Skip to main content

ROS and nNOS in the Regulation of Disuse-Induced Skeletal Muscle Atrophy

  • Chapter
  • First Online:
The Plasticity of Skeletal Muscle

Abstract

Skeletal muscles are our biomechanical engine, generating force and power for movement. Therefore, skeletal muscles are also a primary center of metabolic activity, serving as a sink for glucose and substrate storage of amino acids. In order to respond to changing mechanical demands, skeletal muscles adapt their mass to overloading and unloading by altering the balance between protein synthesis and protein degradation. Mechanical unloading, or disuse, elicits rapid skeletal muscle fiber atrophy, where the underlying mechanisms regulation of protein synthesis and degradation appear to center around an Akt-FoxO3a axis, NF-kappaB, and proteolytic pathways including calpains and the ubiquitin- proteasome system. Recent research has focused on the process of mechanotransduction, the ability to sense and as contributory to unloading-induced muscle atrophy, as a trigger of muscle remodeling. A recently discovered mechanotransductive phenomenon is the translocation of the mu-splice variant of neuronal nitric oxide synthase (nNOSĪ¼) from the cell membrane to the cytosol. Recently, our laboratory causally linked translocation of nNOSĪ¼ in unloaded skeletal muscle with elevated oxidative stress. Sources of reactive oxygen species (ROS) during unloading may include mitochondria, xanthine oxidase, and NADPH oxidase-2 (Nox2). The combination of increase oxidative stress and reduced stress response proteins (e.g., heat shock proteins) permits the rapid degradation of contractile proteins and removal of partially oxidized proteins. Detailed discussion of the pathways involved are discussed within our review.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abrigo J, Rivera JC, Simon F, Cabrera D, Cabello-Verrugio C (2016) Transforming growth factor type beta (TGF-beta) requires reactive oxygen species to induce skeletal muscle atrophy. Cell Signal 28:366ā€“376

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  2. Adams V, Yu J, Mobius-Winkler S, Linke A, Weigl C, Hilbrich L, Schuler G, Hambrecht R (1997) Increased inducible nitric oxide synthase in skeletal muscle biopsies from patients with chronic heart failure. Biochem Mol Med 61:152ā€“160

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  3. Allen DL, Linderman JK, Roy RR, Grindeland RE, Mukku V, Edgerton VR (1997) Growth hormone/IGF-I and/or resistive exercise maintains myonuclear number in hindlimb unweighted muscles. J Appl Physiol (1985) 83:1857ā€“1861

    CASĀ  Google ScholarĀ 

  4. Arbogast S, Smith J, Matuszczak Y, Hardin BJ, Moylan JS, Smith JD, Ware J, Kennedy AR, Reid MB (2007) Bowman-Birk inhibitor concentrate prevents atrophy, weakness, and oxidative stress in soleus muscle of hindlimb-unloaded mice. J Appl Physiol (1985) 102:956ā€“964

    ArticleĀ  CASĀ  Google ScholarĀ 

  5. Awede B, Thissen J, Gailly P, Lebacq J (1999) Regulation of IGF-I, IGFBP-4 and IGFBP-5 gene expression by loading in mouse skeletal muscle. FEBS Lett 461:263ā€“267

    Google ScholarĀ 

  6. Batt J, Bain J, Goncalves J, Michalski B, Plant P, Fahnestock M, Woodgett J (2006) Differential gene expression profiling of short and long term denervated muscle. FASEB journal: official publication of the Federation of American Societies for Experimental Biology 20:115ā€“117

    CASĀ  Google ScholarĀ 

  7. Betters JL, Criswell DS, Shanely RA, Van Gammeren D, Falk D, Deruisseau KC, Deering M, Yimlamai T, Powers SK (2004) Trolox attenuates mechanical ventilation-induced diaphragmatic dysfunction and proteolysis. Am J Respir Crit Care Med 170:1179ā€“1184

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  8. Bodine SC, Baehr LM (2014) Skeletal muscle atrophy and the E3 ubiquitin ligases MuRF1 and MAFbx/atrogin-1. Am J Phys Endocrinol Metab 307:E469ā€“E484

    ArticleĀ  CASĀ  Google ScholarĀ 

  9. Bodine SC, Latres E, Baumhueter S, Lai VK, Nunez L, Clarke BA, Poueymirou WT, Panaro FJ, Na E, Dharmarajan K, Pan ZQ, Valenzuela DM, DeChiara TM, Stitt TN, Yancopoulos GD, Glass DJ (2001) Identification of ubiquitin ligases required for skeletal muscle atrophy. Science 294:1704ā€“1708

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  10. Brunet A, Bonni A, Zigmond MJ, Lin MZ, Juo P, Hu LS, Anderson MJ, Arden KC, Blenis J, Greenberg ME (1999) Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 96:857ā€“868

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  11. Chen YW, Gregory CM, Scarborough MT, Shi R, Walter GA, Vandenborne K (2007) Transcriptional pathways associated with skeletal muscle disuse atrophy in humans. Physiol Genomics 31:510ā€“520

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  12. Daiber A (2010) Redox signaling (cross-talk) from and to mitochondria involves mitochondrial pores and reactive oxygen species. Biochim Biophys Acta 1797:897ā€“906

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  13. de Boer MD, Selby A, Atherton P, Smith K, Seynnes OR, Maganaris CN, Maffulli N, Movin T, Narici MV, Rennie MJ (2007) The temporal responses of protein synthesis, gene expression and cell signalling in human quadriceps muscle and patellar tendon to disuse. J Physiol 585:241ā€“251

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  14. Derbre F, Ferrando B, Gomez-Cabrera MC, Sanchis-Gomar F, Martinez-Bello VE, Olaso-Gonzalez G, Diaz A, Gratas-Delamarche A, Cerda M, Vina J (2012) Inhibition of xanthine oxidase by allopurinol prevents skeletal muscle atrophy: role of p 38 MAPKinase and E3 ubiquitin ligases. PLoS One 7:e46668

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  15. Ebert SM, Dyle MC, Kunkel SD, Bullard SA, Bongers KS, Fox DK, Dierdorff JM, Foster ED, Adams CM (2012) Stress-induced skeletal muscle Gadd45a expression reprograms myonuclei and causes muscle atrophy. J Biol Chem 287:27290ā€“27301

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  16. Egerman MA, Glass DJ (2014) Signaling pathways controlling skeletal muscle mass. Crit Rev Biochem Mol Biol 49:59ā€“68

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  17. Ferrando AA, Lane HW, Stuart CA, Davis-Street J, Wolfe RR (1996) Prolonged bed rest decreases skeletal muscle and whole body protein synthesis. Am J Phys 270:E627ā€“E633

    CASĀ  Google ScholarĀ 

  18. Ferreira R, Vitorino R, Neuparth MJ, Appell HJ, Duarte JA, Amado F (2009) Proteolysis activation and proteome alterations in murine skeletal muscle submitted to 1Ā week of hindlimb suspension. Eur J Appl Physiol 107:553ā€“563

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  19. Fox DK, Ebert SM, Bongers KS, Dyle MC, Bullard SA, Dierdorff JM, Kunkel SD, Adams CM (2014) p 53 and ATF4 mediate distinct and additive pathways to skeletal muscle atrophy during limb immobilization. Am J Phys Endocrinol Metab 307:E245ā€“E261

    ArticleĀ  CASĀ  Google ScholarĀ 

  20. Glover EI, Yasuda N, Tarnopolsky MA, Abadi A, Phillips SM (2010) Little change in markers of protein breakdown and oxidative stress in humans in immobilization-induced skeletal muscle atrophy. Appl Physiol Nutr Metabol = Physiologie appliquee, nutrition et metabolisme 35:125ā€“133

    ArticleĀ  CASĀ  Google ScholarĀ 

  21. Goldberg AL, Etlinger JD, Goldspink DF, Jablecki C (1975) Mechanism of work-induced hypertrophy of skeletal muscle. Med Sci Sports 7:185ā€“198

    CASĀ  PubMedĀ  Google ScholarĀ 

  22. Hornberger TA, Hunter RB, Kandarian SC, Esser KA (2001) Regulation of translation factors during hindlimb unloading and denervation of skeletal muscle in rats. Am J Physiol Cell Physiol 281:C179ā€“C187

    CASĀ  PubMedĀ  Google ScholarĀ 

  23. Hudson MB, Smuder AJ, Nelson WB, Wiggs MP, Shimkus KL, Fluckey JD, Szeto HH, Powers SK (2015) Partial support ventilation and mitochondrial-targeted antioxidants protect against ventilator-induced decreases in diaphragm muscle protein synthesis. PLoS One 10:e0137693

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  24. Hunter RB, Kandarian SC (2004) Disruption of either the Nfkb1 or the Bcl3 gene inhibits skeletal muscle atrophy. J Clin Invest 114:1504ā€“1511

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  25. Hunter RB, Stevenson E, Koncarevic A, Mitchell-Felton H, Essig DA, Kandarian SC (2002) Activation of an alternative NF-kappaB pathway in skeletal muscle during disuse atrophy. FASEB J 16:529ā€“538

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  26. Ikemoto M, Nikawa T, Kano M, Hirasaka K, Kitano T, Watanabe C, Tanaka R, Yamamoto T, Kamada M, Kishi K (2002) Cysteine supplementation prevents unweighting-induced ubiquitination in association with redox regulation in rat skeletal muscle. Biol Chem 383:715ā€“721

    CASĀ  PubMedĀ  Google ScholarĀ 

  27. Ito N, Ruegg UT, Kudo A, Miyagoe-Suzuki Y, Takeda S (2013) Activation of calcium signaling through Trpv1 by nNOS and peroxynitrite as a key trigger of skeletal muscle hypertrophy. Nat Med 19:101ā€“106

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  28. Jackman RW, Cornwell EW, Wu CL, Kandarian SC (2013) Nuclear factor-kappaB signalling and transcriptional regulation in skeletal muscle atrophy. Exp Physiol 98:19ā€“24

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  29. Kandarian SC, Stevenson EJ (2002) Molecular events in skeletal muscle during disuse atrophy. Exerc Sport Sci Rev 30:111ā€“116

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  30. Kelleher AR, Kimball SR, Dennis MD, Schilder RJ, Jefferson LS (2013) The mTORC1 signaling repressors REDD1/2 are rapidly induced and activation of p70S6K1 by leucine is defective in skeletal muscle of an immobilized rat hindlimb. Am J Phys Endocrinol Metab 304:E229ā€“E236

    ArticleĀ  CASĀ  Google ScholarĀ 

  31. Koncarevic A, Jackman RW, Kandarian SC (2007) The ubiquitin-protein ligase Nedd4 targets Notch1 in skeletal muscle and distinguishes the subset of atrophies caused by reduced muscle tension. FASEB J 21:427ā€“437

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  32. Kondo H, Miura M, Itokawa Y (1991) Oxidative stress in skeletal muscle atrophied by immobilization. Acta Physiol Scand 142:527ā€“528

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  33. Kondo H, Nakagaki I, Sasaki S, Hori S, Itokawa Y (1993) Mechanism of oxidative stress in skeletal muscle atrophied by immobilization. Am J Phys 265:E839ā€“E844

    CASĀ  Google ScholarĀ 

  34. Kwak YD, Wang B, Li JJ, Wang R, Deng Q, Diao S, Chen Y, Xu R, Masliah E, Xu H, Sung JJ, Liao FF (2012) Upregulation of the E3 ligase NEDD4-1 by oxidative stress degrades IGF-1 receptor protein in neurodegeneration. J Neurosci Off J Soc Neurosci 32:10971ā€“10981

    ArticleĀ  CASĀ  Google ScholarĀ 

  35. Latres E, Amini AR, Amini AA, Griffiths J, Martin FJ, Wei Y, Lin HC, Yancopoulos GD, Glass DJ (2005) Insulin-like growth factor-1 (IGF-1) inversely regulates atrophy-induced genes via the phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin (PI3K/Akt/mTOR) pathway. J Biol Chem 280:2737ā€“2744

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  36. Lawler JM, Kunst M, Hord JM, Lee Y, Joshi K, Botchlett RE, Ramirez A, Martinez DA (2014) EUK-134 ameliorates nNOSmu translocation and skeletal muscle fiber atrophy during short-term mechanical unloading. Am J Physiol Regul Integr Comp Physiol 306:R470ā€“R482

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  37. Lawler JM, Rodriguez DA, Hord JM (2016) Mitochondria in the middle: exercise preconditioning protection of striated muscle. J Physiol 594(18):5161ā€“5183

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  38. Lawler JM, Song W, Demaree SR (2003) Hindlimb unloading increases oxidative stress and disrupts antioxidant capacity in skeletal muscle. Free Radic Biol Med 35:9ā€“16

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  39. Lecker SH, Jagoe RT, Gilbert A, Gomes M, Baracos V, Bailey J, Price SR, Mitch WE, Goldberg AL (2004) Multiple types of skeletal muscle atrophy involve a common program of changes in gene expression. FASEB J 18:39ā€“51

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  40. Llano-Diez M, Renaud G, Andersson M, Marrero HG, Cacciani N, Engquist H, Corpeno R, Artemenko K, Bergquist J, Larsson L (2012) Mechanisms underlying ICU muscle wasting and effects of passive mechanical loading. Crit Care 16:R209

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  41. Lokireddy S, Wijesoma IW, Teng S, Bonala S, Gluckman PD, McFarlane C, Sharma M, Kambadur R (2012) The ubiquitin ligase Mul1 induces mitophagy in skeletal muscle in response to muscle-wasting stimuli. Cell Metab 16:613ā€“624

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  42. Lomonosova YN, Kalamkarov GR, Bugrova AE, Shevchenko TF, Kartashkina NL, Lysenko EA, Shvets VI, Nemirovskaya TL (2011) Protective effect of L-Arginine administration on proteins of unloaded m. soleus. Biochemistry (Mosc) 76:571ā€“580

    ArticleĀ  CASĀ  Google ScholarĀ 

  43. Madrigal-Matute J, Fernandez-Laso V, Sastre C, Llamas-Granda P, Egido J, Martin-Ventura JL, Zalba G, Blanco-Colio LM (2015) TWEAK/Fn14 interaction promotes oxidative stress through NADPH oxidase activation in macrophages. Cardiovasc Res 108:139ā€“147

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  44. Marimuthu K, Murton AJ, Greenhaff PL (2011) Mechanisms regulating muscle mass during disuse atrophy and rehabilitation in humans. J Appl Physiol (1995) 110:555ā€“560

    ArticleĀ  Google ScholarĀ 

  45. Marzec M, Eletto D, Argon Y (2012) GRP94: an HSP90-like protein specialized for protein folding and quality control in the endoplasmic reticulum. Biochim Biophys Acta 1823:774ā€“787

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  46. Matuszczak Y, Arbogast S, Reid MB (2004) Allopurinol mitigates muscle contractile dysfunction caused by hindlimb unloading in mice. Aviat Space Environ Med 75:581ā€“588

    CASĀ  PubMedĀ  Google ScholarĀ 

  47. McClung JM, Van Gammeren D, Whidden MA, Falk DJ, Kavazis AN, Hudson MB, Gayan-Ramirez G, Decramer M, DeRuisseau KC, Powers SK (2009) Apocynin attenuates diaphragm oxidative stress and protease activation during prolonged mechanical ventilation. Crit Care Med 37:1373ā€“1379

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  48. Milan G, Romanello V, Pescatore F, Armani A, Paik JH, Frasson L, Seydel A, Zhao J, Abraham R, Goldberg AL, Blaauw B, DePinho RA, Sandri M (2015) Regulation of autophagy and the ubiquitin-proteasome system by the FoxO transcriptional network during muscle atrophy. Nat Commun 6:6670

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  49. Min K, Smuder AJ, Kwon OS, Kavazis AN, Szeto HH, Powers SK (2011) Mitochondrial-targeted antioxidants protect skeletal muscle against immobilization-induced muscle atrophy. J Appl Physiol (1985) 111:1459ā€“1466

    ArticleĀ  CASĀ  Google ScholarĀ 

  50. Mittal A, Bhatnagar S, Kumar A, Lach-Trifilieff E, Wauters S, Li H, Makonchuk DY, Glass DJ, Kumar A (2010) The TWEAK-Fn14 system is a critical regulator of denervation-induced skeletal muscle atrophy in mice. J Cell Biol 188:833ā€“849

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  51. Munoz KA, Satarug S, Tischler ME (1993) Time course of the response of myofibrillar and sarcoplasmic protein metabolism to unweighting of the soleus muscle. Metab Clin Exp 42:1006ā€“1012

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  52. Murata M, Kosaka R, Kurihara K, Yamashita S, Tachibana H (2016) Delphinidin prevents disuse muscle atrophy and reduces stress-related gene expression. Biosci Biotechnol Biochem 16:1ā€“5

    Google ScholarĀ 

  53. Nakao R, Hirasaka K, Goto J, Ishidoh K, Yamada C, Ohno A, Okumura Y, Nonaka I, Yasutomo K, Baldwin KM, Kominami E, Higashibata A, Nagano K, Tanaka K, Yasui N, Mills EM, Takeda S, Nikawa T (2009) Ubiquitin ligase Cbl-b is a negative regulator for insulin-like growth factor 1 signaling during muscle atrophy caused by unloading. Mol Cell Biol 29:4798ā€“4811

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  54. Nguyen HX, Tidball JG (2003) Expression of a muscle-specific, nitric oxide synthase transgene prevents muscle membrane injury and reduces muscle inflammation during modified muscle use in mice. J Physiol 550:347ā€“356

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  55. Nin N, Cassina A, Boggia J, Alfonso E, Botti H, Peluffo G, Trostchansky A, Batthyany C, Radi R, Rubbo H, Hurtado FJ (2004) Septic diaphragmatic dysfunction is prevented by Mn(III)porphyrin therapy and inducible nitric oxide synthase inhibition. Intensive Care Med 30:2271ā€“2278

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  56. Oā€™Loghlen A, Perez-Morgado MI, Salinas M, Martin ME (2006) N-acetyl-cysteine abolishes hydrogen peroxide-induced modification of eukaryotic initiation factor 4F activity via distinct signalling pathways. Cell Signal 18:21ā€“31

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  57. Phillips SM, Glover EI, Rennie MJ (2009) Alterations of protein turnover underlying disuse atrophy in human skeletal muscle. J Appl Physiol (1985) 107:645ā€“654

    ArticleĀ  CASĀ  Google ScholarĀ 

  58. Phillips SM, McGlory C (2014) CrossTalk proposal: the dominant mechanism causing disuse muscle atrophy is decreased protein synthesis. J Physiol 592:5341ā€“5343

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  59. Pierre N, Barbe C, Gilson H, Deldicque L, Raymackers JM, Francaux M (2014) Activation of ER stress by hydrogen peroxide in C2C12 myotubes. Biochem Biophys Res Commun 450:459ā€“463

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  60. Powers SK, Kavazis AN, McClung JM (2007) Oxidative stress and disuse muscle atrophy. J Appl Physiol (1985) 102:2389ā€“2397

    ArticleĀ  CASĀ  Google ScholarĀ 

  61. Ramaswamy S, Nakamura N, Sansal I, Bergeron L, Sellers WR (2002) A novel mechanism of gene regulation and tumor suppression by the transcription factor FKHR. Cancer Cell 2:81ā€“91

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  62. Reid MB, Judge AR, Bodine SC (2014) CrossTalk opposing view: the dominant mechanism causing disuse muscle atrophy is proteolysis. J Physiol 592:5345ā€“5347

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  63. Rudnick J, Puttmann B, Tesch PA, Alkner B, Schoser BG, Salanova M, Kirsch K, Gunga HC, Schiffl G, Luck G, Blottner D (2004) Differential expression of nitric oxide synthases (NOS 1-3) in human skeletal muscle following exercise countermeasure during 12Ā weeks of bed rest. FASEB J 18:1228ā€“1230

    CASĀ  PubMedĀ  Google ScholarĀ 

  64. Sacheck JM, Hyatt JP, Raffaello A, Jagoe RT, Roy RR, Edgerton VR, Lecker SH, Goldberg AL (2007) Rapid disuse and denervation atrophy involve transcriptional changes similar to those of muscle wasting during systemic diseases. FASEB J 21:140ā€“155

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  65. Salazar JJ, Michele DE, Brooks SV (2010) Inhibition of calpain prevents muscle weakness and disruption of sarcomere structure during hindlimb suspension. J Appl Physiol (1985) 108:120ā€“127

    ArticleĀ  CASĀ  Google ScholarĀ 

  66. Sandona D, Desaphy JF, Camerino GM, Bianchini E, Ciciliot S, Danieli-Betto D, Dobrowolny G, Furlan S, Germinario E, Goto K, Gutsmann M, Kawano F, Nakai N, Ohira T, Ohno Y, Picard A, Salanova M, Schiffl G, Blottner D, Musaro A, Ohira Y, Betto R, Conte D, Schiaffino S (2012) Adaptation of mouse skeletal muscle to long-term microgravity in the MDS mission. PLoS One 7:e33232

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  67. Sandri M, Sandri C, Gilbert A, Skurk C, Calabria E, Picard A, Walsh K, Schiaffino S, Lecker SH, Goldberg AL (2004) Foxo transcription factors induce the atrophy-related ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy. Cell 117:399ā€“412

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  68. Sartori R, Schirwis E, Blaauw B, Bortolanza S, Zhao J, Enzo E, Stantzou A, Mouisel E, Toniolo L, Ferry A, Stricker S, Goldberg AL, Dupont S, Piccolo S, Amthor H, Sandri M (2013) BMP signaling controls muscle mass. Nat Genet 45:1309ā€“1318

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  69. Schiaffino S, Dyar KA, Ciciliot S, Blaauw B, Sandri M (2013) Mechanisms regulating skeletal muscle growth and atrophy. FEBS J 280:4294ā€“4314

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  70. Sellman JE, DeRuisseau KC, Betters JL, Lira VA, Soltow QA, Selsby JT, Criswell DS (2006) In vivo inhibition of nitric oxide synthase impairs upregulation of contractile protein mRNA in overloaded plantaris muscle. J Appl Physiol (1985) 100:258ā€“265

    ArticleĀ  CASĀ  Google ScholarĀ 

  71. Semprun-Prieto LC, Sukhanov S, Yoshida T, Rezk BM, Gonzalez-Villalobos RA, Vaughn C, Michael Tabony A, Delafontaine P (2011) Angiotensin II induced catabolic effect and muscle atrophy are redox dependent. Biochem Biophys Res Commun 409:217ā€“221

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  72. Senf SM, Dodd SL, McClung JM, Judge AR (2008) Hsp70 overexpression inhibits NF-kappaB and Foxo3a transcriptional activities and prevents skeletal muscle atrophy. FASEB J 22:3836ā€“3845

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  73. Shenton D, Smirnova JB, Selley JN, Carroll K, Hubbard SJ, Pavitt GD, Ashe MP, Grant CM (2006) Global translational responses to oxidative stress impact upon multiple levels of protein synthesis. J Biol Chem 281:29011ā€“29021

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  74. Siu PM, Alway SE (2005) Id2 and p 53 participate in apoptosis during unloading-induced muscle atrophy. Am J Physiol Cell Physiol 288:C1058ā€“C1073

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  75. Smuder AJ, Hudson MB, Nelson WB, Kavazis AN, Powers SK (2012) Nuclear factor-kappaB signaling contributes to mechanical ventilation-induced diaphragm weakness*. Crit Care Med 40:927ā€“934

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  76. Smuder AJ, Kavazis AN, Hudson MB, Nelson WB, Powers SK (2010) Oxidation enhances myofibrillar protein degradation via calpain and caspase-3. Free Radic Biol Med 49:1152ā€“1160

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  77. Solomon V, Goldberg AL (1996) Importance of the ATP-ubiquitin-proteasome pathway in the degradation of soluble and myofibrillar proteins in rabbit muscle extracts. J Biol Chem 271:26690ā€“26697

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  78. Song R, Peng W, Zhang Y, Lv F, Wu HK, Guo J, Cao Y, Pi Y, Zhang X, Jin L, Zhang M, Jiang P, Liu F, Meng S, Zhang X, Jiang P, Cao CM, Xiao RP (2013) Central role of E3 ubiquitin ligase MG53 in insulin resistance and metabolic disorders. Nature 494:375ā€“379

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  79. Stevens-Lapsley JE, Ye F, Liu M, Borst SE, Conover C, Yarasheski KE, Walter GA, Sweeney HL, Vandenborne K (2010) Impact of viralmediated IGF-I gene transfer on skeletal muscle following cast immobilization. Am J Physiol Endocrinol Metab 299:E730ā€“E740

    Google ScholarĀ 

  80. Stitt TN, Drujan D, Clarke BA, Panaro F, Timofeyva Y, Kline WO, Gonzalez M, Yancopoulos GD, Glass DJ (2004) The IGF-1/PI3K/Akt pathway prevents expression of muscle atrophy-induced ubiquitin ligases by inhibiting FOXO transcription factors. Mol Cell 14:395ā€“403

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  81. Sun QA, Hess DT, Nogueira L, Yong S, Bowles DE, Eu J, Laurita KR, Meissner G, Stamler JS (2011) Oxygen-coupled redox regulation of the skeletal muscle ryanodine receptor-Ca2+ release channel by NADPH oxidase 4. Proc Natl Acad Sci U S A 108:16098ā€“16103

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  82. Suwa M, Nakano H, Radak Z, Kumagai S (2015) Effects of Nitric Oxide Synthase Inhibition on Fiber-Type Composition, Mitochondrial Biogenesis, and SIRT1 Expression in Rat Skeletal Muscle. J Sports Sci Med 14:548ā€“555

    PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  83. Suzuki N, Motohashi N, Uezumi A, Fukada S, Yoshimura T, Itoyama Y, Aoki M, Miyagoe-Suzuki Y, Takeda S (2007) NO production results in suspension-induced muscle atrophy through dislocation of neuronal NOS. J Clin Invest 117:2468ā€“2476

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  84. Taillandier D, Aurousseau E, Meynial-Denis D, Bechet D, Ferrara M, Cottin P, Ducastaing A, Bigard X, Guezennec CY, Schmid HP et al (1996) Coordinate activation of lysosomal, Ca 2+āˆ’activated and ATP-ubiquitin-dependent proteinases in the unweighted rat soleus muscle. Biochem J 316(Pt 1):65ā€“72

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  85. Talbert EE, Smuder AJ, Min K, Kwon OS, Powers SK (2013a) Calpain and caspase-3 play required roles in immobilization-induced limb muscle atrophy. J Appl Physiol (1985b) 114:1482ā€“1489

    ArticleĀ  CASĀ  Google ScholarĀ 

  86. Talbert EE, Smuder AJ, Min K, Kwon OS, Szeto HH, Powers SK (2013b) Immobilization-induced activation of key proteolytic systems in skeletal muscles is prevented by a mitochondria-targeted antioxidant. J Appl Physiol (1985) 115:529ā€“538

    ArticleĀ  CASĀ  Google ScholarĀ 

  87. Tan PL, Shavlakadze T, Grounds MD, Arthur PG (2015) Differential thiol oxidation of the signaling proteins Akt, PTEN or PP2A determines whether Akt phosphorylation is enhanced or inhibited by oxidative stress in C2C12 myotubes derived from skeletal muscle. Int J Biochem Cell Biol 62:72ā€“79

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  88. Tesch PA, von Walden F, Gustafsson T, Linnehan RM, Trappe TA (2008) Skeletal muscle proteolysis in response to short-term unloading in humans. J Appl Physiol (1985) 105:902ā€“906

    ArticleĀ  PubMed CentralĀ  Google ScholarĀ 

  89. Thomason DB, Biggs RB, Booth FW (1989) Protein metabolism and beta-myosin heavy-chain mRNA in unweighted soleus muscle. Am J Phys 257:R300ā€“R305

    CASĀ  Google ScholarĀ 

  90. Tidball JG, Lavergne E, Lau KS, Spencer MJ, Stull JT, Wehling M (1998) Mechanical loading regulates NOS expression and activity in developing and adult skeletal muscle. Am J Phys 275:C260ā€“C266

    CASĀ  Google ScholarĀ 

  91. Urso ML, Scrimgeour AG, Chen YW, Thompson PD, Clarkson PM (2006) Analysis of human skeletal muscle after 48Ā h immobilization reveals alterations in mRNA and protein for extracellular matrix components. J Appl Physiol (1985) 101:1136ā€“1148

    ArticleĀ  CASĀ  Google ScholarĀ 

  92. Vitadello M, Germinario E, Ravara B, Libera LD, Danieli-Betto D, Gorza L (2014a) Curcumin counteracts loss of force and atrophy of hindlimb unloaded rat soleus by hampering neuronal nitric oxide synthase untethering from sarcolemma. J Physiol 592:2637ā€“2652

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  93. Vitadello M, Gherardini J, Gorza L (2014b) The stress protein/chaperone Grp94 counteracts muscle disuse atrophy by stabilizing subsarcolemmal neuronal nitric oxide synthase. Antioxid Redox Signal 20:2479ā€“2496

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  94. Waddell DS, Baehr LM, van den Brandt J, Johnsen SA, Reichardt HM, Furlow JD, Bodine SC (2008) The glucocorticoid receptor and FOXO1 synergistically activate the skeletal muscle atrophy-associated MuRF1 gene. Am J Phys Endocrinol Metab 295:E785ā€“E797

    ArticleĀ  CASĀ  Google ScholarĀ 

  95. Watson ML, Baehr LM, Reichardt HM, Tuckermann JP, Bodine SC, Furlow JD (2012) A cell-autonomous role for the glucocorticoid receptor in skeletal muscle atrophy induced by systemic glucocorticoid exposure. Am J Phys Endocrinol Metab 302:E1210ā€“E1220

    ArticleĀ  CASĀ  Google ScholarĀ 

  96. Whidden MA, McClung JM, Falk DJ, Hudson MB, Smuder AJ, Nelson WB, Powers SK (2009) Xanthine oxidase contributes to mechanical ventilation-induced diaphragmatic oxidative stress and contractile dysfunction. J Appl Physiol (1985) 106:385ā€“394

    ArticleĀ  CASĀ  Google ScholarĀ 

  97. Wu CL, Kandarian SC, Jackman RW (2011) Identification of genes that elicit disuse muscle atrophy via the transcription factors p 50 and Bcl-3. PLoS One 6:e16171

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  98. You JS, Park MN, Song W, Lee YS (2010) Dietary fish oil alleviates soleus atrophy during immobilization in association with Akt signaling to p70s6k and E3 ubiquitin ligases in rats. Applied Physiol, Nutr Metab = Physiologie appliquee, nutrition et metabolisme 35:310ā€“318

    ArticleĀ  CASĀ  Google ScholarĀ 

  99. Zhang L, Kimball SR, Jefferson LS, Shenberger JS (2009) Hydrogen peroxide impairs insulin-stimulated assembly of mTORC1. Free Radic Biol Med 46:1500ā€“1509

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John M. Lawler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Hord, J.M., Lawler, J.M. (2017). ROS and nNOS in the Regulation of Disuse-Induced Skeletal Muscle Atrophy. In: Sakuma, K. (eds) The Plasticity of Skeletal Muscle. Springer, Singapore. https://doi.org/10.1007/978-981-10-3292-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-3292-9_11

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-3291-2

  • Online ISBN: 978-981-10-3292-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics