Skip to main content

Exploring New Therapies for a Serological Cure of Chronic Hepatitis B

  • Chapter
  • First Online:
Book cover Hepatitis B Virus and Liver Disease

Abstract

Chronic hepatitis B is a global health issue, as WHO estimates about 240 millions in the world. Without antiviral therapies, a quarter of the HBV carriers will eventually succumb to cirrhosis or hepatocellular carcinoma (Fattovich et al. 2004; Di Bisceglie 2009; Beasley 1988; Liaw et al. 1988). Active therapies have been developed, such as pegylated interferon and antiviral nucleos(t)ide analogs, in the last 20 years (Belloni et al. 2012; Papatheodoridis et al. 2002; Lau et al. 2005). Despite of an effective control of HBV replication by long-term NA treatments, the success of eliminating intrahepatic HBV or infected hepatocytes remains low (about 1–10% of treated patients). A search for novel, curative antiviral therapies has been actively taken up in many institutes. Practically, current NA therapies effectively eliminate extracellular virions, and so the next step will be to eliminate the intracellular viral RNAs, viral proteins, or eventually viral DNAs. The theme has become a more and more important medical task, especially after the advent of highly effective direct antiviral agents curing essentially hepatitis C. Therefore, there are many excellent reviews on the HBV life cycle or immunology that point out or summarize possible targets for future antiviral development (Lanford et al. 2013; Isogawa et al. 2005; Ma et al. 2015; Tang et al. 2016; Petersen et al. 2016). This chapter will skip these overlapping parts but only describe certain exploratory experiments toward novel targets ongoing. The main approach is to develop antiviral immunotherapies which can eradicate intrahepatic HBV DNAs or the HBV-infected hepatocytes in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Basagoudanavar SH, Perlman DH, Hu J. Regulation of hepadnavirus reverse transcription by dynamic nucleocapsid phosphorylation. J Virol. 2007;81(4):1641–9.

    Article  CAS  PubMed  Google Scholar 

  • Beasley RP. Hepatitis B virus. The major etiology of hepatocellular carcinoma. Cancer. 1988;61(10):1942–56.

    Article  CAS  PubMed  Google Scholar 

  • Belloni L, et al. IFN-alpha inhibits HBV transcription and replication in cell culture and in humanized mice by targeting the epigenetic regulation of the nuclear cccDNA minichromosome. J Clin Invest. 2012;122(2):529–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bertoletti A, Tan AT, Gehring AJ. HBV-specific adaptive immunity. Virus. 2009;1(2):91–103.

    Article  CAS  Google Scholar 

  • Boni C, et al. Characterization of hepatitis B virus (HBV)-specific T-cell dysfunction in chronic HBV infection. J Virol. 2007;81(8):4215–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chou HH, et al. Age-related immune clearance of hepatitis B virus infection requires the establishment of gut microbiota. Proc Natl Acad Sci U S A. 2015;112(7):2175–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Das A, et al. IL-10-producing regulatory B cells in the pathogenesis of chronic hepatitis B virus infection. J Immunol. 2012;189(8):3925–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daub H, et al. Identification of SRPK1 and SRPK2 as the major cellular protein kinases phosphorylating hepatitis B virus core protein. J Virol. 2002;76(16):8124–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Di Bisceglie AM. Hepatitis B and hepatocellular carcinoma. Hepatology. 2009;49(5 Suppl):S56–60.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dunn C, et al. Temporal analysis of early immune responses in patients with acute hepatitis B virus infection. Gastroenterology. 2009;137(4):1289–300.

    Article  CAS  PubMed  Google Scholar 

  • Dupinay T, et al. Discovery of naturally occurring transmissible chronic hepatitis B virus infection among Macaca fascicularis from Mauritius Island. Hepatology. 2013;58(5):1610–20.

    Article  CAS  PubMed  Google Scholar 

  • Fattovich G, et al. Hepatocellular carcinoma in cirrhosis: incidence and risk factors. Gastroenterology. 2004;127(5 Suppl 1):S35–50.

    Article  PubMed  Google Scholar 

  • Gazina EV, et al. Core protein phosphorylation modulates pregenomic RNA encapsidation to different extents in human and duck hepatitis B viruses. J Virol. 2000;74(10):4721–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo H, Zhou T, Jiang D, Cuconati A, Xiao G-H, Block TM, Guo J-T. Regulation of Hepatitis B Virus Replication by the Phosphatidylinositol 3-Kinase-Akt Signal Transduction Pathway. J Virol. 2007;81(18):10072–80.

    Google Scholar 

  • Huang LR, et al. An immunocompetent mouse model for the tolerance of human chronic hepatitis B virus infection. Proc Natl Acad Sci U S A. 2006;103(47):17862–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hyams KC. Risks of chronicity following acute hepatitis B virus infection: a review. Clin Infect Dis. 1995;20(4):992–1000.

    Article  CAS  PubMed  Google Scholar 

  • Isogawa M, et al. Toll-like receptor signaling inhibits hepatitis B virus replication in vivo. J Virol. 2005;79(11):7269–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jung J, et al. Phosphoacceptors threonine 162 and serines 170 and 178 within the carboxyl-terminal RRRS/T motif of the hepatitis B virus core protein make multiple contributions to hepatitis B virus replication. J Virol. 2014;88(16):8754–67.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kann M, Gerlich WH. Effect of core protein phosphorylation by protein kinase C on encapsidation of RNA within core particles of hepatitis B virus. J Virol. 1994;68(12):7993–8000.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kau JH, Ting LP. Phosphorylation of the core protein of hepatitis B virus by a 46-kilodalton serine kinase. J Virol. 1998;72(5):3796–803.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lan YT, et al. Roles of the three major phosphorylation sites of hepatitis B virus core protein in viral replication. Virology. 1999;259(2):342–8.

    Article  CAS  PubMed  Google Scholar 

  • Lanford RE, et al. GS-9620, an oral agonist of Toll-like receptor-7, induces prolonged suppression of hepatitis B virus in chronically infected chimpanzees. Gastroenterology. 2013;144(7):1508–17. 1517 e1–10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lau GK, et al. Peginterferon Alfa-2a, lamivudine, and the combination for HBeAg-positive chronic hepatitis B. N Engl J Med. 2005;352(26):2682–95.

    Article  CAS  PubMed  Google Scholar 

  • Lewellyn EB, Loeb DD. Serine phosphoacceptor sites within the core protein of hepatitis B virus contribute to genome replication pleiotropically. PLoS One. 2011;6(2):e17202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liao W, Ou JH. Phosphorylation and nuclear localization of the hepatitis B virus core protein: significance of serine in the three repeated SPRRR motifs. J Virol. 1995;69(2):1025–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liaw YF, et al. The development of cirrhosis in patients with chronic type B hepatitis: a prospective study. Hepatology. 1988;8(3):493–6.

    Article  CAS  PubMed  Google Scholar 

  • Lin YJ, et al. Hepatitis B virus core antigen determines viral persistence in a C57BL/6 mouse model. Proc Natl Acad Sci U S A. 2010;107(20):9340–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin Y-J, et al. Hepatitis B virus Nucleocapsid but not free Core antigen controls viral clearance in mice. J Virol. 2012;86(17):9266–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ludgate L, et al. Cyclin-dependent kinase 2 phosphorylates s/t-p sites in the hepadnavirus core protein C-terminal domain and is incorporated into viral capsids. J Virol. 2012;86(22):12237–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma Z, et al. Contribution of toll-like receptors to the control of hepatitis B virus infection by initiating antiviral innate responses and promoting specific adaptive immune responses. Cell Mol Immunol. 2015;12(3):273–82.

    Article  CAS  PubMed  Google Scholar 

  • Mahoney FJ. Update on diagnosis, management, and prevention of hepatitis B virus infection. Clin Microbiol Rev. 1999;12(2):351–66.

    CAS  PubMed  PubMed Central  Google Scholar 

  • McMahon BJ, et al. Acute hepatitis B virus infection: relation of age to the clinical expression of disease and subsequent development of the carrier state. J Infect Dis. 1985;151(4):599–603.

    Article  CAS  PubMed  Google Scholar 

  • Melegari M, Wolf SK, Schneider RJ. Hepatitis B virus DNA replication is coordinated by core protein serine phosphorylation and HBx expression. J Virol. 2005;79(15):9810–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Milich D, Liang TJ. Exploring the biological basis of hepatitis B e antigen in hepatitis B virus infection. Hepatology. 2003;38(5):1075–86.

    Article  CAS  PubMed  Google Scholar 

  • Nassal M. The arginine-rich domain of the hepatitis B virus core protein is required for pregenome encapsidation and productive viral positive-strand DNA synthesis but not for virus assembly. J Virol. 1992;66(7):4107–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Papatheodoridis GV, Dimou E, Papadimitropoulos V. Nucleoside analogues for chronic hepatitis B: antiviral efficacy and viral resistance. Am J Gastroenterol. 2002;97(7):1618–28.

    Article  CAS  PubMed  Google Scholar 

  • Peng XH, et al. High persistence rate of hepatitis B virus in a hydrodynamic injection-based transfection model in C3H/HeN mice. World J Gastroenterol. 2015;21(12):3527–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perlman DH, et al. Reverse transcription-associated dephosphorylation of hepadnavirus nucleocapsids. Proc Natl Acad Sci U S A. 2005;102(25):9020–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petersen J, Thompson AJ, Levrero M. Aiming for cure in HBV and HDV infection. J Hepatol. 2016;65(4):835–48.

    Article  PubMed  Google Scholar 

  • Protzer U, Maini MK, Knolle PA. Living in the liver: hepatic infections. Nat Rev Immunol. 2012;12(3):201–13.

    Article  CAS  PubMed  Google Scholar 

  • Purcell RH, et al. Modification of chronic hepatitis-B virus infection in chimpanzees by administration of an interferon inducer. Lancet. 1976;2(7989):757–61.

    Article  CAS  PubMed  Google Scholar 

  • Rasaiyaah J, et al. HIV-1 evades innate immune recognition through specific cofactor recruitment. Nature. 2013;503(7476):402–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi B, et al. HBsAg inhibits IFN-alpha production in plasmacytoid dendritic cells through TNF-alpha and IL-10 induction in monocytes. PLoS One. 2012;7(9):e44900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang L, et al. The current status and future directions of hepatitis B antiviral drug discovery. Expert Opin Drug Discov. 2016;12((1)):5–15.

    PubMed  PubMed Central  Google Scholar 

  • Tzeng HT, et al. PD-1 blockage reverses immune dysfunction and hepatitis B viral persistence in a mouse animal model. PLoS One. 2012;7(6):e39179.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • von Weizsacker F, et al. The tupaia model for the study of hepatitis B virus: direct infection and HBV genome transduction of primary tupaia hepatocytes. Methods Mol Med. 2004;96:153–61.

    Google Scholar 

  • Wieland SF, Chisari FV. Stealth and cunning: hepatitis B and hepatitis C viruses. J Virol. 2005;79(15):9369–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wieland S, et al. Genomic analysis of the host response to hepatitis B virus infection. Proc Natl Acad Sci U S A. 2004;101(17):6669–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wynne SA, Crowther RA, Leslie AG. The crystal structure of the human hepatitis B virus capsid. Mol Cell. 1999;3(6):771–80.

    Article  CAS  PubMed  Google Scholar 

  • Xu Y, et al. HBsAg inhibits TLR9-mediated activation and IFN-alpha production in plasmacytoid dendritic cells. Mol Immunol. 2009;46(13):2640–6.

    Article  CAS  PubMed  Google Scholar 

  • Zhang TY, et al. Prolonged suppression of HBV in mice by a novel antibody that targets a unique epitope on hepatitis B surface antigen. Gut. 2016;65(4):658–71.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pei-Jer Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Horng, JH., Wu, CR., Chen, PJ. (2018). Exploring New Therapies for a Serological Cure of Chronic Hepatitis B. In: Kao, JH., Chen, DS. (eds) Hepatitis B Virus and Liver Disease. Springer, Singapore. https://doi.org/10.1007/978-981-10-4843-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-4843-2_17

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-4842-5

  • Online ISBN: 978-981-10-4843-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics