Skip to main content

Spectrum Sensing Methods and Their Performance

  • Reference work entry
  • First Online:
Handbook of Cognitive Radio

Abstract

Spectrum sensing is the process of determining if a spectrum slot is occupied or not by a primary signal. This tutorial emphasizes energy detection based spectrum sensing and provides a broad overview of the tools necessary for performance analysis of several spectrum sensing algorithms. A detailed description of the spectrum sensing problem is provided as a binary hypothesis test. The main parameters of interest – decision statistic, detection, and false-alarm probabilities and the decision threshold – are discussed. These parameters of the energy detector, which computes the energy of the received signal, are described. The use of the central limit theorem (CLT) to achieve energy detection with prescribed performance level is discussed. The receiver operating characteristic (ROC) curve and area under the curve (AUC) are described. Fading, a fundamental wireless channel impairment, can be mitigated with multiple antenna techniques, which provide spatial diversity gains. The performance of the energy detector with two low-complexity diversity techniques is described. The performance is analyzed for Rayleigh fading, for spatial correlation, and in the high signal-to-noise ratio (SNR) regime. General analytical techniques are highlighted. Double-threshold energy detector, P-norm detector, and energy detection for full-duplex nodes are described. Alternative to energy detection includes cyclostationary detection, matched filter-based detection, and waveform-based detection. These methods are briefly discussed. Spectrum sensing is an essential part of smart grid, Internet of things, and cognitive radio. An overview is provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 919.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cisco visual networking index (2017) Global mobile data traffic forecast update, 2016–2021. http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/mobile-white-paper-c11-520862.pdf

  2. Atapattu S, Tellambura C, Jiang H (2010) Analysis of area under the ROC curve of energy detection. IEEE Trans Wirel Commun 9(3):1216–1225

    Article  Google Scholar 

  3. Atapattu S, Tellambura C, Jiang H (2010) Performance of an energy detector over channels with both multipath fading and shadowing. IEEE Trans Wirel Commun 9(12):3662–3670

    Article  Google Scholar 

  4. Atapattu S, Tellambura C, Jiang H (2010) Performance of energy detection: a complementary AUC approach. In: IEEE Global Telecommunications Conference (GLOBECOM)

    Google Scholar 

  5. Atapattu S, Tellambura C, Jiang H (2011) Energy detection based cooperative spectrum sensing in cognitive radio networks. IEEE Trans Wirel Commun 10(4):1232–1241

    Article  Google Scholar 

  6. Atapattu S, Tellambura C, Jiang H (2011) Spectrum sensing via energy detector in low SNR. In: Proceedings of the IEEE International Conference on Communications (ICC)

    Google Scholar 

  7. Atapattu S, Tellambura C, Jiang H (2014) Energy detection for spectrum sensing in cognitive radio. Springer, New York

    Book  Google Scholar 

  8. Banjade VRS, Tellambura C, Jiang H (2014) Performance of p-norm detector in AWGN, fading, and diversity reception. IEEE Trans Veh Technol 63(7):3209–3222. https://doi.org/10.1109/TVT.2014.2298395

    Article  Google Scholar 

  9. Banjade VRS, Tellambura C, Jiang H (2015) Approximations for performance of energy detector and p-norm detector. IEEE Commun Lett 19(10):1678–1681

    Article  Google Scholar 

  10. Bharadia D, Katti S (2014) Full-duplex MIMO radios. In: Proceedings of the 11th USENIX Symposium on Networked System, Design and Implementation (NSDI’14), Seattle, pp 359–372

    Google Scholar 

  11. Bhargavi D, Murthy CR (2010) Performance comparison of energy, matched-filter and cyclostationarity-based spectrum sensing. In: 2010 IEEE 11th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), pp 1–5. https://doi.org/10.1109/SPAWC.2010.5670882

  12. Chen Y (2010) Improved energy detector for random signals in Gaussian noise. IEEE Trans Wirel Commun 9(2):558–563

    Article  Google Scholar 

  13. Deng R, Chen J, Cao X, Zhang Y, Maharjan S, Gjessing S (2013) Sensing-performance tradeoff in cognitive radio enabled smart grid. IEEE Trans Smart Grid 4(1):302–310. https://doi.org/10.1109/TSG.2012.2210058

    Article  Google Scholar 

  14. Dhungana Y, Tellambura C (2012) New simple approximations for error probability and outage in fading. IEEE Commun Lett 16(11):1760–1763

    Article  Google Scholar 

  15. Dhungana Y, Tellambura C (2013) Uniform approximations for wireless performance in fading channels. IEEE Trans Commun 61(11):4768–4779

    Article  Google Scholar 

  16. Digham F, Alouini MS, Simon MK (2007) On the energy detection of unknown signals over fading channels. IEEE Trans Commun 55(1):21–24

    Article  Google Scholar 

  17. Gavrilovska L, Denkovski D, Rakovic V, Angjelichinoski M (2014) Medium access control protocols in cognitive radio networks: overview and general classification. IEEE Commun Surveys Tutor 16(4):2092–2124

    Article  Google Scholar 

  18. Goldsmith A (2005) Wireless communications. Cambridge University Press

    Google Scholar 

  19. Haykin S (2005) Cognitive radio: brain-empowered wireless communications. IEEE J Sel Areas Commun 23(2):201–220. https://doi.org/10.1109/JSAC.2004.839380

    Article  Google Scholar 

  20. Herath S, Rajatheva N, Tellambura C (2009) On the energy detection of unknown deterministic signal over Nakagami channels with selection combining. In: Proceedings of the IEEE Canadian Conference on Electrical and Computer Engineering

    Google Scholar 

  21. Herath SP, Rajatheva N, Tellambura C (2011) Energy detection of unknown signals in fading and diversity reception. IEEE Trans Commun 59(9):2443–2453

    Article  Google Scholar 

  22. Horgan D, Murphy CC (2010) Voting rule optimisation for double threshold energy detector-based cognitive radio networks. In: 2010 4th International Conference on Signal Processing and Communication Systems, pp 1–8. https://doi.org/10.1109/ICSPCS.2010.5709679

  23. Khan AA, Rehmani MH, Rachedi A (2016) When cognitive radio meets the internet of things? In: 2016 International Wireless Communications and Mobile Computing Conference (IWCMC), pp 469–474. https://doi.org/10.1109/IWCMC.2016.7577103

  24. Khan AA, Rehmani MH, Reisslein M (2016) Cognitive radio for smart grids: survey of architectures, spectrum sensing mechanisms, and networking protocols. IEEE Commun Surveys Tutor 18(1):860–898. https://doi.org/10.1109/COMST.2015.2481722

    Article  Google Scholar 

  25. Kusaladharma S, Tellambura C (2012) Aggregate interference analysis for underlay cognitive radio networks. IEEE Wirel Commun Lett 1(6):641–644. https://doi.org/10.1109/WCL.2012.091312.120600

    Article  Google Scholar 

  26. Kusaladharma S, Tellambura C (2013) On approximating the cognitive radio aggregate interference. IEEE Wirel Commun Lett 2(1):58–61. https://doi.org/10.1109/WCL.2012.101812.120671

    Article  Google Scholar 

  27. Lee WY, Akyildiz IF (2008) Optimal spectrum sensing framework for cognitive radio networks. IEEE Trans Wirel Commun 7(10):3845–3857. https://doi.org/10.1109/T-WC. 2008.070391

    Article  Google Scholar 

  28. Liang YC, Zeng Y, Peh E, Hoang AT (2008) Sensing-throughput tradeoff for cognitive radio networks. IEEE Trans Wirel Commun 7(4):1326–1337

    Article  Google Scholar 

  29. Masonta MT, Mzyece M, Ntlatlapa N (2013) Spectrum decision in cognitive radio networks: a survey. IEEE Commun Surveys Tutor 15(3):1088–1107

    Article  Google Scholar 

  30. Medeisis A, Holland O (2014) Cognitive radio policy and regulation. Springer

    Google Scholar 

  31. Moghimi F, Nasri A, Schober R (2011) Adaptive Lp-norm spectrum sensing for cognitive radio networks. IEEE Trans Commun 59(7):1934–1945

    Article  Google Scholar 

  32. Molisch A (2011) Wireless communications. Wiley-IEEE Press

    Google Scholar 

  33. Nuttall AH (1972) Some integrals involving the Q function. Naval Underwater Systems Center (NUSC), Technical report

    Google Scholar 

  34. Qiu RC, Chen Z, Guo N, Song Y, Zhang P, Li H, Lai L (2010) Towards a real-time cognitive radio network testbed: architecture, hardware platform, and application to smart grid. In: 2010 Fifth IEEE Workshop on Networking Technologies for Software Defined Radio Networks (SDR), pp 1–6. https://doi.org/10.1109/SDR.2010.5507920

  35. Quan Z, Cui S, Sayed A, Poor H (2009) Optimal multiband joint detection for spectrum sensing in cognitive radio networks. IEEE Trans Signal Process 57(3):1128–1140

    Article  MathSciNet  Google Scholar 

  36. Riihonen T, Wichman R (2014) Energy detection in full-duplex cognitive radios under residual self-interference. In: 2014 9th International Conference on Cognitive Radio Oriented Wireless Networks and Communications (CROWNCOM), pp 57–60. https://doi.org/10.4108/icst.crowncom.2014.255395

  37. Rugini L, Banelli P, Leus G (2013) Small sample size performance of the energy detector. IEEE Commun Lett 17(9):1814–1817

    Article  Google Scholar 

  38. Rugini L, Banelli P, Leus G (2016) Spectrum sensing using energy detectors with performance computation capabilities. In: 2016 24th European Signal Processing Conference (EUSIPCO), pp 1608–1612

    Google Scholar 

  39. Shahraki HS (2015) Opportunistic usage of television white space with respect to the long term evolution-advanced parameters. IET Commun 9(9):1240–1247

    Article  Google Scholar 

  40. Sharma Banjade V, Tellambura C, Jiang H (2014) Performance of p-norm detector in AWGN, fading and diversity reception. IEEE Trans Veh Technol 63(7):3209–3222

    Article  Google Scholar 

  41. Sharma Banjade VR, Tellambura C, Jiang H (2015) Asymptotic performance of energy detector in fading and diversity reception. IEEE Trans Commun 63(6):2031–2043

    Article  Google Scholar 

  42. Sofotasios P, Rebeiz E, Zhang L, Tsiftsis T, Cabric D, Freear S (2013) Energy detection based spectrum sensing over κ-μ and κ-μ extreme fading channels. IEEE Trans Veh Technol 62(3):1031–1040

    Article  Google Scholar 

  43. Tellambura C (1996) Evaluation of the exact union bound for trellis-coded modulations over fading channels. IEEE Trans Commun 44(12):1693–1699. https://doi.org/10.1109/26.545899

    Article  Google Scholar 

  44. Tellambura C, Annamalai A, Bhargava VK (2003) Closed form and infinite series solutions for the MGF of a dual-diversity selection combiner output in bivariate Nakagami fading. IEEE Trans Commun 51(4):539–542. https://doi.org/10.1109/TCOMM.2003.810870

    Article  Google Scholar 

  45. Tellambura C, Mueller AJ, Bhargawa VK (1997) Analysis of M-ary phase-shift keying with diversity reception for land-mobile satellite channels. IEEE Trans Veh Technol 46(4):910–922. https://doi.org/10.1109/25.653065

    Article  Google Scholar 

  46. Tervonen J, Mikhaylov K, Piesk S, Jms J, Heikkil M (2014) Cognitive internet-of-things solutions enabled by wireless sensor and actuator networks. In: 2014 5th IEEE Conference on Cognitive Infocommunications (CogInfoCom), pp 97–102. https://doi.org/10.1109/CogInfoCom.2014.7020426

  47. Urkowitz H (1967) Energy detection of unknown deterministic signals. Proc IEEE 55(4): 523–531

    Article  Google Scholar 

  48. Wang Q, Yue DW (2009) A general parameterization quantifying performance in energy detection. IEEE Signal Process Lett 16(8):699–702

    Article  Google Scholar 

  49. Wang Z, Giannakis G (2003) A simple and general parameterization quantifying performance in fading channels. IEEE Trans Commun 51(8):1389–1398

    Article  Google Scholar 

  50. Yucek T, Arslan H (2009) A survey of spectrum sensing algorithms for cognitive radio applications. IEEE Commun Surveys Tutor 11(1):116–130. https://doi.org/10.1109/SURV.2009.090109

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chintha Tellambura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Tellambura, C. (2019). Spectrum Sensing Methods and Their Performance. In: Zhang, W. (eds) Handbook of Cognitive Radio . Springer, Singapore. https://doi.org/10.1007/978-981-10-1394-2_6

Download citation

Publish with us

Policies and ethics