Skip to main content

Omics Approaches: A Useful Tool in Asthma Precision Medicine

  • Chapter
  • First Online:
Genomic Approach to Asthma

Part of the book series: Translational Bioinformatics ((TRBIO,volume 12))

  • 667 Accesses

Abstract

Asthma is a complex and heterogeneous disease. Various symptoms, underlying pathogenetic mechanisms, different responses to medication and prognosis are unmet need in clinic. This volume aims to elucidate how the “-omics” research applied in asthma such as “genomic, transcriptomic, proteomic, metabomic, et al” progresses and present the related series of important breakthroughs in asthma development, classification, prevention and drug sensitivity. Systemic biology, computational model and biostatistical database are discussed regarding big data storage, management and interpretation. Applying unbiased -omics combined with hypothesis-driven approach is one way to push forward our understanding of endotype of asthma and transform the current medication mode to a more précised one.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Choi H, Song WM, Zhang B. Linking childhood allergic asthma phenotypes with endotype through integrated systems biology: current evidence and research needs. Rev Environ Health. 2017;32(1-2):55–63. [PubMed: 28170342]

    Article  PubMed  Google Scholar 

  2. Ray A, Oriss TB, Wenzel SE. Emerging molecular phenotypes of asthma. Am J Physiol Lung Cell Mol Physiol. 2015;308(2):L130–40. [PubMed: 25326577]

    Article  CAS  PubMed  Google Scholar 

  3. Chung KF, Adcock IM. How variability in clinical phenotypes should guide research into disease mechanisms in asthma. Ann Am Thorac Soc. 2013;10(Suppl):S109–17. [PubMed: 24313760]

    Article  PubMed  PubMed Central  Google Scholar 

  4. Chen R, Snyder M. Promise of personalized omics to precision medicine. Wiley Interdiscip Rev Syst Biol Med. 2013;5(1):73–82. [PubMed: 23184638]

    Article  PubMed  Google Scholar 

  5. Benson M. Clinical implications of omics and systems medicine: focus on predictive and individualized treatment. J Intern Med. 2016;279(3):229–40. [PubMed: 26891944]

    Article  CAS  PubMed  Google Scholar 

  6. Wold B, Myers RM. Sequence census methods for functional genomics. Nat Methods. 2008;5(1):19–21. [PubMed: 18165803]

    Article  CAS  PubMed  Google Scholar 

  7. Heather JM, Chain B. The sequence of sequencers: the history of sequencing DNA. Genomics. 2016;107(1):1–8. [PubMed: 26554401]

    Article  CAS  PubMed  Google Scholar 

  8. Altelaar AF, Munoz J, Heck AJ. Next-generation proteomics: towards an integrative view of proteome dynamics. Nat Rev Genet. 2013;14(1):35–48. [PubMed: 23207911]

    Article  CAS  PubMed  Google Scholar 

  9. Xu YJ, Wang C, Ho WE, Ong CN. Recent developments and applications of metabolomics in microbiological investigations. Trends Anal Chem. 2014;56:37–48.

    Article  CAS  Google Scholar 

  10. Ho WE, Xu YJ, Cheng C, Peh HY, Tannenbaum SR, Wong WS, et al. Metabolomics reveals inflammatory-linked pulmonary metabolic alterations in a murine model of house dust mite-induced allergic asthma. J Proteome Res. 2014;13(8):3771–82. [PubMed: 24956233]

    Article  CAS  PubMed  Google Scholar 

  11. Hindorff LA, MacArthur J, Morales J, Junkins HA, Hall PN, Klemm AK, et al.. A catalog of published genome-wide association studies [http://www.genome.gov/gwastudies]

  12. Ober C, Yao TC. The genetics of asthma and allergic disease: a 21st century perspective. Immunol Rev. 2011;242(1):10–30. [PubMed: 21682736]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Meyers DA, Bleecker ER, Holloway JW, Holgate ST. Asthma genetics and personalised medicine. Lancet Respir Med. 2014;2(5):405–15. [PubMed: 24794577]

    Article  PubMed  PubMed Central  Google Scholar 

  14. Bonnelykke K, Sleiman P, Nielsen K, Kreiner-Moller E, Mercader JM, Belgrave D, et al. A genome-wide association study identifies CDHR3 as a susceptibility locus for early childhood asthma with severe exacerbations. Nat Genet. 2014;46(1):51–5. [PubMed: 24241537]

    Article  CAS  PubMed  Google Scholar 

  15. Tantisira KG, Lasky-Su J, Harada M, Murphy A, Litonjua AA, Himes BE, et al. Genomewide association between GLCCI1 and response to glucocorticoid therapy in asthma. N Engl J Med. 2011;365(13):1173–83. [PubMed: 21991891]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Puente XS, Pinyol M, Quesada V, Conde L, Ordonez GR, Villamor N, et al. Whole-genome sequencing identifies recurrent mutations in chronic lymphocytic leukaemia. Nature. 2011;475(7354):101–5. [PubMed: 21642962]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yick CY, Zwinderman AH, Kunst PW, Grunberg K, Mauad T, Dijkhuis A, et al. Transcriptome sequencing (RNA-Seq) of human endobronchial biopsies: asthma versus controls. Eur Respir J. 2013;42(3):662–70. [PubMed: 23314903]

    Article  CAS  PubMed  Google Scholar 

  18. Kumawat K, Koopmans T, Gosens R. beta-catenin as a regulator and therapeutic target for asthmatic airway remodeling. Expert Opin Ther Targets. 2014;18(9):1023–34. [PubMed: 25005144]

    Article  CAS  PubMed  Google Scholar 

  19. Xue R, Li R, Bai F. Single cell sequencing: technique, application, and future development. Sci Bull. 2015;60(1):33–42.

    Article  CAS  Google Scholar 

  20. Kanter I, Kalisky T. Single cell transcriptomics: methods and applications. Front Oncol. 2015;5:53. [PubMed: 25806353]

    Article  PubMed  PubMed Central  Google Scholar 

  21. Roadmap Epigenomics C, Kundaje A, Meuleman W, Ernst J, Bilenky M, Yen A, et al. Integrative analysis of 111 reference human epigenomes. Nature. 2015;518(7539):317–30. [PubMed: 25693563]

    Article  CAS  Google Scholar 

  22. Laird PW. Principles and challenges of genomewide DNA methylation analysis. Nat Rev Genet. 2010;11(3):191–203. [PubMed: 20125086]

    Article  CAS  PubMed  Google Scholar 

  23. Elbehidy RM, Youssef DM, El-Shal AS, Shalaby SM, Sherbiny HS, Sherief LM, et al. MicroRNA-21 as a novel biomarker in diagnosis and response to therapy in asthmatic children. Mol Immunol. 2016;71:107–14. [PubMed: 26874829]

    Article  CAS  PubMed  Google Scholar 

  24. Midyat L, Gulen F, Karaca E, Ozkinay F, Tanac R, Demir E, et al. MicroRNA expression profiling in children with different asthma phenotypes. Pediatr Pulmonol. 2016;51(6):582–7. [PubMed: 26422695]

    Article  PubMed  Google Scholar 

  25. Cravatt BF, Simon GM, Yates JR 3rd. The biological impact of mass-spectrometry-based proteomics. Nature. 2007;450(7172):991–1000. [PubMed: 18075578]

    Article  CAS  PubMed  Google Scholar 

  26. Wu L, Han DK. Overcoming the dynamic range problem in mass spectrometry-based shotgun proteomics. Expert Rev Proteomics. 2006;3(6):611–9. [PubMed: 17181475]

    Article  CAS  PubMed  Google Scholar 

  27. van der Greef J, Hankemeier T, McBurney RN. Metabolomics-based systems biology and personalized medicine: moving towards n = 1 clinical trials? Pharmacogenomics. 2006;7(7):1087–94. [PubMed: 17054418]

    Article  PubMed  Google Scholar 

  28. Jung J, Kim SH, Lee HS, Choi GS, Jung YS, Ryu DH, et al. Serum metabolomics reveals pathways and biomarkers associated with asthma pathogenesis. Clin Exp Allergy: J Br Soc Allergy Clin Immunol. 2013;43(4):425–33. [PubMed: 23517038]

    Article  CAS  Google Scholar 

  29. Caldeira M, Perestrelo R, Barros AS, Bilelo MJ, Morete A, Camara JS, et al. Allergic asthma exhaled breath metabolome: a challenge for comprehensive two-dimensional gas chromatography. J Chromatogr A. 2012;1254:87–97. [PubMed: 22835687]

    Article  CAS  PubMed  Google Scholar 

  30. Izquierdo-Garcia JL, Peces-Barba G, Heili S, Diaz R, Want E, Ruiz-Cabello J, NMR-based I. Metabolomic analysis of exhaled breath condensate accurate? Eur Respir J. 2011;37(2):468–70. [PubMed: 21282813]

    Article  CAS  PubMed  Google Scholar 

  31. Miller CA, Slusher LB, Vesell ES. Polymorphism of theophylline metabolism in man. J Clin Invest. 1985;75(5):1415–25. [PubMed:4039734]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Liang SQ, Chen XL, Deng JM, Wei X, Gong C, Chen ZR, et al. Beta-2 adrenergic receptor (ADRB2) gene polymorphisms and the risk of asthma: a meta-analysis of case-control studies. PLoS ONE. 2014;9(8):e104488. [PubMed: 25111792]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wysocki K, Conley Y, Wenzel S. Epigenome variation in severe asthma. Biol Res Nur. 2015;17(3):263–9. [PubMed: 25288825]

    Article  CAS  Google Scholar 

  34. Fernald GH, Capriotti E, Daneshjou R, Karczewski KJ, Altman RB. Bioinformatics challenges for personalized medicine. Bioinformatics. 2011;27(13):1741–8. [PubMed: 21596790]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Groom CR, Bruno IJ, Lightfoot MP, Ward SC. The Cambridge structural database. Acta Crystallogr Sect B: Struct Sci Cryst Eng Mater. 2016;72(Pt 2):171–9. [PubMed: 27048719]

    Article  CAS  Google Scholar 

  36. Coimbatore Narayanan B, Westbrook J, Ghosh S, Petrov AI, Sweeney B, Zirbel CL, et al. The Nucleic Acid Database: new features and capabilities. Nucleic Acids Res. 2014;42(Database issue):D114–22. [PubMed: 24185695]

    Article  CAS  PubMed  Google Scholar 

  37. Lu YF, Goldstein DB, Angrist M, Cavalleri G. Personalized medicine and human genetic diversity. Cold Spring Harb Perspect Med. 2014;4(9):a008581. [PubMed: 25059740]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ideker T, Dutkowski J, Hood L. Boosting signal-to-noise in complex biology: prior knowledge is power. Cell. 2011;144(6):860–3. [PubMed: 21414478]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Mirnezami R, Nicholson J, Darzi A. Preparing for precision medicine. N Engl J Med. 2012;366(6):489–91. [PubMed: 22256780]

    Article  PubMed  Google Scholar 

  40. Khoury MJ, Gwinn ML, Glasgow RE, Kramer BS. A population approach to precision medicine. Am J Prev Med. 2012;42(6):639–45. [PubMed: 22608383]

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangdong Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chen, Z., Wang, X. (2018). Omics Approaches: A Useful Tool in Asthma Precision Medicine. In: Wang, X., Chen, Z. (eds) Genomic Approach to Asthma. Translational Bioinformatics, vol 12. Springer, Singapore. https://doi.org/10.1007/978-981-10-8764-6_1

Download citation

Publish with us

Policies and ethics