yokobori S, Frantzen J, Bullock R, Gajavelli S, Burks S, Bramlett H, Dietrich WD. The use of hypothermia therapy in traumatic ischemic/reperfusional brain injury: review of the literatures. Ther Hypothermia Temp Manag. 2011;1:185–92.

    Article  Google Scholar 

  57. Yokobori S, Gajavelli S, Mondello S, Mo-Seaney J, Bramlett HM, Dietrich WD, Bullock MR. Neuroprotective effect of preoperatively induced mild hypothermia as determined by biomarkers and histopathological estimation in a rat subdural hematoma decompression model. J Neurosurg. 2013;118:370–80.

    Article  CAS  Google Scholar 

  58. Vane JR. Inhibition of prostaglandin synthesis as a mechanisms of action for the aspirin-like drugs. Nature. 1971;231:232–5.

    CAS  Google Scholar 

  59. Mackowiak PA. Concepts of fever. Arch Intern Med. 1998;158:1870–81.

    Article  CAS  Google Scholar 

  60. van Breda EJ, van der Worp HB, van Gemert M, et al. Reduction of body temperature with paracetamol in patients with acute stroke: randomised clinical trials are needed. Cerebrovasc Dis. 2004;18:350.

    Article  Google Scholar 

  61. Cormio M, Citerio G. Continuous low dose diclofenac sodium infusion to control fever in neurosurgical critical care. Neurocrit Care. 2007;6:82–9.

    Article  CAS  Google Scholar 

  62. Dippel DW, van Breda EJ, van der Worp HB, et al. Timing of the effect of acetaminophen on body temperature in patients with acute ischemic stroke. Neurology. 2003;61:677–9.

    Article  CAS  Google Scholar 

  63. Dippel DW, van Breda EJ, van der Worp HB, et al. Effect of paracetamol (acetaminophen) and ibuprofen on body temperature in acute ischemic stroke PISA, a phase II double-blind, randomized, placebo-controlled trial [ISRCTN98608690]. BMC Cardiovasc Disord. 2003;3:2.

    Article  Google Scholar 

  64. Callaway CW, Elmer J, Guyette FX, et al. Dexmedetomidine reduces shivering during mild hypothermia in waking subjects. PLoS One. 2015;10:e0129709.

    Article  Google Scholar 

  65. Badjatia N, Bodock M, Guanci M, Rordorf GA. Rapid infusion of cold saline (4 degrees C) as adjunctive treatment of fever in patients with brain injury. Neurology. 2006;66:1739–41.

    Article  CAS  Google Scholar 

  66. Diedrich DA, Brown DR. Analytic reviews: propofol infusion syndrome in the ICU. J Intensive Care Med. 2011;26:59–72.

    Article  Google Scholar 

  67. Fong JJ, Sylvia L, Ruthazer R, et al. Predictors of mortality in patients with suspected propofol infusion syndrome. Crit Care Med. 2008;36:2281–7.

    Article  CAS  Google Scholar 

  68. Kim F, Olsufka M, Longstreth WT Jr, et al. Pilot randomized clinical trial of prehospital induction of mild hypothermia in out-of-hospital cardiac arrest patients with a rapid infusion of 4 degrees C normal saline. Circulation. 2007;115:3064–70.

    Article  Google Scholar 

  69. Sunde K, Pytte M, Jacobsen D, et al. Implementation of a standardised treatment protocol for post resuscitation care after out-of-hospital cardiac arrest. Resuscitation. 2007;73:29–39.

    Article  Google Scholar 

  70. Rittenberger JC, Guyette FX, Tisherman SA, et al. Outcomes of a hospital-wide plan to improve care of comatose survivors of cardiac arrest. Resuscitation. 2008;79:198–204.

    Article  Google Scholar 

  71. Gaieski DF, Band RA, Abella BS, DeVita MA, Alvarez RJ, Callaway CW. Early goal-directed hemodynamic optimization combined with therapeutic hypothermia in comatose survivors of out-of-hospital cardiac arrest. Resuscitation. 2009;80:418.

    Article  Google Scholar 

  72. Moore TM, Callaway CW, Hostler D. Core temperature cooling in healthy volunteers after rapid intravenous infusion of cold and room temperature saline solution. Ann Emerg Med. 2008;51:153–9.

    Article  Google Scholar 

  73. Hostler D, Northington WE, Callaway CW. High-dose diazepam facilitates core cooling during cold saline infusion in healthy volunteers. Appl Physiol Nutr Metab. 2009;34:582–6.

    Article  CAS  Google Scholar 

  74. Badjatia N, Strongilis E, Gordon E, et al. Metabolic impact of shivering during therapeutic temperature modulation: the bedside shivering assessment scale. Stroke. 2008;39:3242–7.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc-Alain Babi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Babi, MA. (2019). Fever in the Neuro-ICU. In: Prabhakar, H., Ali, Z. (eds) Textbook of Neuroanesthesia and Neurocritical Care. Springer, Singapore. https://doi.org/10.1007/978-981-13-3390-3_28

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-3390-3_28

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-3389-7

  • Online ISBN: 978-981-13-3390-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics