Skip to main content

Role of Zinc, Copper and Selenium in Nutritional Anemia

  • Chapter
  • First Online:

Abstract

Zinc is an essential trace element necessary for a broad category of enzymatic reactions, enzymes, transcription factors and proteins of the body. It is of prime importance in prenatal and postnatal growth and development. It is profoundly involved in normal endocrine functioning, sexual maturation and development of immunity. Its deficiency in the body either during intrauterine or postnatal life is responsible for recurrent infection of upper respiratory tract, diarrhoea, wasting and stunting in children. Zinc essentially regulates the process of erythropoiesis in the bone marrow. Zinc is the key component of GATA-1, also called as erythroid transcription factor. Zinc is required in different stages of erythropoiesis.

Hypocupremia is responsible for dysregulation of human pluripotent stem cell proliferation and/or an impediment in the cellular differentiation in the bone marrow. Copper deficiency anemia in children is typical of microcytic or normocytic or macrocytic with neutropenia and thrombocytopenia as the main characteristics.

Selenium is an important component of glutathione peroxidase, and its concentration in erythrocytes shows its protective effect on erythrocytes against oxidative damage. This suggests that increased oxidative stress could be another contributing factor for the development of anemia due to selenium deficiency.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adelekan DA (2003) Multiple micronutrient deficiencies in developing countries. Nutrition 19:473–474

    Article  PubMed  Google Scholar 

  • Allen LH, Rosado JL, Casterline JE, Lopez P, Munoz E, García OP (2000) Lack of hemoglobin response to iron supplementation in anemic Mexican preschoolers with multiple micronutrient deficiencies. Am J Clin Nutr 71(6):1485–1494

    CAS  PubMed  Google Scholar 

  • Allen L, Benoist B, Dary O, Hurrel R (2006) Guidelines on food fortification with micronutrients. WHO, Geneva

    Google Scholar 

  • Bales CW, Ritchie CS ( 2009) Handbook of clinical nutrition and aging. Springer, New York, p 151

    Google Scholar 

  • Berdanier CD, Dwyer JT, Feldman EB (2007) Handbook of nutrition and food. CRC Press, Boca Raton

    Google Scholar 

  • Bhan MK, Bhandari N, Bhatnagar S, Bahl R (1996) Epidemiology & management of persistent diarrhoea in children of developing countries. Indian J Med Res 104:103–114

    CAS  PubMed  Google Scholar 

  • Bloomer JR, Reuter RJ, Morton KO, Wehner JM (1983) Enzymatic formation of zinc-protoporphyrin by rat liver and its potential effect on hepatic heme metabolism. Gastroenterology 85:663–668

    CAS  PubMed  Google Scholar 

  • Brandt EG, Hellgren M, Brinck T, Bergman T, Edholm O (2009) Molecular dynamics study of zinc binding to cysteines in a peptide mimic of the alcohol dehydrogenase structural zinc site. Phys Chem 11(6):975–983

    CAS  Google Scholar 

  • Bremner I, Young BW, Mills CF (1976) Protective effect of zinc supplementation against copper toxicosis in sheep. Br J Nutr 36:551–561

    Article  CAS  PubMed  Google Scholar 

  • Bwibo NO, Neumann CG (2003) The need for animal source foods by Kenyan children. J Nutr 133:3936S–3940S

    CAS  PubMed  Google Scholar 

  • Caiulo A, Nicolis S, Bianchi P, Zuffardi O, Bardoni B, Maraschio P, Ottolenghi S, Camerino G, Giglioni B (1991) Mapping the gene encoding the human erythroid transcriptional factor NFE1-GF1 to Xp11.23. Hum Genet 86(4):388–390

    Article  CAS  PubMed  Google Scholar 

  • Chang KL, Hung TC, Hsieh BS, Chen YH, Chen TF, Cheng HL (2006) Zinc at pharmacologic concentrations affects cytokine expression and induces apoptosis of human peripheral blood mononuclear cells. Nutrition 22:465–474

    Article  CAS  PubMed  Google Scholar 

  • Chesters JK (1978) Biochemical functions of zinc in animals. World Rev Nutr Diet 32:135–164

    Article  CAS  PubMed  Google Scholar 

  • Cole CR, Grant FK, Swaby-Ellis ED, Smith JL, Jacques A, Northrop-Clewes CA, Caldwell KL, Pfeiffer CM, Zeigler TR (2010) Zinc and iron deficiency and their interrelations in low-income African American and Hispanic children in Atlanta. Am J Clin Nutr 91(4):1027–1034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cordano A (1998) Clinical manifestations of nutritional copper deficiency in infants and children. Am J Clin Nutr 67(5):10125–10165

    Google Scholar 

  • Crispino JD (2005) GATA1 in normal and malignant hematopoiesis. Semin Cell Dev Biol 16(1):137–147

    Article  CAS  PubMed  Google Scholar 

  • Danscher G (1984) Autometallography: a new technique for light and electron microscopic visualization of metals in biological tissues (gold, silver, metal sulphides and metal selenides). Histochemistry 81:331–335

    Article  CAS  PubMed  Google Scholar 

  • Danscher G, Howell G, Perez-Clausell J, Hertel N (1985) The dithizone, Timm’s sulphide silver and the selenium methods demonstrate a chelatable pool of zinc in CNS: a proton activation (PIXE) analysis of carbon tetrachloride extracts from rat brains and spinal cords intravitally treated with dithizone. Histochemistry 83:419–422

    Article  CAS  PubMed  Google Scholar 

  • Duncan GD, Gray LF, Daniel LJ (1953) Effect of zinc on cytochrome oxidase activity. Proc Soc Exp Biol Med 83:625–627

    Article  CAS  PubMed  Google Scholar 

  • Ece A, Uyanik BS, Iscan A, Ertan P, Yigitoglu MR (1997) Copper and decreased serum Zinc levels in children with Iron deficiency anemia. Biol Trace Elem Res 59(1–3):31–39

    Article  CAS  PubMed  Google Scholar 

  • Ensminger AH, Konlande JE (1993) Foods and nutrition encyclopedia. CRC Press, Boca Raton, pp 2368–2369

    Google Scholar 

  • European Food Safety Authority (2009) Scientific opinion of the panel on food additives and nutrient sources added to food on L-selenomethionine as a source of selenium added for nutritional purposes to food supplements, following a request from the European Commission. EFSA J 082:1–38

    Google Scholar 

  • Food and Nutrition Board (2000) Dietary reference intakes of vitamin A, vitamin K, As, B, Cr, Cu, I, Fe, Zn. National Academy Press, Washington, DC

    Google Scholar 

  • Forman WB, Sheehan D, Cappelli S, Coffman B (1990) Zinc abuse: an unsuspected cause of sideroblastic anemia. West J Med 152:190–192

    CAS  PubMed  PubMed Central  Google Scholar 

  • Frederickson CJ, Mocrieff DW (1994) Zinc-containing neurons. Biol Signals 3(3):127–139

    Article  CAS  PubMed  Google Scholar 

  • Frederickson CJ, Suh SW, Silva D, Frederickson CJ, Thomson RB (2000) Importance of zinc in the central nervous system: the zinc-containing neurons. J Nutr 130(5):1471S–1483S

    CAS  PubMed  Google Scholar 

  • Gashu D, Stoecker BJ, Bougma K, Adish A, Haki GD, Marquis GS (2015) Stunting, selenium deficiency and anemia are associated with poor cognitive performance in preschool children from rural Ethiopia. Nutr J 15:38

    Article  Google Scholar 

  • Graham GG, Cordano A (1976) Copper deficiency in human subjects. In: Prasad AS, Oberleas D (eds) Trace elements in human health and disease, Zinc and copper, vol I. Academic, New York, pp 363–372

    Google Scholar 

  • Gurgoze MK, Ayguna AD, Olcucu A, Dogana Y, Yilmaza E (2004) Plasma selenium status in children with iron deficiency anemia. J Trace Elem Med Biol 18(2):193–196

    Article  CAS  PubMed  Google Scholar 

  • Gurgoze MK, Olcucu A, Aygun AD, Taskin E, Kilic M (2006) Serum and hair levels of zinc, selenium, iron, and copper in children with iron-deficiency anemia. Biol Trace Elem Res 111(1–3):23–29

    Article  CAS  PubMed  Google Scholar 

  • Halfdanarson TR, Kumar N, Li CY, Phyliky RL, Hogan WJ (2008) Hematological manifestations of copper deficiency: a retrospective review. Eur J Haematol 80(6):523–531

    Article  CAS  PubMed  Google Scholar 

  • Hambidge KM, Casey CE, Krebs NF (1986) Zinc. In: Mertz W (ed) Trace elements in human and animal nutrition. Academic, New York, pp 1–37

    Google Scholar 

  • Hamedani P, Hashmi K, Manji M (1987) Iron depletion and anemia: prevalence, consequences, diagnostic and therapeutic implications in a developing Pakistani population. Curr Med Res Opin 10(7):480–485

    Article  CAS  PubMed  Google Scholar 

  • Hatfield DL, Tsuji PA, Carlson BA, Gladyshev VN (2014) Selenium and selenocysteine: roles in cancer, health, and development. Trends Biochem Sci 39(3):112–120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haug FM (1967) Electron microscopical localization of the zinc in hippocampal, mossy fiber synapses by a modified sulfide silver procedure. For Hist 8:355–368

    CAS  Google Scholar 

  • Hegazy AA, Zaher MM, Abd El-Hafez M, Morsy AA, Saleh RA (2010) Relation between anemia and blood levels of lead, copper, zinc and iron among children. BMC Res Notes 3: 133

    Google Scholar 

  • Hodge D, Coghill E, Keys J, Maguire T, Hartmann B, McDowall A, Weiss M, Grimmond S, Perkins A (2006) A global role for EKLF in definitive and primitive erythropoiesis. Blood 107:3359–3370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoffmann PR (2007) Mechanisms by which selenium influences immune responses. Arch Immunol Ther Exp 55(5):289–297

    Article  CAS  Google Scholar 

  • Huber KL, Cousins RJ (1993) Zinc metabolism and metallothionein expression in bone marrow during erythropoiesis. Am J Phys 264:E770–E775

    CAS  Google Scholar 

  • Ibs KH, Rink L (2003) Zinc-altered immune function. J Nutr 133(5 Suppl 1):1452S–1456S

    CAS  PubMed  Google Scholar 

  • Indian Council Of Medical Research (2010) Nutrient requirement and recommended dietary allowances for Indians. Available at: http://www.icmr.nic.in/final/rda-2010.pdf

  • Institute of Medicine, Food and Nutrition Board (2000) Dietary reference intakes: vitamin c, vitamin e, selenium, and carotenoids. National Academy Press, Washington, DC

    Google Scholar 

  • Johnson LE (2008) Copper. Merck manual home health handbook. Merck Sharp & Dohme Corp

    Google Scholar 

  • Klevay LM (2006) Myelodysplasia, myeloneuropathy, and copper deficiency. Mayo Clin Proc 81(1):132–132

    Article  PubMed  Google Scholar 

  • Klug A (1999) Zinc finger peptides for the regulation of gene expression. J Mol Biol 293(2):215–218

    Article  CAS  PubMed  Google Scholar 

  • Ko LJ, Engel JD (1993) DNA binding specificities of the GATA transcription factor family. Mol Cell Biol 13(7):4011–4022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kodama H, Fujisawa C (2009) Copper metabolism and inherited copper transport disorders: molecular mechanisms, screening, and treatment. Metallomics 1(1):42–52

    Article  CAS  Google Scholar 

  • Krishna SS, Majumdar I, Grishin NV (2003) Structural classification of zinc fingers survey and summary. Nucleic Acids Res 31(2):532–550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar N (2006) Copper deficiency myelopathy (human swayback). Mayo Clin Proc 81(10):1371–1138

    Article  CAS  PubMed  Google Scholar 

  • Laity JH, Lee BM, Wright PE (2001) Zinc finger proteins: new insights into structural and functional diversity. Curr Opin Struct Biol 11(1):39–46

    Article  CAS  PubMed  Google Scholar 

  • Levander OA (1986) Selenium. In: Mertz W (ed) Trace elements in human and animal nutrition. Academic, Orlando, pp 209–279

    Chapter  Google Scholar 

  • Linder MC, Wooten L, Cerveza P, Cotton S, Shulze R, Lomeli N (1998) Copper transport. Am J Clin Nutr 67(5):965S–971S

    CAS  PubMed  Google Scholar 

  • Magee AC, Matrone G (1960) Studies on growth, copper metabolism and iron metabolism on rats fed high levels of zinc. J Nutr 72:233–242

    CAS  PubMed  Google Scholar 

  • Magneson GR, Puvathingal JM, Ray WJ (1987) The concentrations of free Mg2+ and free Zn2+ in equine blood plasma. J Biol Chem 262:11140–11148

    CAS  PubMed  Google Scholar 

  • Mostert V, Hill KE, Burk RF (2003) Loss of activity of the selenoenzyme thioredoxin reductase causes induction of hepatic heme oxygenase-1. FEBS Lett 541:85–88

    Article  CAS  PubMed  Google Scholar 

  • Mutanen M (1986) Bio-availability of selenium. Ann Clin Res 18:48–54

    CAS  PubMed  Google Scholar 

  • National Institutes of Health (2016) Selenium: dietary supplement fact sheet. Available at: https://ods.od.nih.gov/factsheets/Selenium-HealthProfessional/#h2

  • National Research Council, Food Nutrition Board (1980) Copper. Recommended dietary allowances. NRC/NAS, Washington, DC, pp 151–154

    Google Scholar 

  • Nhien NV, Khan NC, Ninh NX, Huan PV, Hop LT, Lam NT, Ota F, Yabutani T, Hoa VQ, Motonaka J, Nishikawa T, Nakaya Y (2008) Micronutrient deficiencies and anemia among preschool children in rural Vietnam. Asia Pac J Clin Nutr 17(1):48–55

    PubMed  Google Scholar 

  • Nishiyama S, Irisa K, Matsubasa T, Higashi A, Matsuda I (1998) Zinc status relates to hematological deficits in middle-aged women. J Am Coll Nutr 17:291–295

    Article  CAS  PubMed  Google Scholar 

  • Papp LV, Lu J, Holmgren A, Khanna KK (2007) From selenium to selenoproteins: synthesis, identity, and their role in human health. Antioxid Redox Signal 9(7):775–806

    Article  CAS  PubMed  Google Scholar 

  • Papp LV, Holmgren A, Khanna KK (2010) Selenium and selenoproteins in health and disease. Antioxid Redox Signal 12(7):793–795

    Article  CAS  PubMed  Google Scholar 

  • Patterson BH, Zech LA, Swanson CA, Levander OA (1993) Kinetic modelling of selenium in Humans using stable isotope tracers. J Trace Elem Electrolytes Health Dis 7:117–120

    Google Scholar 

  • Pennington J, Schoen S (1995) Contributions of food groups to estimated intakes of nutritional elements: results from the FDA total diet studies, 1982–1991. Int J Vitam Nutr Res 66(4):342–349

    Google Scholar 

  • Percival SS, Harris ED (1990) Characterization of the cellular uptake mechanism. Am J Phys Cell Phys 258(1):C140–C146

    CAS  Google Scholar 

  • Perkins A (1993) Erythroid Kruppel like factor: from fishing expedition to gourmet meal. Int J Biochem Cell Biol 31:1175–1192

    Article  Google Scholar 

  • Pevny LM, Simon C, Robertson E, Klein WH, Tsai SF, Agati VD, Orkin SH, Costantini F (1991) Erythroid differentiation in chimaeric mice blocked by a targeted mutation in the gene for transcription factor GATA-1. Nature 349:257–260

    Article  CAS  PubMed  Google Scholar 

  • Pevny LC, Lin S, Agati VD, Simon MC, Orkin SH, Costantini F (1995) Development of hematopoietic cells lacking transcription factor GATA-1. Development 121:163–172

    CAS  PubMed  Google Scholar 

  • Plum LA, Rink L, Hajo H (2010) The essential toxin: impact of zinc on human health. Int J Environ Res Public Health 7(4):1342–1365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Porter H (1966) In: Peisach J, Aisen P, Blumberg WE (eds) In the biochemistry of copper. Academic Press, New York, p 159

    Google Scholar 

  • Prasad AS (2003) Zinc deficiency: has been known of for 40 years but ignored by global health organization. Br Med J 326(7386):409–410

    Article  Google Scholar 

  • Prasad AS, Miale A Jr, Farid Z, Sanstead HH, Schulert A (1963) Zinc metabolism in patients with the syndrome of iron deficiency anemia, hepatosplenomegaly, dwarfism, and hypogonadism. J Lab Clin Med 61:537–549

    CAS  PubMed  Google Scholar 

  • Rashid N, Ghaznavi S (2015) Association of levels of serum selenium with anemia in primary school children. Biomedica 31(2)

    Google Scholar 

  • Renty BF, Leslie CC (2009) The important role of the apoptotic effects of zinc in the development of cancers. J Cell Biochem 106(5):750–757

    Article  Google Scholar 

  • Roman M, Jitaru P, Barbante C (2014) Selenium biochemistry and its role for human health. Metallomics 6(1):25–54

    Article  CAS  PubMed  Google Scholar 

  • Ryu MS, Lichten LA, Liuzzi JP, Cousins RJ (2008) Zinc transporters ZnT1 (Slc30a1), Zip8 (Slc39a8), and Zip10 (Slc39a10) in mouse red blood cells are differentially regulated during erythroid development and by dietary zinc deficiency. J Nutr 138(11):2076–2083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schubert WK, Lahey ME (1959) Copper and protein depletion complicating hypoferic anemia of infancy. Pediatrics 24:710–733

    CAS  PubMed  Google Scholar 

  • Steinbrenner H, Sies H (2013) Selenium homeostasis and antioxidant selenoproteins in brain: implications for disorders in the central nervous system. Arch Biochem Biophys 536(2):152–157

    Article  CAS  PubMed  Google Scholar 

  • Stoltzfus RJ (2003) Iron deficiency: global prevalence and consequences. Food Nutr Bull 24:S99–103

    Article  PubMed  Google Scholar 

  • Sunde RA (2006) Selenium. In: Bowman B, Russell R (eds) Present knowledge in nutrition. ILSI, Washington, DC, pp 480–497

    Google Scholar 

  • Sunde RA (2012) Selenium. In: Ross AC, Caballero B, Cousins RJ, Tucker KL, Ziegler TR (eds) Modern nutrition in health and disease. Lippincott Williams & Wilkins, Philadelphia, pp 225–237

    Google Scholar 

  • Terry EN, Diamond AM (2012) Selenium. In: Erdman JW, Macdonald IA, Zeisel SH (eds) Present knowledge in nutrition. Wiley-Blackwell, Washington, DC, pp 568–587

    Chapter  Google Scholar 

  • Tokuda Y, Yokoyama S, Tsuji M, Sugita T, Tajima T, Mitomi T (1986) Cu deficiency in an infant on prolonged total parenteral nutrition. JPEN J Parenter Enteral Nutr 10:242–244

    Article  CAS  PubMed  Google Scholar 

  • Trainor CD, Ghirlando R, Simpson MA (2000) GATA zinc finger interactions modulate DNA binding and transactivation. J Biol Chem 275:28157–28166

    CAS  PubMed  Google Scholar 

  • Tron K, Novosyadlyy R, Dudas J, Samoylenko A, Kietzmann T, Ramadori G (2005) Upregulation of heme oxygenase-1 gene by turpentine oil-induced localized inflammation: involvement of interleukin-6. Lab Investig 85:376–387

    Article  CAS  PubMed  Google Scholar 

  • Turgut S, Polat A, Inan M, Turget M, Emmungil G, Bican M, Karakus TY, Genec O (2007) Interaction between anemia and blood levels of iron, zinc, copper, cadmium and lead in children. Indian J Pediatr 74(9):827–830

    Article  PubMed  Google Scholar 

  • Turgut S, Hacioglu S, Emmungil G, Turgut G, Keskin A (2009) Relations between iron deficiency anemia and serum levels of copper, zinc, cadmium and lead. Pol J Environ Stud 18(2):273–277

    CAS  Google Scholar 

  • USDA National Nutrient Database for Standard Reference (2007) Zinc content of selected foods per common measure. USDA, Washington, DC

    Google Scholar 

  • Vest KE, Hashemi HF, Cobine PA (2013) Chapter 13 The copper metallome in eukaryotic cells. In: Banci, L (ed) Metallomics and the cell. Metal ions in life sciences. Springer, Dordrecht

    Google Scholar 

  • Wajeunnesa M, Begum N, Ferdousi S, Akhter S, Quarishi SB (2009) Serum zinc and copper in iron deficient adolescents. J Bangladesh Soc Physiologist 4(2):77–80

    Google Scholar 

  • Wapnir RA (1990) Protein nutrition and mineral absorption. CRC Press, Boca Raton

    Google Scholar 

  • Wierzbicka D, Gromadzka G (2014) Ceruloplasmin, hephaestin and zyklopen: the three multicopper oxidases important for human iron metabolism. Postepy Hig Med Dosw 68:912–924

    Article  Google Scholar 

  • Williams DM (1983) Copper deficiency in humans. Semin Hematol 20:118–128

    CAS  PubMed  Google Scholar 

  • Woddowso EM (1974) Trace elements in foetal and early postnatal development. Proc Nutr Soc 33:275

    Article  Google Scholar 

  • World Health Organization (1987) Selenium. WHO, Geneva, Environmental Health Criteria, 58

    Google Scholar 

  • World Health Organization (2007) The impact of zinc supplementation on childhood mortality and severe morbidity. WHO

    Google Scholar 

  • Wu FY, Huang WJ, Sinclair RB, Powers L (1992) The structure of the zinc sites of Escherichia coli DNA-dependent RNA polymerase. J Biol Chem 267:25560–25567

    CAS  PubMed  Google Scholar 

  • Yetgin S, Hincal F, Basaran N, Ciliv G (1992) Serum selenium status in children with iron deficiency anemia. Acta Haematol 88(4):185–188

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Gupta, A. (2017). Role of Zinc, Copper and Selenium in Nutritional Anemia. In: Nutritional Anemia in Preschool Children. Springer, Singapore. https://doi.org/10.1007/978-981-10-5178-4_10

Download citation

Publish with us

Policies and ethics