Skip to main content

Nontuberculous Mycobacteria: An Update on Infections Caused, Laboratory Identification and their Treatment

  • Chapter
  • First Online:
Book cover Infectious Diseases and Your Health
  • 549 Accesses

Abstract

Nontuberculous mycobacteria (NTM) or mycobacteria other than tuberculosis (MOTT) are opportunistic environmental pathogens capable of causing different kinds of infections to humans starting from hospital acquired to pulmonary and soft tissue infections. They share the common genera Mycobacterium tuberculosis (Mtb) and Mycobacterium leprae, the causative agents of two major diseases, tuberculosis (TB) and leprosy, respectively. Although NTMs or MOTT are similar to Mtb and M. leprosy in terms of mycolic acid-containing cell wall, acid fastness and their capability of causing pulmonary and extrapulmonary diseases, they are highly dissimilar in terms of growth rate and their antibiotic resistance profile. Several clinically relevant NTM strains are inherently resistant to different classes of antibiotics including the first line of drugs (e.g. isoniazid, rifampicin and pyrazinamide) used for treatment of TB. Currently, NTM infections have become a major concern to mankind in terms of mortality and morbidity in immunocompromised individuals. In addition, lack of antibacterial molecules, specific diagnostic tools and their intrinsic resistance to common antibiotics have turned these historically neglected pathogens to serious threats. In this chapter, we have discussed about infections caused by different NTMs, their laboratory identification and the antibiotics available to treat these infections.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adékambi T, Drancourt M (2004) Dissection of phylogenetic relationships among 19 rapidly growing Mycobacterium species by 16S rRNA, hsp65, sodA, recA and rpoB gene sequencing. Int J Syst Evol Microbiol 54:2095–2105

    Article  Google Scholar 

  • Adékambi T, Colson P, Drancourt M (2003) rpoB-based identification of nonpigmented and late-pigmenting rapidly growing mycobacteria. J Clin Microbiol 41:5699–5708

    Article  Google Scholar 

  • Adékambi T, Reynaud-Gaubert M, Greub G, Gevaudan MJ, La Scola B et al (2004) Amoebal coculture of “Mycobacterium massiliense” sp. nov. from the sputum of a patient with hemoptoic pneumonia. J Clin Microbiol 42:5493–5501

    Article  Google Scholar 

  • Adékambi T, Berger P, Raoult D, Drancourt M (2006) rpoB gene sequence-based characterization of emerging non-tuberculous mycobacteria with descriptions of Mycobacterium bolletii sp. nov., Mycobacterium phocaicum sp. nov. and Mycobacterium aubagnense sp. Nov. Int J Syst Evol Microbiol 56:133–143

    Article  Google Scholar 

  • Baker AW, Lewis SS, Alexander BD, Isaacs PJ, Pickett LC, Wallace RJ Jr et al (2015) A cluster of Mycobacterium abscessus among lung transplant patients: investigation and mitigation. Open Forum Infectious Disease 2:627

    Google Scholar 

  • Brown-Elliott BA, Wallace RJ Jr (2002) Clinical and taxonomic status of pathogenic nonpigmented or late-pigmenting rapidly growing mycobacteria. Clin Microbiol Rev 15:716–746

    Article  Google Scholar 

  • Brown-Elliott BA, Nash KA, Wallace RJ Jr (2012) Antimicrobial susceptibility testing, drug resistance mechanisms, and therapy of infections with nontuberculous mycobacteria. Clin Microbiol Rev 25:545–582

    Article  CAS  Google Scholar 

  • Bryant JM, Grogono DM, Greaves D, Foweraker J, Roddick I, Inns T (2013) Whole-genome sequencing to identify transmission of Mycobacterium abscessus between patients with cystic fibrosis: a retrospective cohort study. Lancet 381:1551–1560

    Article  CAS  Google Scholar 

  • Buckwalter SP, Olson SL, Connelly BJ, Lucas BC, Rodning AA, Walchak RC et al (2016) Evaluation of matrix-assisted laser desorption ionization-time of flight mass spectrometry for identification of Mycobacterium species, Nocardia species, and other aerobic actinomycetes. J Clin Microbiol 54:376–384

    Article  CAS  Google Scholar 

  • Chan J, Halachev M, Yates E, Smith G, Pallen M (2012) Whole genome sequence of the emerging pathogen Mycobacterium abscessus strain 47J26. J Bacteriol 194:549

    Article  CAS  Google Scholar 

  • Cole ST, Brosch R, Parkhill J, Garnier T, Churcher C, Harris D et al (1998) Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 11;393(6685):537–544

    Article  Google Scholar 

  • Cooksey RC, de Waard JH, Yakrus MA, Rivera I, Chopite M, Toney SR, Morlock GP, Butler WR (2004) Mycobacterium cosmeticum sp. nov., a novel rapidly growing species isolated from a cosmetic infection and from a nail salon. Int J Syst Evol Microbiol 54:2385–2391

    Article  CAS  Google Scholar 

  • Cooksey RC, Jhung MA, Yakrus MA, Butler WR, Adékambi T, Morlock GP et al (2008) Multiphasic approach reveals genetic diversity of environmental and patient isolates of Mycobacterium mucogenicum and Mycobacterium phocaicum associated with an outbreak of bacteremias at a Texas hospital. Appl Environ Microbiol 74:2480–2487

    Article  CAS  Google Scholar 

  • Culton DA, Lachiewicz AM, Miller BA, Miller MB, Mackuen C, Groben P, White B, Cox GM, Stout JE (2013) Nontuberculous mycobacterial infection after fractionated CO(2) laser resurfacing. Emerg Infect Dis 19(3):365–370

    Google Scholar 

  • Czaja CA, Merkel PA, Chan ED, Lenz LL, Wolf ML, Alam R et al (2014) Rituximab as successful adjunct treatment in a patient with disseminated nontuberculous mycobacterial infection due to acquired anti-interferon-γ autoantibody. Clin Infect Dis 58:e115–e118

    Article  CAS  Google Scholar 

  • Davidson RM, Hasan NA, Reynolds PR, Totten S, Garcia B, Levin A et al (2014) Genome sequencing of Mycobacterium abscessus isolates from patients in the United States and comparisons to globally diverse clinical strains. J Clin Microbiol 52:3573–3582

    Article  Google Scholar 

  • Dupont C, Terru D, Aguilhon S, Frapier J-M, Paquis M-P, Morquin D et al (2016) Source-case investigation of Mycobacterium wolinskyi cardiac surgical site infection. J Hosp Infect 93:235–239

    Article  CAS  Google Scholar 

  • Falkinham JO (2003) The changing pattern of nontuberculous mycobacterial disease. Can J Infect Dis 14:281–286

    Article  Google Scholar 

  • Forbes BA, Banaiee N, Beavis KG, Brown-Elliott BA, Della Latta P, Elliott LB et al (2008) Laboratory detection and identification of mycobacteria. Approved guideline, CLSI document M48-A. CSLI, Wayne

    Google Scholar 

  • Galil K, Miller LA, Yakrus MA, Wallace RJ Jr, Mosley DG, England B et al (1999) Abscesses due to Mycobacterium abscessus linked to injection of unapproved alternative medication. Emerg Infect Dis 5:681–687

    Article  CAS  Google Scholar 

  • Gira AK, Reisenauer AH, Hammock L, Nadiminti U, Macy JT, Reeves A, Burnett C, Yakrus MA, Toney S, Jensen BJ, Blumberg HM, Caughman SW, Nolte FS (2004) Furunculosis due to Mycobacterium mageritense associated with footbaths at a nail salon. J Clin Microbiol 42:1813–1817

    Article  Google Scholar 

  • Griffith DE, Aksamit T, Brown-Elliott BA, Catanzaro A, Daley C, Gordin F et al (2007) An official ATS/IDSA statement: diagnosis, treatment, and prevention of nontuberculous mycobacterial diseases. Am J Respir Crit Care Med 175:367–416

    Article  CAS  Google Scholar 

  • Gubler JGH, Salfinger M, von Graevenitz A (1992) Pseudoepidemic of nontuberculous mycobacteria due to a contaminated bronchoscope cleaning machine. Report of an outbreak and review of the literature. Chest 101:1245–1249

    Article  CAS  Google Scholar 

  • Havlir DV, Dubé MP, Sattler FR, Forthal DN, Kemper CA, Dunne MW, California Collaborative Treatment Group et al (1996) Prophylaxis against disseminated Mycobacterium avium complex with weekly azithromycin, daily rifabutin, or both. N Engl J Med 335:392–398

    Article  CAS  Google Scholar 

  • Johnson MM, Odell JA (2014) Nontuberculous mycobacterial pulmonary infections. J Thorac Dis 6:210–220

    PubMed  PubMed Central  Google Scholar 

  • Kim H-Y, Kook Y, Yun Y-J, Park CG, Lee NY, Shim TS et al (2008) Proportions of Mycobacterium massiliense and Mycobacterium bolletii strains among Korean Mycobacterium chelonae- Mycobacterium abscessus group isolates. J Clin Microbiol 46:3384–3390

    Article  CAS  Google Scholar 

  • Matsumoto CK, Chimara E, Ramos JP, Campos CED, De Suza Caldas PC, Lima KVB et al (2012) Rapid tests for the detection of the Mycobacterium abscessus subsp. bolletii strain responsible for an epidemic of surgical-site infections in Brazil. Mem Inst Oswaldo Cruz 107:969–970

    Article  CAS  Google Scholar 

  • Maurer FP, Bruderer VL, Ritter C, Castelberg C, Bloemberg GV, Böttger EC (2014) Lack of antimicrobial bactericidal activity in Mycobacterium abscessus. Antimicrob Agents Chemother 58:3828–3836

    Article  Google Scholar 

  • McNabb A, Eisler D, Adie K, Amos M, Rodrigues M, Stephens G et al (2004) Assessment of partial sequencing of the 65-kilodalton heat shock protein gene (hsp65) for routine identification of Mycobacterium species isolated from clinical sources. J Clin Microbiol 42:3000–3011

    Article  CAS  Google Scholar 

  • Nagpal A, Wentink JE, Berbari EF, Aronhalt KC, Wright AJ, Krageschmidt DA et al (2014) A cluster of Mycobacterium wolinskyi surgical site infections at an academic medical center. Infect Control Hosp Epidemiol 35:1169–1175

    Article  Google Scholar 

  • Ngeow YF, Wee WY, Wong YL, Tan JL, Ongi CS, Ng KP et al (2012a) Genomic analysis of Mycobacterium abscessus strain M139, which has an ambiguous subspecies taxonomic position. J Bacteriol 194:6002–6003

    Article  CAS  Google Scholar 

  • Ngeow YF, Wong YL, Lokanathan N, Wong GJ, Ong CS, Ng KP et al (2012b) Genomic analysis of Mycobacterium massiliense strain M115, an isolate from human sputum. J Bacteriol 194:4786

    Article  CAS  Google Scholar 

  • Ngeow YF, Wong YL, Tan JL, Arumugam R, Wong GJ, Ong CS et al (2012c) Genome sequence of Mycobacterium massiliense M18, isolated from a lymph node biopsy specimen. J Bacteriol 194:4125

    Article  CAS  Google Scholar 

  • Obregón-Henao A, Arnett KA, Henao-Tamayo M, Massoudi L, Creissen E et al (2015) Susceptibility of Mycobacterium abscessus to antimycobacterial drugs in preclinical models. Antimicrob Agents Chemother 59:6904–6912

    Article  Google Scholar 

  • Richter E, Rüsch-Gerdes S, Hillemann D (2006) Evaluation of the GenoType Mycobacterium assay for identification of mycobacterial species from cultures. J Clin Microbiol 44:1769–1775

    Article  CAS  Google Scholar 

  • Rodríguez-Sánchez B, Ruiz-Serrano MJ, Ruiz A, Timke M, Kostrzewa M, Bouza E (2016) Evaluation of MALDI biotyper mycobacterial library v3.0 for identification of nontuberculous mycobacteria. J Clin Microbiol 54:1144–1147

    Article  Google Scholar 

  • Saleeb PG, Drake SK, Murray PR, Zelazny AM (2011) Identification of mycobacteria in solid-culture media by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol 49:1790–1794

    Article  Google Scholar 

  • Shallom SJ, Gardina PJ, Myers TG, Sebastian Y, Conville P, Calhoun LB et al (2013) New rapid scheme for distinguishing the subspecies of the Mycobacterium abscessus group and identifying Mycobacterium massiliense isolates with inducible clarithromycin resistance. J Clin Microbiol 51:2943–2949

    Article  CAS  Google Scholar 

  • Soni I, De Groote MA, Dasgupta A, Chopra S (2016) Challenges facing the drug discovery pipeline for non-tuberculous mycobacteria. J Med Microbiol 65:1–8

    Article  CAS  Google Scholar 

  • Steingrube VA, Gibson JL, Brown BA, Zhang Y, Wilson RW, Rajagopalan M et al (1995) PCR amplification and restriction endonuclease analysis of a 65-kilodalton heat shock protein gene sequence for taxonomic separation of rapidly growing mycobacteria. J Clin Microbiol 33:149–153. (Erratum, 33:1686.)

    CAS  PubMed  PubMed Central  Google Scholar 

  • Telenti A, Marchesi F, Balz M, Bally F, Böttger EC, Bodmer T (1993) Rapid identification of mycobacteria to the species level by polymerase chain reaction and restriction enzyme analysis. J Clin Microbiol 31:175–178

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tettelin H, Davidson RM, Agrawal S, Aitken ML, Shallom S, Hasan NA et al (2014) High-level relatedness among Mycobacterium abscessus subsp. massiliense strains from widely separated outbreaks. Emerg Infect Dis 20:364–371

    Article  Google Scholar 

  • Tiwari TSP, Ray B, Jost KC Jr, Rathod MK, Zhang Y, Brown-Elliott BA et al (2003) Forty years of disinfectant failure: outbreak of post-injection Mycobacterium abscessus infection caused by contamination of benzalkonium chloride. Clin Infect Dis 36:954–962

    Article  CAS  Google Scholar 

  • Tortoli E (2003) Impact of genotypic studies on mycobacterial taxonomy: the new mycobacteria of the 1990s. Clin Microbiol Rev 16:319–354

    Article  CAS  Google Scholar 

  • Tortoli E (2006) The new mycobacteria: an update. FEMS Immunol Med Microbiol 48:159–178

    Article  CAS  Google Scholar 

  • Tortoli E (2014) Microbiological features and clinical relevance of new species of the genus Mycobacterium. Clin Microbiol Rev 27:727–752

    Article  CAS  Google Scholar 

  • Tortoli E, Nanetti A, Piersimoni C, Cichero P, Farina C, Mucignat G et al (2001) Performance assessment of new multiplex probe assay for identification of mycobacteria. J Clin Microbiol 39:1079–1084

    Article  CAS  Google Scholar 

  • Tortoli E, Pecorari M, Fabio G, Messinò M, Fabio A (2010) Commercial DNA probes for mycobacteria incorrectly identify a number of less frequently encountered species. J Clin Microbiol 48:307–310

    Article  CAS  Google Scholar 

  • Turenne CY, Tschetter L, Wolfe J, Kabani A (2001) Necessity of quality-controlled 16S rRNA gene sequence databases: identifying nontuberculous Mycobacterium species. J Clin Microbiol 39:3637–3648

    Article  CAS  Google Scholar 

  • Valour F, Perpoint T, Sénéchal A, Kong X-F, Bustamante J, Ferry T, Lyon TB Study Group et al (2016) Interferon-γ autoantibodies as predisposing factor for nontuberculous mycobacterial infection. Emerg Infect Dis 22:1124–1126

    Article  CAS  Google Scholar 

  • Viana-Niero C, Lima KVB, Lopes ML, Rabello MC, Marsola LR, Brilhante VCR et al (2008) Molecular characterization of Mycobacterium massiliense and Mycobacterium bolletii in isolates collected from outbreaks of infections after laparoscopic surgeries and cosmetic procedures. J Clin Microbiol 46:850–855

    Article  CAS  Google Scholar 

  • Villanueva A, Calderon RV, Vargas BA, Ruiz F, Aguero S, Zhang Y et al (1997) Report on an outbreak of post-injection abscesses due to Mycobacterium abscessus, including management with surgery and clarithromycin therapy and comparison of strains by random amplified polymorphic DNA polymerase chain reaction. Clin Infect Dis 24:1147–1153

    Article  CAS  Google Scholar 

  • Vugia DJ, Jang Y, Zizek C, Ely J, Winthrop KL, Desmond E (2005) Mycobacteria in nail salon whirlpool footbaths, California. Emerg Infect Dis 11:616–618

    Article  Google Scholar 

  • Wallace RJ Jr, Brown-Elliott BA, Ward SC, Crist CJ, Mann LB, Wilson RW (2001) Activities of linezolid against rapidly growing mycobacteria. Antimicrob Agents Chemother 45:764–767

    Article  CAS  Google Scholar 

  • Wallace RJ Jr, Brown-Elliott BA, Hall L, Roberts G, Wilson RW, Mann LB et al (2002) Clinical and laboratory features of Mycobacterium mageritense. J Clin Microbiol 40:2930–2935

    Article  CAS  Google Scholar 

  • Wallace RJ Jr, Brown-Elliott BA, Wilson RW, Mann L, Hall L, Zhang Y et al (2004) Clinical and laboratory features of Mycobacterium porcinum. J Clin Microbiol 42:5689–5697

    Article  CAS  Google Scholar 

  • Wallace RJ Jr, Brown-Elliott BA, Brown J, Steigerwalt AG, Hall L, Woods G et al (2005) Polyphasic characterization reveals that the human pathogen Mycobacterium peregrinum type II belongs to the bovine pathogen species Mycobacterium senegalense. J Clin Microbiol 43:5925–5935

    Article  CAS  Google Scholar 

  • Wayne PA (2011) Clinical and laboratory standards institute. Susceptibility testing of mycobacteria, nocardiae, and other aerobic actinomycetes. Approved standard, 2nd ed. CLSI document M24-A2.

    Google Scholar 

  • Wilen CB, McMullen AR, C-AD B (2015) Comparison of sample preparation methods, instrumentation platforms, and contemporary commercial databases for identification of clinically relevant mycobacteria by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol 53:2308–2315

    Article  CAS  Google Scholar 

  • Winthrop KL, Albridge K, South D, Albrecht P, Abrams M, Samuel MC, Leonard W, Wagner J, Vugia DJ (2004) The clinical management and outcome of nail salon-acquired Mycobacterium fortuitum skin infection. Clin Infect Dis 38:38–44

    Article  Google Scholar 

  • Winthrop KL, Chang E, Yamashita S, Iademarco MF, LoBue PA (2009) Nontuberculous mycobacteria infections and anti-tumor necrosis factor-alpha therapy. Emerg Infect Dis 15:1556–1561

    Article  CAS  Google Scholar 

  • Zelazny AM, Root JM, Shea YR, Colombo RE, Shamputa IC et al (2009) Cohort study of molecular identification and typing of Mycobacterium abscessus, Mycobacterium massiliense, and Mycobacterium bolletii. J Clin Microbiol 47:1985–1995

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This manuscript bears CSIR-CDRI communication number 104/2018/AD.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arunava Dasgupta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Das, S., Garg, T., Chopra, S., Dasgupta, A. (2018). Nontuberculous Mycobacteria: An Update on Infections Caused, Laboratory Identification and their Treatment. In: Singh, P. (eds) Infectious Diseases and Your Health. Springer, Singapore. https://doi.org/10.1007/978-981-13-1577-0_12

Download citation

Publish with us

Policies and ethics