Skip to main content

A Hybrid RANS and Kinematic Simulation of Wind Load Effects on Full-Scale Tall Buildings

  • Chapter
  • First Online:
High-Rise Buildings under Multi-Hazard Environment
  • 917 Accesses

Abstract

Up till recent years, predicting wind loads on full-scale tall buildings using Large Eddy Simulation (LES) is still impractical due to a prohibitively large amount of meshes required, especially in the vicinity of the near-wall layers of the turbulent flow. A hybrid approach is proposed for solving pressure fluctuations of wind flows around tall buildings based on the Reynolds Averaged Navier–Stokes (RANS) simulation, which requires coarse meshes, and the mesh-free Kinematic Simulation (KS). While RANS is commonly used to provide mean flow characteristics of turbulent airflows, KS is able to generate an artificial fluctuating velocity field that satisfies both the flow continuity condition and the specific energy spectra of atmospheric turbulence. The kinetic energy is split along three orthogonal directions to account for anisotropic effects in atmospheric boundary layer. The periodic vortex shedding effects can partially be incorporated by the use of an energy density function peaked at a Strouhal wave number. The pressure fluctuations can then be obtained by solving the Poisson equation corresponding to the generated velocity fluctuation field by the KS. An example of the CAARC building demonstrates the efficiency of the synthesized approach and shows good agreements with the results of LES and wind tunnel measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Australian/New Zealand Standard. (2002). Structural design actions: Wind actions. AS1170.2:2002. Standards Australia: Sydney.

    Google Scholar 

  • Architectural Institute of Japan Recommendations. (2005). Guide for numerical prediction of wind loads on buildings. Tokyo, Japan.

    Google Scholar 

  • Bechara, W., Bailly, C., & Lafon, P. (1994). Stochastic approach to noise modeling for free turbulent flows. AIAA Journal, 32, 455–463.

    Article  MATH  Google Scholar 

  • Cao, S., Tamura, Y., Kikuchi, N., Saito, M., Nakayama, I., & Matsuzaki, Y. (2009). Wind characteristics of a strong typhoon. Journal of Wind Engineering and Industrial Aerodynamics, 97(1), 11–21.

    Article  Google Scholar 

  • Carassale, L., & Solar, G. (2006). Monte Carlo simulation of wind velocity fields on complex structures. Journal of Wind Engineering and Industrial Aerodynamics, 94, 323–339.

    Article  Google Scholar 

  • Cermak, J. E. (2003). Wind-tunnel development and trends in applications to civil engineering. Journal of Wind Engineering and Industrial Aerodynamics, 91, 355–370.

    Article  Google Scholar 

  • Durbin, P. A. (1993). Reynolds stress model for near-wall turbulence. Journal of Fluid Mechanics, 249, 465–498.

    Article  Google Scholar 

  • ESDU International plc. (2001). Characteristics of atmospheric turbulence near the ground. Data Item: Engineering Sciences Data Unit. 85020.

    Google Scholar 

  • Fung, J. C. H., & Perkins, R. J. (2008). Dispersion modeling by kinematic simulation: cloud dispersion model. Fluid Dynamics Research, 40(4), 273–309.

    Article  MathSciNet  MATH  Google Scholar 

  • Fung, J. C. H., Hunt, J. C. R., Malik, N. A., & Perkins, R. J. (1992). Kinematic simulation of homogeneous turbulence by unsteady random Fourier modes. Journal of Fluid Mechanics, 236, 281–318.

    Article  MathSciNet  MATH  Google Scholar 

  • Girimaji, S. S. (2000). Pressure-strain correlation modelling of complex turbulent flows. Journal of Fluid Mechanics, 422, 91–123.

    Article  MATH  Google Scholar 

  • Girimaji, S. S. (2004). A new perspective on realizability of turbulence models. Journal of Fluid Mechanics, 512, 191–210.

    Article  MathSciNet  MATH  Google Scholar 

  • Gurley, K. R., Tognarelli, M. A., & Kareem, A. (1997). Analysis and simulation tools for wind engineering. Probabilistic Engineering Mechanics, 12(1), 9–31.

    Article  Google Scholar 

  • Hanjalic, K., & Kenjeres, S. (2008). Some developments in turbulence modeling for wind and environmental engineering. Journal of Wind Engineering and Industrial Aerodynamics, 96(10–11), 1537–1570.

    Article  Google Scholar 

  • Harlow, F. H., & Welch, J. E. (1965). Numerical calculations of time dependent viscous incompressible flow of fluid with a free surface. Physics of Fluids, 8(12), 2182–2189.

    Article  MATH  Google Scholar 

  • Hinze, J. O. (1975). Turbulence (2nd ed.). New York: McGraw-Hill.

    Google Scholar 

  • Huang, M. F., Chan, C. M., Kwok, K. C. S., & Hitchcock, P. A. (2007). “Dynamic analysis of wind-induced lateral-torsional response of tall buildings with coupled modes. In Proceedings of the 12th International Conference on Wind Engineering (pp. 295–302). Cairns, Australia, 2–6 July, 2007.

    Google Scholar 

  • Huang, S., Li, Q. S., & Xu, S. (2007b). Numerical evaluation of wind effects on a tall steel building by CFD. Journal of Constructional Steel Research, 63, 612–627.

    Article  Google Scholar 

  • Iaccarino, G., Ooi, A., Durbin, P. A., & Behnia, M. (2003). Reynolds averaged simulation of unsteady separated flow. International Journal of Heat and Fluid Flow, 24, 147–156.

    Article  Google Scholar 

  • Karweit, M., Juve, B. D., & Comte-Bellot, G. (1991). Simulation of the propagation of an acoustic wave through a turbulent velocity field: A study of phase variance. Journal of the Acoustical Society of America, 89(1), 52–62.

    Article  Google Scholar 

  • Kraichnan, R. H. (1970). Diffusion by a random velocity. Physics of Fluids, 13(1), 22–31.

    Article  MATH  Google Scholar 

  • Leonard, B. P. (1979). A stable and accurate convective modeling procedure based on quadratic upstream interpolation. Computer Methods in Applied Mechanics and Engineering, 19, 59–98.

    Article  MATH  Google Scholar 

  • Launder, B. E., Reece, G. J., & Rodi, W. (1975). Progress in the development of Reynolds stress turbulence closure. Journal of Fluid Mechanics, 68, 537–566.

    Article  MATH  Google Scholar 

  • Lim, H. C., Castro, I. P., & Hoxey, R. P. (2007). Bluff bodies in deep turbulent boundary layers: Reynolds-number issues. Journal of Fluid Mechanics, 571, 97–118.

    Article  MATH  Google Scholar 

  • Manceau, R., & Hanjalic, K. (2002). Elliptic blending model: A new near-wall Reynolds-stress turbulence closure. Physics of Fluids, 14(2), 744–754.

    Article  MATH  Google Scholar 

  • Melbourne, W. H. (1980). Comparison of measurements on the CAARC standard tall building model in simulated model wind flows. Journal of Wind Engineering and Industrial Aerodynamics, 6, 73–88.

    Article  Google Scholar 

  • Menter, F. R. (1994). Two-equation eddy-viscosity turbulence models for engineering applications. AIAA Journal, 32(8), 1598–1605.

    Article  Google Scholar 

  • Mochida, A., Murakami, S., Shoji, M., & Ishida, Y. (1993). Numerical simulation of flowfield around Texas Tech building by large eddy simulation. Journal of Wind Engineering and Industrial Aerodynamics, 46–47, 455–460.

    Article  Google Scholar 

  • Murakami, S. (1997). Overview of turbulence models applied in CWE-1997. Journal of Wind Engineering and Industrial Aerodynamics, 74–76, 1–24.

    Google Scholar 

  • Nicolleau, F. C. G. A., & Elmaihy, A. (2004). Study of the development of three-dimensional sets of fluid particles and iso-concentration fields using kinematic simulation. Journal of Fluid Mechanics, 517, 229–249.

    Article  MathSciNet  MATH  Google Scholar 

  • Oliveria, P. J., & Younis, B. A. (2000). On the prediction of turbulent flows around full-scale buildings. Journal of Wind Engineering and Industrial Aerodynamics, 86(2–3), 203–220.

    Article  Google Scholar 

  • Peric, M. (2004). Flow simulation using control volumes arbitrary polyhedral shape. ERCOFTAC Bulletin, 62, 25–29.

    Google Scholar 

  • Reeve, J. S., Scurr, A. D., & Merlin, J. H. (2001). Parallel versions of Stone’s strongly implicit algorithm. Concurrency and Computation: Practice and Experience, 13, 1049–1062.

    Article  MATH  Google Scholar 

  • Rodi, W. (1997). Comparison of LES and RANS calculations of the flow around bluff bodies. Journal of Wind Engineering and Industrial Aerodynamics, 69–71, 55–75.

    Article  Google Scholar 

  • Rossi, R., Lazzari, M., & Vitaliani, R. (2004). Wind field simulation for structural engineering purposes. International Journal for Numerical Methods in Engineering, 61, 738–763.

    Article  MATH  Google Scholar 

  • Senthooran, S., Lee, D. D., & Parameswaran, S. (2004). A computational model to calculate the flow-induced pressure fluctuations on buildings. Journal of Wind Engineering and Industrial Aerodynamics, 92, 1131–1145.

    Article  Google Scholar 

  • Shih, T. H., Liou, W. W., Shabbir, A., Yang, Z., & Zhu, J. (1995). A new K − ε eddy-viscosity model for high reynolds number turbulent flows—model development and validation. Computers & Fluids, 24(3), 227–238.

    Article  MATH  Google Scholar 

  • Shinozuka, M. (1971). Simulation of multivariate and multidimensional random processes. Journal of the Acoustical Society of America, 49(1), 357–367.

    Article  Google Scholar 

  • Shur, M. L., Spalart, P. R., Strelets, M Kh, & Travin, A. K. (2008). A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities. International Journal of Heat and Fluid Flow, 29, 1638–1649.

    Article  Google Scholar 

  • Song, C. S., & Park, S. O. (2009). Numerical simulation of flow past a square cylinder using partially-averaged Navier-stokes model. Journal of Wind Engineering and Industrial Aerodynamics, 97(1), 37–47.

    Article  MathSciNet  Google Scholar 

  • Spalart, P. R., Deck, S., Shur, M. L., Squires, K. D., Strelets, M Kh, & Travin, A. (2006). A new version of detached-eddy simulation, resistant to ambiguous grid densities. Theoretical and Computational Fluid Dynamics, 20, 181–195.

    Article  MATH  Google Scholar 

  • Speziale, C. G., Sarkar, S., & Gatski, T. B. (1991). Modelling the pressure-strain correlation of turbulence: An invariant dynamical systems approach. Journal of Fluid Mechanics, 227, 245–272.

    Article  MATH  Google Scholar 

  • Tamura, T. (2008). Towards practical use of LES in wind engineering. Journal of Wind Engineering and Industrial Aerodynamics, 96(10–11), 1451–1471.

    Article  Google Scholar 

  • Tessicini, N., Li, N., & Leschziner, M. A. (2007). Large-eddy simulation of three-dimensional flow around a hill shaped obstruction with a zonal near-wall approximation. International Journal of Heat and Fluid Flow, 28, 894–908.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingfeng Huang .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Science Press and Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Huang, M. (2017). A Hybrid RANS and Kinematic Simulation of Wind Load Effects on Full-Scale Tall Buildings. In: High-Rise Buildings under Multi-Hazard Environment. Springer, Singapore. https://doi.org/10.1007/978-981-10-1744-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-1744-5_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-1743-8

  • Online ISBN: 978-981-10-1744-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics