Skip to main content

Human Exposure Assessment for Air Pollution

  • Chapter
  • First Online:
Ambient Air Pollution and Health Impact in China

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1017))

Abstract

Assessment of human exposure to air pollution is a fundamental part of the more general process of health risk assessment. The measurement methods for exposure assessment now include personal exposure monitoring, indoor-outdoor sampling, mobile monitoring, and exposure assessment modeling (such as proximity models, interpolation model, air dispersion models, and land-use regression (LUR) models). Among these methods, personal exposure measurement is considered to be the most accurate method of pollutant exposure assessment until now, since it can better quantify observed differences and better reflect exposure among smaller groups of people at ground level. And since the great differences of geographical environment, source distribution, pollution characteristics, economic conditions, and living habits, there is a wide range of differences between indoor, outdoor, and individual air pollution exposure in different regions of China. In general, the indoor particles in most Chinese families comprise infiltrated outdoor particles, particles generated indoors, and a few secondary organic aerosol particles, and in most cases, outdoor particle pollution concentrations are a major contributor to indoor concentrations in China. Furthermore, since the time, energy, and expense are limited, it is difficult to measure the concentration of pollutants for each individual. In recent years, obtaining the concentration of air pollutants by using a variety of exposure assessment models is becoming a main method which could solve the problem of the increasing number of individuals in epidemiology studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abbey DE, Nishino N, McDonnell WF, Burchette RJ, Knutsen SF, Beeson WL, Yang JX. Long-term inhalable particles and other air pollutants related to mortality in nonsmokers. Am J Respir Crit Care Med. 1999;159(2):373–82.

    Article  CAS  PubMed  Google Scholar 

  2. Adam-Poupart A, Brand A, Fournier M, Jerrett M, Smargiassi A. Spatiotemporal modeling of ozone levels in Quebec (Canada): a comparison of kriging, Land-Use Regression (LUR), and combined Bayesian maximum entropy-LUR approaches. Environ Health Perspect. 2014;122(9):970–6.

    PubMed  PubMed Central  Google Scholar 

  3. Adar SD, Sheppard L, Vedal S, Polak JF, Sampson PD, Roux AVD, Budoff M, Jacobs DR, Barr RG, Watson K, Kaufman JD. Fine particulate air pollution and the progression of carotid intima-medial thickness: a prospective cohort study from the multi-ethnic study of atherosclerosis and air pollution. PLoS Med. 2013;10(4):e1001430.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Bailey TC, Gatrell AC. Interactive spatial data analysis. Essex: Longman Scientific & Technical; 1995.

    Google Scholar 

  5. Bartonova A, Clench-Aas J, Gram F, Gronskei KE, Guerreiro C, Larssen S, Tonnesen DA, Walker SE. Air pollution exposure monitoring and estimation part V. Traffic exposure in adults. J Environ Monit. 1999;1(4):337–40.

    Article  CAS  PubMed  Google Scholar 

  6. Beelen R, Hoek G, Fischer P, van den Brandt PA, Brunekreef B. Estimated long-term outdoor air pollution concentrations in a cohort study. Atmos Environ. 2007;41(7):1343–58.

    Article  CAS  Google Scholar 

  7. Bellander T, Berglind N, Gustavsson P, Jonson T, Nyberg F, Pershagen G, Jarup L. Using geographic information systems to assess individual historical exposure to air pollution from traffic and house heating in Stockholm. Environ Health Perspect. 2001;109(6):633–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Brauer M, Bartlett K, RegaladoPineda J, PerezPadilla R. Assessment of particulate concentrations from domestic biomass combustion in rural Mexico. Environ Sci Technol. 1996;30:104–9.

    Article  CAS  Google Scholar 

  9. Briggs D, Aaheim A, Dore C, Hoek G, Petrakis M, Shaddick G. Air pollution modelling for support to policy on health and environmental risks in Europe. Final Report Section 6. Imperial College, London. EVK2-2002-00176. 2005. Available from: http://www.apmosphere.org.

  10. Briggs DJ. The use of GIS to evaluate traffic-related pollution. Occup Environ Med. 2007;64(1):1–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Briggs DJ, Collins S, Elliott P, Fischer P, Kingham S, Lebret E, Pryl K, VanReeuwijk H, Smallbone K, VanderVeen A. Mapping urban air pollution using GIS: a regression-based approach. Int J Geogr Inf Sci. 1997;11(7):699–718.

    Article  Google Scholar 

  12. Briggs DJ, de Hoogh C, Guiliver J, Wills J, Elliott P, Kingham S, Smallbone K. A regression-based method for mapping traffic-related air pollution: application and testing in four contrasting urban environments. Sci Total Environ. 2000;253(1–3):151–67.

    Article  CAS  PubMed  Google Scholar 

  13. Brock CA, Schroder F, Karcher B, Petzold A, Busen R, Fiebig M. Ultrafine particle size distributions measured in aircraft exhaust plumes. J Geophys Res-Atmos. 2000;105:26555–67.

    Article  CAS  Google Scholar 

  14. Burrough PA, McDonnell R, McDonnell RA, Lloyd CD. Principles of geographical information systems. Oxford: Oxford University Press; 2015.

    Google Scholar 

  15. Cao JJ, Lee SC, Chow JCL, Cheng Y, Ho KF, Fung K, Liu SX, Watson JG. Indoor/outdoor relationships for PM2.5 and associated carbonaceous pollutants at residential homes in Hong Kong -case study. Indoor Air. 2005;15:197–204.

    Article  CAS  PubMed  Google Scholar 

  16. Castellini S, Moroni B, Cappelletti D. PMetro: measurement of urban aerosols on a mobile platform. Measurement. 2014;49:99–106.

    Article  Google Scholar 

  17. Chan AT. Indoor-outdoor relationships of particulate matter and nitrogen oxides under different outdoor meteorological conditions. Atmos Environ. 2002;36:1543–51.

    Article  CAS  Google Scholar 

  18. Chan KL, Wang S, Liu C, Zhou B, Wenig MO, Saiz-Lopez A. On the summer time air quality and related photochemical processes in the megacity Shanghai, China. Sci Total Environ. 2017;580:974–83.

    Article  CAS  PubMed  Google Scholar 

  19. Chao CYH, Tung TC. An empirical model for outdoor contaminant transmission into residential buildings and experimental verification. Atmos Environ. 2001;35:1585–96.

    Article  CAS  Google Scholar 

  20. Chazette P, Randriamiarisoa H, Sanak J, Couvert P, Flamant C. Optical properties of urban aerosol from airborne and ground-based in situ measurements performed during the Etude et Simulation de la Qualite de l’air en Ile de France (ESQUIF) program. J Geophys Res-Atmos. 2005;110:D02206.

    Article  Google Scholar 

  21. Chen C, Zhao B. Review of relationship between indoor and outdoor particles: I/O ratio, infiltration factor and penetration factor. Atmos Environ. 2011;45:275–88.

    Article  CAS  Google Scholar 

  22. Cheng YS. Condensation particle counters. In: Aerosol measurement. Wiley; 2011. p. 381–392.

    Google Scholar 

  23. Chen LG, Mai BX, Xu ZC, Peng XC, Han JL, Ran Y, Sheng GY, Fu JM. In- and outdoor sources of polybrominated diphenyl ethers and their human inhalation exposure in Guangzhou, China. Atmos Environ. 2008;42(1):78–86.

    Article  CAS  Google Scholar 

  24. Chen L, Bai ZP, Kong SF, Han B, You Y, Ding XA, Du SY, Liu AX. A land use regression for predicting NO2 and PM10 concentrations in different seasons in Tianjin region, China. J Environ Sci (China). 2010;22(9):1364–73.

    Article  CAS  Google Scholar 

  25. Chen L, Wang YM, Li PW, Ji YQ, Kong SF, Li ZY, Bai ZP. A land use regression model incorporating data on industrial point source pollution. J Environ Sci (China). 2012;24(7):1251–8.

    Article  CAS  Google Scholar 

  26. Chen L, Shi M, Gao S, Li S, Mao J, Zhang H, Sun Y, Bai Z, Wang Z. Assessment of population exposure to PM2.5 for mortality in China and its public health benefit based on BenMAP. Environ Pollut. 2017;221:311–7.

    Article  CAS  PubMed  Google Scholar 

  27. Chen L, Shi M, Li S, Gao S, Zhang H, Sun Y, Mao J, Bai Z, Wang Z, Zhou J. Quantifying public health benefits of environmental strategy of PM2.5 air quality management in Beijing-Tianjin-Hebei region, China. J Environ Sci (China). 2017;57:33–40.

    Article  Google Scholar 

  28. Chen Y, Du W, Shen G, Zhuo S, Zhu X, Shen H, Huang Y, Su S, Lin N, Pei L, Zheng X, Wu J, Duan Y, Wang X, Liu W, Wong M, Tao S. Household air pollution and personal exposure to nitrated and oxygenated polycyclicaromatics (PAHs) in rural households: influence of household cooking energies. Indoor Air. 2017;27(1):169–78.

    Article  CAS  PubMed  Google Scholar 

  29. Crippa M, DeCarlo PF, Slowik JG, Mohr C, Heringa MF, Chirico R, Poulain L, Freutel F, Sciare J, Cozic J, DiMarco CF, Elsasser M, Nicolas JB, Marchand N, Abidi E, Wiedensohler A, Drewnick F, Schneider J, Borrmann S, Nemitz E, Zimmermann R, Jaffrezo J-L, Pevot ASH, Baltensperger U. Wintertime aerosol chemical composition and source apportionment of the organic fraction in the metropolitan area of Paris. Atmos Chem Phys. 2013;13:961–81.

    Article  CAS  Google Scholar 

  30. Deng F, Wang X, Su H, Wu S, Lv H, Guo X. Personal exposure to PM2.5 of children living near traffic road and the influencing factors in Beijing. J Environ Health. 2009;09:762–5.

    Google Scholar 

  31. Deng WJ, Zheng HL, Tsui AK, Chen XW. Measurement and health risk assessment of PM2.5, flame retardants, carbonyls and black carbon in indoor and outdoor air in kindergartens in Hong Kong. Environ Int. 2016;96:65–74.

    Article  CAS  PubMed  Google Scholar 

  32. Elen B, Peters J, Poppel MV, Bleux N, Theunis J, Reggente M, Standaert A. The Aeroflex: a bicycle for mobile air quality measurements. Sensors (Basel). 2012;13(1):221–40.

    Article  CAS  Google Scholar 

  33. Eisenberg JN, Lei X, Hubbard AH, Brookhart MA, Colford JM. The role of disease transmission and conferred immunity in outbreaks: analysis of the 1993 Cryptosporidium outbreak in Milwaukee, Wisconsin. Am J Epidemiol. 2005;161(1):62–72.

    Article  PubMed  Google Scholar 

  34. English P, Neutra R, Scalf R, Sullivan M, Waller L, Zhu L. Examining associations between childhood asthma and traffic flow using a geographic information system. Environ Health Perspect. 1999;107(9):761–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Fan M, Chen C, Chi T. Research and application on the continuity of monitoring data using kriging interpolation. Comput Eng Appl. 2005;09:210–2.

    Google Scholar 

  36. Frick G, Hoppel W. Airship measurements of ship’s exhaust plumes and their effect on marine boundary layer clouds. J Atmos Sci. 2000;57:2625–48.

    Article  Google Scholar 

  37. Gobeli D, Schloesser H, Pottberg T. Met one instruments BAM-1020 beta attenuation mass monitor US-EPA PM2.5 federal equivalent method field test results. In: The Air & Waste Management Association (A&WMA) Conference, Kansas City, MO. Citeseer; 2008.

    Google Scholar 

  38. Gualtieri G, Tartaglia M. Predicting urban traffic air pollution: a GIS framework. Transp Res Part D-Transp Environ. 1998;3(5):329–36.

    Article  Google Scholar 

  39. Han B, Bai Z, Liu Y, You Y, Xu J, Zhou J, Zhang J, Niu C, Zhang N, He F, Ding X. Characterizations, relationship, and potential sources of outdoor and indoor particulate matter bound polycyclic aromatic hydrocarbons (PAHs) in a community of Tianjin, Northern China. Indoor Air. 2015;25(3):320–8.

    Article  CAS  PubMed  Google Scholar 

  40. Han Y, Qi M, Chen Y, Shen H, Liu J, Huang Y, Chen H, Liu W, Wang X, Liu J, Xing B, Tao S. Influences of ambient air PM2.5 concentration and meteorological condition on the indoor PM2.5 concentrations in a residential apartment in Beijing using a new approach. Environ Pollut. 2015;205:307–14.

    Article  CAS  PubMed  Google Scholar 

  41. Han WL, Fan T, Xu BH, Feng JL, Zhang G, Wu MH, Yu YX, Fu JM. Passive sampling of polybrominated diphenyl ethers in indoor and outdoor air in Shanghai, China: seasonal variations, sources, and inhalation exposure. Environ Sci Pollut Res. 2016;23:5771–81.

    Article  CAS  Google Scholar 

  42. Hart JE, Yanosky JD, Puett RC, Ryan L, Dockery DW, Smith TJ, Garshick E, Laden F. Spatial modeling of PM10 and NO2 in the continental United States, 1985–2000. Environ Health Perspect. 2009;117(11):1690–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Held A, Rathbone GJ, Smith JN. A thermal desorption chemical ionization ion trap mass spectrometer for the chemical characterization of ultrafine aerosol particles. Aerosol Sci Technol. 2009;43:264–72.

    Article  CAS  Google Scholar 

  44. Hoek G, Beelen R, de Hoogh K, Vienneau D, Gulliver J, Fischer P, Briggs D. A review of land-use regression models to assess spatial variation of outdoor air pollution. Atmos Environ. 2008;42:7561–78.

    Article  CAS  Google Scholar 

  45. Hopke PK, Liu W, Han YJ, Yi SM, Holsen TM, Cybart S, Milligan M. Measured summertime concentrations of particulate components, Hg0, and speciated polycyclic aromatic hydrocarbons at rural sites in New York State. Environ Pollut. 2003;123(3):413–25.

    Article  CAS  PubMed  Google Scholar 

  46. Hruba F, Fabianova E, Koppova K, Vandenberg JJ. Childhood respiratory symptoms, hospital admissions, and long-term exposure to airborne particulate matter. J Expo Anal Environ Epidemiol. 2001;11(1):33–40.

    Article  CAS  PubMed  Google Scholar 

  47. Huang H, Lee S, Cao J, Zou C, Chen X, Fan S. Characterization of indoor outdoor organic and elemental carbon in PM2.5 during summer in Guangzhou city. Acta Sci Circumst (in Chinese). 2005;25(9):1242–9.

    CAS  Google Scholar 

  48. Huang H, Li S, Cao J, Zou C, Chen X, Fan S. Characterization and source of element components in indoor and outdoor PM2.5 during summer and winter in Guangzhou City. Acta Sci Circumst (in Chinese). 2007;23(4):383–8.

    CAS  Google Scholar 

  49. Huang J, Guo X. Research progress in exposure assessment methods of vehicle exhaust pollution. Environ Chem. 2011;01:138–42.

    Google Scholar 

  50. Huang LH, Pu ZN, Li M, Sundell J. Characterizing the indoor-outdoor relationship of fine particulate matter in non-heating season for urban residences in Beijing. PLoS One. 2015;10:0138559.

    Google Scholar 

  51. Hudda N, Gould T, Hartin K, Larson TV, Fruin SA. Emissions from an international airport increase particle number concentrations 4-fold at 10 km downwind. Environ Sci Technol. 2014;48:6628–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hu SC, Wang YC, Huang CY, Tseng YC. Measuring air quality in city areas by vehicular wireless sensor networks. Mobile applications: status and trends. J Syst Softw. 2011;84:2005–12.

    Article  Google Scholar 

  53. Hu W, Downward GS, Reiss B, Xu J, Bassig BA, Dean Hosgood H, Zhang LL, Seow WJ, Wu GP, Chapman RS, Tian LW, Wei FS, Vermeulen R, Lan Q. Personal and indoor PM2.5 exposure from burning solid fuels in vented and unvented stoves in a rural region of China with a high incidence of lung cancer. Environ Sci Technol. 2014;48(15):8456–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Janssen NAH, van Vliet PHN, Aarts F, Harssema H, Brunekreef B. Assessment of exposure to traffic related air pollution of children attending schools near motorways. Atmos Environ. 2001;35(22):3875–84.

    Article  CAS  Google Scholar 

  55. Jerrett M, Arain A, Kanaroglou P, Beckerman B, Potoglou D, Sahsuvaroglu T, Morrison J, Giovis C. A review and evaluation of intraurban air pollution exposure models. J Expo Anal Environ Epidemiol. 2005;15(2):185–204.

    Article  CAS  PubMed  Google Scholar 

  56. Jerrett M, Arain MA, Kanaroglou P, Beckerman B, Crouse D, Gilbert NL, Brook JR, Finkelstein N, Finkelstein MM. Modeling the intraurban variability of ambient traffic pollution in Toronto, Canada. J Toxicol Environ Health A. 2007;70(3–4):200–12.

    Article  CAS  PubMed  Google Scholar 

  57. Keady PB, Quant FR, Sem GJ. Differential mobility particle sizer: a new instrument for high-resolution aerosol size distribution measurement below 1 μm. TSI Quarterly. 1983;9:3–11.

    Google Scholar 

  58. Ke Z, Wang J, Zhen J, Lai S, Zhang Y. PM2.5 exposure assessment of school children at a primary school in Guangzhou, China. China. Environ Sci (in Chinese). 2011;31(10):1618–24.

    CAS  Google Scholar 

  59. Keller JP, Olives C, Kim SY, Sheppard L, Sampson PD, Szpiro AA, Oron AP, Lindstrom J, Vedal S, Kaufman JD. A unified spatiotemporal modeling approach for predicting concentrations of multiple air pollutants in the multi-ethnic study of atherosclerosis and air pollution. Environ Health Perspect. 2015;123(4):301–9.

    CAS  PubMed  Google Scholar 

  60. Knibbs LD, Hewson MG, Bechle MJ, Marshall JD, Barnett AG. A national satellite-based land-use regression model for air pollution exposure assessment in Australia. Environ Res. 2014:135204–11.

    Google Scholar 

  61. Kolb CE, Herndon SC, McManus JB, Shorter JH, Zahniser MS, Nelson DD, Jayne JT, Canagaratna MR, Worsnop DR. Mobile laboratory with rapid response instruments for real-time measurements of urban and regional trace gas and particulate distributions and emission source characteristics. Environ Sci Technol. 2004;38(21):5694–703.

    Article  CAS  PubMed  Google Scholar 

  62. Kulkarni P, Baron PA, Willeke K. Aerosol measurement: principles, techniques, and applications. New York: Wiley; 2011.

    Book  Google Scholar 

  63. Lebret E, Briggs D, van Reeuwijk H, Fischer P, Smallbone K, Harssema H, Kriz B, Gorynski P, Elliott P. Small area variations in ambient NO2 concentrations in four European areas. Atmos Environ. 2000;34(2):177–85.

    Article  CAS  Google Scholar 

  64. Lei X, Xiu G, Li B, Zhang K, Zhao M. Individual exposure of graduate students to PM2.5 and black carbon in Shanghai, China. Environ Sci Pollut Res Int. 2016;23(12):12120–7.

    Article  CAS  PubMed  Google Scholar 

  65. Levy I, Mihele C, Lu G, Narayan J, Hilker N, Brook JR. Elucidating multipollutant exposure across a complex metropolitan area by systematic deployment of a mobile laboratory. Atmos Chem Phys. 2014;14:7173–93.

    Article  CAS  Google Scholar 

  66. Li CS. Relationships of indoor/outdoor inhalable and respirable particles in domestic environments. Sci Total Environ. 1994;151(3):205–11.

    Article  CAS  PubMed  Google Scholar 

  67. Li TX, Cao SZ, Fan DL, Zhang YQ, Wang BB, Zhao XG, Leaderer BP, Shen GF, Zhang YW, Duan XL. Household concentrations and personal exposure of PM2.5 among urban residents using different cooking fuels. Sci Total Environ. 2016;548–549:6–12.

    Article  PubMed  CAS  Google Scholar 

  68. Liu QY, Liu YJ, Zhang MG. Personal exposure and source characteristics of carbonyl compounds and BTEXs within homes in Beijing, China. Build Environ. 2013;61:210–6.

    Article  Google Scholar 

  69. Li Y, Chen Z. A balance-point method for assessing the effect of natural ventilation on indoor particle concentrations. Atmos Environ. 2003;37:4277–85.

    Article  CAS  Google Scholar 

  70. Long CM, Suh HH, Catalano PJ, Koutrakis P. Using time- and size resolved particulate data to quantify indoor penetration and deposition behavior. Environ Sci Technol. 2001;35:2089–99.

    Article  CAS  PubMed  Google Scholar 

  71. Ma A, Hu H, An X, Gao F, Wang Q2. Using GIS to simulate distribution of ground concentration of urban air pollution. Urban Environment and Urban Ecology. 2007;02:32–4. 38

    Google Scholar 

  72. Madsen C, Carlsen KCL, Hoek G, Oftedal B, Nafstad P, Meliefste K, Jacobsen R, Nystad W, Carlsen KH, Brunekreef B. Modeling the intra-urban variability of outdoor traffic pollution in Oslo, Norway – a GA(2)LEN project. Atmos Environ. 2007;41(35):7500–11.

    Article  CAS  Google Scholar 

  73. Melymuk L, Bohlin-Nizzetto P, Kukučka P, Vojta Š, Kalina J, Čupr P, Klánová J. Seasonality and indoor/outdoor relationships of flame retardants and PCBs in residential air. Environ Pollut. 2016;218:392–401.

    Article  CAS  PubMed  Google Scholar 

  74. Meng J, Ma X. Kriging analysis and its application on urban atmospheric environmental pollution. Math Pract Theory. 2002;02:309–12.

    Google Scholar 

  75. Meng X, Chen L, Cai J, Zou B, Wu CF, Fu QY, Zhang Y, Liu Y, Kan HD. A land use regression model for estimating the NO2 concentration in Shanghai, China. Environ Res. 2015:137308–15.

    Google Scholar 

  76. Merbitz H, Fritz S, Schneider C. Mobile measurements and regression modeling of the spatial particulate matter variability in an urban area. Sci Total Environ. 2012;438:389–403.

    Article  CAS  PubMed  Google Scholar 

  77. Ministry of Environmental Protection of the People’s Republic of China. Report of environmental exposure related activity patterns research of Chinese population (Children). Beijing; 2016.

    Google Scholar 

  78. Monn C, Carabias V, Junker M, Waeber R, Karrer M, Wanner HU. Small-scale spatial variability of particulate matter <10 mu m (PM10) and nitrogen dioxide. Atmos Environ. 1997;31:2243–7.

    Article  CAS  Google Scholar 

  79. Moore DK, Jerrett M, Mack WJ, Kunzli N. A land use regression model for predicting ambient fine particulate matter across Los Angeles, CA. J Environ Monit. 2007;9(3):246–52.

    Article  CAS  PubMed  Google Scholar 

  80. Mulholland JA, Butler AJ, Wilkinson JG, Russell AG, Tolbert PE. Temporal and spatial distributions of ozone in Atlanta: regulatory and epidemiologic implications. J Air Waste Manage Assoc. 1998;48(5):418–26.

    Article  CAS  Google Scholar 

  81. National Research Council. Human exposure assessment for airborne pollutants: advances and opportunities. Washington, DC: National Academies Press; 1991.

    Google Scholar 

  82. National Research Council. Exposure science in the 21st century: a vision and a strategy. Washington, DC: National Academies Press; 2012.

    Google Scholar 

  83. Nieuwenhuijsen M, Paustenbach D, Duarte-Davidson R. New developments in exposure assessment: the impact on the practice of health risk assessment and epidemiological studies. Environ Int. 2006;32(8):996–1009.

    Article  CAS  PubMed  Google Scholar 

  84. Novotny EV, Bechle MJ, Millet DB, Marshall JD. National satellite-based land-use regression: NO2 in the United States. Environ Sci Technol. 2011;45(10):4407–14.

    Article  CAS  PubMed  Google Scholar 

  85. Nyberg F, Gustavsson P, Jarup L, Bellander T, Berglind N, Jakobsson R, Pershagen G. Urban air pollution and lung cancer in Stockholm. Epidemiology. 2000;11(5):487–95.

    Article  CAS  PubMed  Google Scholar 

  86. Padro-Martinez LT, Patton AP, Trull JB, Zamore W, Brugge D, Durant JL. Mobile monitoring of particle number concentration and other traffic-related air pollutants in a near-highway neighborhood over the course of a year. Atmos Environ. 2012;61:253–64.

    Article  CAS  PubMed Central  Google Scholar 

  87. Patashnick H, Rupprecht EG. Continuous PM-10 measurements using the tapered element oscillating microbalance. J Air Waste Manage Assoc. 1991;41:1079–83.

    Article  CAS  Google Scholar 

  88. Patton AP, Perkins J, Zamore W, Levy JI, Brugge D, Durant JL. Spatial and temporal differences in traffic-related air pollution in three urban neighborhoods near an interstate highway. Atmos Environ. 2014;99:309–21.

    Article  CAS  Google Scholar 

  89. Peters J, Van den Bossche J, Reggente M, Van Poppel M, De Baets B, Theunis J. Cyclist exposure to UFP and BC on urban routes in Antwerp, Belgium. Atmos Environ. 2014;92:31–43.

    Article  CAS  Google Scholar 

  90. Petit JE, Favez SJ, Crenn V, Sarda-Estève R, Bonnaire N, Močnik G, Dupont JC, Haeffelin M, Leoz-Garziandia E. Two years of near real-time chemical composition of submicron aerosols in the region of Paris using an Aerosol Chemical Speciation Monitor (ACSM) and a multi-wavelength Aethalometer. Atmos Chem Phys. 2015;15:2985–3005.

    Article  CAS  Google Scholar 

  91. Pikhart H, Bobak M, Gorynski P, Wojtyniak B, Danova J, Celko MA, Kriz B, Briggs D, Elliott P. Outdoor sulphur dioxide and respiratory symptoms in Czech and Polish school children: a small-area study (SAVIAH). Int Arch Occup Environ Health. 2001;74(8):574–8.

    Article  CAS  PubMed  Google Scholar 

  92. Pu ZN, Huang LH, Yue Y, Mo JH, Zhang YP. Characteristics of carbonyls in Beijing urban residences: concentrations, source strengths and influential factors. Procedia Eng. 2015;121:2052–9.

    Article  CAS  Google Scholar 

  93. Qi M, Zhu X, Du W, Chen Y, Chen Y, Huang T, Pan X, Zhong Q, Sun X, Zeng EY, Xing B, Tao S. Exposure and health impact evaluation based on simultaneous measurement of indoor and ambient PM2.5 in Haidian, Beijing. Environ Pollut. 2017;220(Pt A):704–12.

    Article  CAS  PubMed  Google Scholar 

  94. Riley EA, Gould T, Hartin K, Fruin SA, Simpson CD, Yost MG, Larson T. Ultrafine particle size as a tracer for aircraft turbine emissions. Atmos Environ. 2016;139:20–9.

    Article  CAS  Google Scholar 

  95. Ripoll A, Minguillón MC, Pey J, Jimenez JL, Day DA, Sosedova Y, Canonaco F, Prévôt ASH, Querol X, Alastuey A. Long-term real-time chemical characterization of submicron aerosols at Montsec (southern Pyrenees, 1570 m a.s.l.). Atmos Chem Phys. 2015;15:2935–51.

    Article  CAS  Google Scholar 

  96. Ross Z, English PB, Scalf R, Gunier R, Smorodinsky S, Wall S, Jerrett M. Nitrogen dioxide prediction in Southern California using land use regression modeling: potential for environmental health analyses. J Expo Sci Environ Epidemiol. 2006;16(2):106–14.

    Article  CAS  PubMed  Google Scholar 

  97. Ross Z, Jerrett M, Ito K, Tempalski B, Thurston GD. A land use regression for predicting fine particulate matter concentrations in the New York City region. Atmos Environ. 2007;41(11):2255–69.

    Article  CAS  Google Scholar 

  98. Shi S, Chen C, Zhao B. Modifications of exposure to ambient particulate matter: tackling bias in using ambient concentration as surrogate with particle infiltration factor and ambient exposure factor. Environ Pollut. 2017;220(Pt A):337–47.

    Article  CAS  PubMed  Google Scholar 

  99. Shi SS, Chen C, Zhao B. Air infiltration rate distributions of residences in Beijing. Build Environ. 2015;92:528–37.

    Article  Google Scholar 

  100. Shin WG, Pui DYH, Fissan H, Neumann S, Trampe A. Calibration and numerical simulation of nanoparticle surface area monitor (TSI model 3550 NSAM). In: Maynard AD, Pui DYH, editors. Nanotechnology and occupational health. Dordrecht: Springer; 2007. p. 61–9.

    Chapter  Google Scholar 

  101. Sioutas C, Abt E, Wolfson JM, Koutrakis P. Evaluation of the measurement performance of the scanning mobility particle sizer and aerodynamic particle sizer. Aerosol Sci Technol. 1999;30:84–92.

    Article  CAS  Google Scholar 

  102. Slowik JG, Cross ES, Han JH, Davidovits P, Onasch TB, Jayne JT, Williams LR, Canagaratna MR, Worsnop DR, Chakrabarty RK, Moosmüller H, Arnott WP, Schwarz JP, Gao RS, Fahey DW, Kok GL, Petzold A. An inter-comparison of instruments measuring black carbon content of soot particles. Aerosol Sci Technol. 2007;41:295–314.

    Article  CAS  Google Scholar 

  103. Smith D, Španěl P, Herbig J, Beauchamp J. Mass spectrometry for real-time quantitative breath analysis. J Breath Res. 2014;8(2):027101.

    Article  PubMed  CAS  Google Scholar 

  104. Stedman JR, Vincent KJ, Campbell GW, Goodwin JWL, Downing CEH. New high resolution maps of estimated background ambient NOx and NO2 concentrations in the UK. Atmos Environ. 1997;31(21):3591–602.

    Article  CAS  Google Scholar 

  105. Szpiro AA, Sampson PD, Sheppard L, Lumley T, Adar SD, Kaufman JD. Predicting intra-urban variation in air pollution concentrations with complex spatio-temporal dependencies. Environmetrics. 2010;21(6):606–31.

    CAS  Google Scholar 

  106. Thatcher TL, Lunden MM, Revzan KL, Sextro RG, Brown NJ. A concentration rebound method for measuring particle penetration and deposition in the indoor environment. Aerosol Sci Technol. 2003;37:847–64.

    Article  CAS  Google Scholar 

  107. Tung TCW, Chao CYH, John B. A methodology to investigate the particulate penetration coefficient through building shell. Atmos Environ. 1999;33:881–93.

    Article  CAS  Google Scholar 

  108. Van den Bossche J, Peters J, Verwaeren J, Botteldooren D, Theunis J, De Baets B. Mobile monitoring for mapping spatial variation in urban air quality: development and validation of a methodology based on an extensive dataset. Atmos Environ. 2015;105:148–61.

    Article  CAS  Google Scholar 

  109. Van Poppel M, Peters J, Bleux N. Methodology for setup and data processing of mobile air quality measurements to assess the spatial variability of concentrations in urban environments. Environ Pollut. 2013;183:224–33.

    Article  PubMed  CAS  Google Scholar 

  110. Venn A, Lewis S, Cooper M, Hubbard R, Hill I, Boddy R, Bell M, Britton J. Local road traffic activity and the prevalence, severity, and persistence of wheeze in school children: combined cross sectional and longitudinal study. Occup Environ Med. 2000;57(3):152–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Vienneau D, de Hoogh K, Bechle MJ, Beelen R, van Donkelaar A, Martin RV, Millet DB, Hoek G, Marshall JD. Western European land use regression incorporating satellite- and ground-based measurements of NO2 and PM10. Environ Sci Technol. 2013;47(23):13555–64.

    Article  CAS  PubMed  Google Scholar 

  112. Voisin D, Smith JN, Sakurai H, McMurry PH, Eisele FL. Thermal desorption chemical ionization mass spectrometer for ultrafine particle chemical composition. Aerosol Sci Technol. 2003;37:471–5.

    Article  CAS  Google Scholar 

  113. Wang F, Meng D, Li X, Tan J. Indoor-outdoor relationships of PM2.5 in four residential dwellings in winter in the Yangtze River Delta, China. Environ Pollut. 2016;215:280–9.

    Article  CAS  PubMed  Google Scholar 

  114. Wang J, Lai S, Ke Z, Zhang Y, Yin S, Zheng J. Exposure assessment, chemical characterization and source identification of PM2.5 for school children and industrial downwind residents in Guangzhou, China. Environ Geochem Health. 2014;36:385–97.

    Article  CAS  PubMed  Google Scholar 

  115. Wang M, Zhu T, Zheng J, Zhang RY, Zhang SQ, Xie XX, Han YQ, Li Y. Use of a mobile laboratory to evaluate changes in on-road air pollutants during the Beijing 2008 summer Olympics. Atmos Chem Phys. 2009;9:8247–63.

    Article  CAS  Google Scholar 

  116. Wang X, Bi X, Sheng G, Fu J. Hospital indoor PM10/PM2.5 and associated trace elements in Guangzhou, China. Sci Total Environ. 2006;366:124–35.

    Article  CAS  PubMed  Google Scholar 

  117. Wang Y, Xing Z, Zhao S, Zheng M, Mu C, Du K. Are emissions of black carbon from gasoline vehicles overestimated? Real-time, in situ measurement of black carbon emission factors. Sci Total Environ. 2016b;547:422–42.

    Article  CAS  PubMed  Google Scholar 

  118. Westerdahl D, Fruin S, Sax T, Fine PM, Sioutas C. Mobile platform measurements of ultrafine particles and associated pollutant concentrations on freeways and residential streets in Los Angeles. Atmos Environ. 2005;39:3597–610.

    Article  CAS  Google Scholar 

  119. Wu JS, Li JC, Peng J, Li WF, Xu G, Dong CC. Applying land use regression model to estimate spatial variation of PM2.5 in Beijing, China. Environ Sci Pollut Res Int. 2015;22(9):7045–61.

    Article  CAS  PubMed  Google Scholar 

  120. Wyler C, Braun-Fahrlander C, Kunzli N, Schindler C, Ackermann-Liebrich U, Perruchoud AP, Leuenberger P, Wuthrich B. Exposure to motor vehicle traffic and allergic sensitization. Epidemiology. 2000;11(4):450–6.

    Article  CAS  PubMed  Google Scholar 

  121. Xu J, Bai Z, You Y, Zhou J, Zhang J, Niu C, Liu Y, Zhang N, He F, Ding X. Residential indoor and personal PM10 exposures of ambient origin based on chemical components. J Expo Sci Environ Epidemiol. 2014;24(4):428–36.

    Article  CAS  PubMed  Google Scholar 

  122. Xu J, Zhang N, Han B, You Y, Zhou J, Zhang J, Niu C, Liu Y, He F, Ding X, Bai Z. Assessment on personal exposure to particulate compounds using an empirical exposure model in an elderly community in Tianjin, China. Sci Total Environ. 2016;572:1080–91.

    Article  CAS  PubMed  Google Scholar 

  123. Xu MM, Jia YP, Li GX, Pan XC. Evaluation of personal integrated exposure to fine particle in a community in Beijing. J Environ Health. 2011;28(11):941–3.

    Google Scholar 

  124. Yang H, Ma Y, Zhang Y. Application of atmospheric diffusion model system in Shenyang Liaoning urban and rural. Environ Sci Technol. 2005;01:7–9.

    Google Scholar 

  125. Yang M, Reilly PTA, Boraas KB, Whitten WB, Ramsey JM. Real-time chemical analysis of aerosol particles using an ion trap mass spectrometer. Rapid Commmun Mass Sp. 1996;10:347–51.

    Article  CAS  Google Scholar 

  126. Yao L, Yang LX, Chen JM, Toda K, Wang XF, Zhang JM, Yamasaki D, Nakamura Y, Sui X, Zheng LF, Wen L, Xu CH, Wang WX. Levels, indoor–outdoor relationships and exposure risks of airborne particle-associated perchlorate and chlorate in two urban areas in Eastern Asia. Chemosphere. 2015;135:31–7.

    Article  CAS  PubMed  Google Scholar 

  127. Zhang H, Wang X. Urban land use/cover dynamics of shanghai metropolitan area and its potential impact on local air environment. J Fudan University (Nat Sci). 2003;06:925–9.

    Google Scholar 

  128. Zou B, Wilson JG, Zhan FB, Zeng Y. Air pollution exposure assessment methods utilized in epidemiological studies. J Environ Monit. 2009;11(3):475–90.

    Article  CAS  PubMed  Google Scholar 

  129. Zwack LM, Paciorek CJ, Spengler JD, Levy JI. Characterizing local traffic contributions to particulate air pollution in street canyons using mobile monitoring techniques. Atmos Environ. 2011;45:2507–14.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhipeng Bai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Han, B., Hu, LW., Bai, Z. (2017). Human Exposure Assessment for Air Pollution. In: Dong, GH. (eds) Ambient Air Pollution and Health Impact in China. Advances in Experimental Medicine and Biology, vol 1017. Springer, Singapore. https://doi.org/10.1007/978-981-10-5657-4_3

Download citation

Publish with us

Policies and ethics