Skip to main content

Heterogeneous Statistical QoS Provisioning Over Cognitive-Radio Based 5G Mobile Wireless Networks

  • Living reference work entry
  • First Online:
  • 141 Accesses

Abstract

As one of the critical techniques to support the multimedia services over mobile wireless networks, the statistical quality of service (QoS) technique has been proved to be effective in statistically guaranteeing delay-bounded video transmissions over the time-varying wireless channels. In the meantime, the full-duplex spectrum sensing (FD-SS) has been widely recognized as the promising candidate technique for maximizing the spectrum efficiency while provisioning the heterogeneous statistical QoS guarantees over cognitive radio-based 5G mobile wireless networks. However, due to the heterogeneity caused by different scenarios and applications of the multimedia traffics over CRNs, supporting diverse delay-bounded QoS guarantees for cognitive radio networks imposes many new challenges not encountered before. To effectively overcome the aforementioned problems, in this book chapter, we propose the heterogeneous statistical QoS provisioning schemes by applying the multiple-input-multiple-output generalized frequency division multiplexing (MIMO-GFDM) techniques to implement the FD-SS-based multimedia services in CRNs. In particular, under the Nakagami-m wireless channels, we derive the MIMO-GFDM-based physical (PHY)-layer model and the self-interference cancelation model. We develop the MIMO-GFDM-based FD-SS schemes and derive the miss-detection and false-alarm probabilities. Under the heterogeneous statistical QoS constraints, we develop the Markov chain model to characterize the aggregate effective capacity under the optimal power allocation policies using our proposed MIMO-GFDM architecture over FD-SS CRNs. Also conducted is a set of simulations which validate our proposed schemes, evaluate their performances, and show that our proposed schemes can outperform the other existing solutions under the heterogeneous statistical delay-bounded QoS constraints over cognitive radio-based 5G mobile wireless networks.

This is a preview of subscription content, log in via an institution.

References

  1. Zhang X, Wang J (2017) Statistical QoS-driven power adaptation in Q-OFDMA-Based full-duplex D2D 5G mobile wireless networks. In: IEEE WCNC 2017, San Francisco

    Google Scholar 

  2. Wang J, Zhang X (2017) Statistical QoS-Driven cooperative power allocation game over wireless cognitive radio networks. In: IEEE WCNC 2017, San Francisco

    Google Scholar 

  3. Tang J, Zhang X (2007) Quality-of-service driven power and rate adaptation over wireless links. IEEE Trans Wirel Commun 6(8):3058–3068

    Article  Google Scholar 

  4. Tang J, Zhang X (2007) Cross-layer resource allocation over wireless relay networks for quality of service provisioning. IEEE J Sel Areas Commun 25(4):645–656

    Article  Google Scholar 

  5. Wang J, Zhang X (2015) Adaptive power control for maximizing channel capacity over full-duplex D2D Q-OFDMA ad hoc networks. In: IEEE GLOBECOM 2015, San Francisco

    Google Scholar 

  6. Wang J, Zhang X (2016) Statistical QoS-driven resource allocation over FD-SS cooperative cognitive radios networks. In: IEEE GLOBECOM 2016, Washington DC

    Google Scholar 

  7. Cheng W, Zhang X, Zhang H (2014) Heterogeneous statistical QoS provisioning for downlink transmissions over mobile wireless cellular networks. In: IEEE GLOBECOM 2014, pp 4757–4763

    Google Scholar 

  8. Wang J, Zhang X (2016) Heterogeneous QoS-driven resource adaptation over full-duplex relay networks. In: IEEE GLOBECOM 2016, Washington DC

    Google Scholar 

  9. Cheng W, Zhang X, Zhang H (2014) Full-duplex spectrum-sensing and MAC-protocol for multichannel non-time-slotted cognitive radio networks. IEEE J Sel Areas Commun 33(5):820–831

    Article  Google Scholar 

  10. Liao Y, Wang T, Song L, Han Z (2014) Listen-and-talk: full-duplex cognitive radio networks. In: IEEE GLOBECOM 2014, pp 3068–3073

    Google Scholar 

  11. Cheng W, Zhang X, Zhang H (2011) Full duplex spectrum sensing in non-time-slotted cognitive radio networks. In: IEEE MILCOM 2011, Baltimore, pp 1029–1034

    Google Scholar 

  12. Luo L, Zhang JA, Davis LM (2012) Space-time block code and spatial multiplexing design for quadrature-OFDMA systems. IEEE Trans Commun 60(10):3133–3142

    Article  Google Scholar 

  13. Zhang X, Wang J (2017) Heterogeneous statistical QoS-driven resource allocation over MIMO-OFDMA based 5G cognitive radio networks. In: IEEE WCNC 2017, San Francisco

    Google Scholar 

  14. Shahrakia HS, Mohamed-pourb K, Vangelista L (2014) Sum capacity maximization for MIMO-OFDMA based cognitive radio networks. Phys Commun 10(12):106–115

    Article  Google Scholar 

  15. Li S, Li B, Xing C (2013) Joint resource allocation for learning-based cognitive radio networks with MIMO-OFDMA relay-aided transmissions. In: 2013 IEEE Wireless Communications and Networking Conference (WCNC): PHY, pp 3271–3276

    Google Scholar 

  16. Michailow N, Matthe M, Gaspar IS, Mendes ANCLL, Festag A, Fettweis G (2014) Generalized frequency division multiplexing for 5th generation cellular networks. IEEE Trans Commun 62(9):3045–3061

    Article  Google Scholar 

  17. Datta R, Michailow N, Lentmaier M, Fettweis G (2012) GFDM interference cancellation for flexible cognitive radio PHY design. In: IEEE Vehicular Technology Conference (VTC Fall), Quebec City, pp 1–5

    Google Scholar 

  18. Zhang X, Su H (2011) CREAM-MAC: cognitive radio-enabled multi-channel MAC protocol over dynamic spectrum access networks. IEEE J Sel Top Signal Process 5(1):110–123

    Article  Google Scholar 

  19. Wang C, Au EKS, Murch RD, Mow WH, Cheng RS, Lau V (2007) On the performance of the MIMO zero-forcing receiver in the presence of channel estimation error. IEEE Trans Wirel Commun 6(3):805–810

    Article  Google Scholar 

  20. Senaratne D, Tellambura C (2011) Beamforming for space division duplexing. In: IEEE ICC 2011, Kyoto, pp 1–5

    Google Scholar 

  21. Riihonen T, Wichman R (2012) Analog and digital self-interference cancellation in full-duplex MIMO-OFDM transceivers with limited resolution in A/D conversion. In: 2012 Conference Record of the Forty Sixth Asilomar Conference on Signals, Systems and Computers (ASILOMAR), Pacific Grove, pp 45–49

    Chapter  Google Scholar 

  22. Cheng W, Zhang X, Zhang H (2013) Optimal dynamic power control for full-duplex bidirectional-channel based wireless networks. In: IEEE INFOCOM 2013, pp 3120–3128

    Google Scholar 

  23. Ngo HQ, Suraweera HA, Matthaiou M, Larsson EG (May 2014) Multipair full-duplex relaying with massive arrays and linear processing. IEEE Trans Veh Technol 32(9):1721–1737

    Google Scholar 

  24. Zheng G (2015) Joint beamforming optimization and power control for full-duplex MIMO two-way relay channel. IEEE Trans Signal Process 63(3):555–566

    Article  MathSciNet  Google Scholar 

  25. Yang H, Marzetta TL (2013) Performance of conjugate and zero-forcing beamforming in large-scale antenna systems. IEEE J Sel Areas Commun 31(2):172–179

    Article  Google Scholar 

  26. Chen M, Liu TC-K, Dong X (2012) Opportunistic multiple relay selection with outdated channel state information. IEEE Trans Veh Technol 61(3):1333–1345

    Article  Google Scholar 

  27. Chang C-S (1994) Stability, queue length, and delay of deterministic and stochastic queueing networks. IEEE Trans Auto Control 39(5):913–931

    Article  MathSciNet  MATH  Google Scholar 

  28. Cheng W, Zhang X, Zhang H (2012) Full/half duplex based resource allocations for statistical quality of service provisioning in wireless relay networks. In: 2012 Proceedings IEEE INFOCOM, Orlando, pp 864–872

    Google Scholar 

  29. Tang J, Zhang X (2007) Cross-layer resource allocation over wireless relay networks for quality of service provisioning. IEEE J Sel Areas Commun 25(4):645–656

    Article  Google Scholar 

  30. Su H, Zhang X (2008) Cross-layer based opportunistic MAC protocols for QoS provisionings over cognitive radio wireless networks. IEEE J Sel Areas Commun 26(1):118–129

    Article  Google Scholar 

  31. Akin S, Gursoy MC (2010) Effective capacity analysis of cognitive radio channels for quality of service provisioning. IEEE Trans Wirel Commun 9(11):3354–3364

    Article  Google Scholar 

  32. Laneman JN, Tse DNC, Wornell GW (2004) Cooperative diversity in wireless networks: efficient protocols and outage behavior. IEEE Trans Inf Theory 50(12):3062–3080

    Article  MathSciNet  MATH  Google Scholar 

  33. Xia X, Zhang D, Xu K, Ma W, Xu Y (2015) Hardware impairments aware transceiver for full-duplex massive MIMO relaying. IEEE Trans Signal Process 63(24):6565–6580

    Article  MathSciNet  Google Scholar 

  34. Xu K, Gao Y, Xie W, Xia X, Xu Y (2015) Achievable rate of full-duplex massive MIMO relaying with hardware impairments. In: 2015 IEEE Pacific Rim Conference on Communications, Computers and Signal Processing (PACRIM), Victoria, pp 84–89

    Google Scholar 

  35. Li Y, Fan P, Leukhin A, Liu L (2016) On the spectral and energy efficiency of full-duplex small cell wireless systems with massive MIMO. IEEE Trans Veh Technol PP(99):1–15

    Google Scholar 

  36. Jainy M, Choiy JI, Kim TM, Bharadia D, Seth KSS, Levis P, Katti S, Sinha P (2011) Practical, real-time, full duplex wireless. In: The 17th Annual International Conference on Mobile Computing and Networking (MobiCom), Las Vegas

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by the U.S. National Science Foundation under Grants ECCS-1408601 and CNS-1205726, and the U.S. Air Force under Grant FA9453-15-C-0423.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xi Zhang .

Editor information

Editors and Affiliations

Section Editor information

Appendices

Appendix A: Proof of Theorem 1

Proof.

The aggregate effective capacity, denoted by \(\widetilde{C}_{AF,0}(\theta _{1},\theta _{2},\ldots,\theta _{K})\), for different links in the relay-based cognitive radio networks can be derived as follows:

$$ \displaystyle\begin{array}{rcl} \widetilde{C}_{AF,0}(\theta _{1},\theta _{2},\ldots,\theta _{K})& \triangleq & -\frac{1} {\theta _{o}}\log \left \{\mathbb{E}_{\gamma }\left [\exp \left \{-\sum _{k=1}^{K}\theta _{ k}T_{f}B\right.\right.\right. \\ & & \cdot \left.\left.\left.\log _{2}\left (1 + \frac{4P_{S}^{(k)}(\boldsymbol{\mu })P_{R}^{(k)}(\boldsymbol{\mu })\gamma _{S,0}^{(k)}\gamma _{R,0}^{(k)}} {1 + 2P_{S}^{(k)}(\boldsymbol{\mu })\gamma _{S,0}^{(k)} + 2P_{R}^{(k)}(\boldsymbol{\mu })\gamma _{R,0}^{(k)}}\right )\right \}\right ]\right \}.{}\end{array}$$
(78)

Then, the value of θ o needs to be derived before solving the optimization problem. The optimal θ o needs to satisfy the following equation:

$$\displaystyle\begin{array}{rcl} & & \sum _{k=1}^{K} -\frac{1} {\theta _{k}}\log \left \{\!\mathbb{E}_{\gamma }\left [\exp \!\left \{-\theta _{k}T_{f}B\log _{2}\!\left (\!1 + \frac{4P_{S}^{(k)}(\boldsymbol{\mu })P_{R}^{(k)}(\boldsymbol{\mu })\gamma _{S,0}^{(k)}\gamma _{R,0}^{(k)}} {1 + 2P_{S}^{(k)}(\boldsymbol{\mu })\gamma _{S,0}^{(k)} + 2P_{R}^{(k)}(\boldsymbol{\mu })\gamma _{R,0}^{(k)}}\!\right )\!\right \}\!\right ]\!\right \} \\ & & \quad = -\frac{1} {\theta _{o}}\sum _{k=1}^{K}\log \Bigg\{\mathbb{E}_{\gamma }\Bigg[\exp \Bigg\{-\theta _{ k}T_{f}B \\ & & \qquad \qquad \qquad \quad \qquad \,\,\,\, \cdot \log _{2}\Bigg(1 + \frac{4P_{S}^{(k)}(\boldsymbol{\mu })P_{R}^{(k)}(\boldsymbol{\mu })\gamma _{S,0}^{(k)}\gamma _{R,0}^{(k)}} {1 + 2P_{S}^{(k)}(\boldsymbol{\mu })\gamma _{S,0}^{(k)} + 2P_{R}^{(k)}(\boldsymbol{\mu })\gamma _{R,0}^{(k)}}\Bigg)\Bigg\}\Bigg]\Bigg\} {}\end{array}$$
(79)

The aggregate effective capacity, denoted by \(\widetilde{C}_{AF,0}(\theta _{1},\theta _{2},\ldots,\theta _{K})\), for different links in the relay-based cognitive radio networks can be derived as follows:

$$ \displaystyle\begin{array}{rcl} \widetilde{C}_{AF,0}(\theta _{1},\theta _{2},\ldots,\theta _{K})& \triangleq & -\frac{1} {\theta _{o}}\log \left \{\mathbb{E}_{\gamma }\left [\exp \left \{-\sum _{k=1}^{K}\theta _{ k}T_{f}B\right.\right.\right. \\ & & \cdot \left.\left.\left.\log _{2}\left (1 + \frac{4P_{S}^{(k)}(\boldsymbol{\mu })P_{R}^{(k)}(\boldsymbol{\mu })\gamma _{S,0}^{(k)}\gamma _{R,0}^{(k)}} {1 + 2P_{S}^{(k)}(\boldsymbol{\mu })\gamma _{S,0}^{(k)} + 2P_{R}^{(k)}(\boldsymbol{\mu })\gamma _{R,0}^{(k)}}\right )\right \}\right ]\right \}.{}\end{array}$$
(78)

Then, the value of θ o needs to be derived before solving the optimization problem. The optimal θ o needs to satisfy the following equation:

$$\displaystyle\begin{array}{rcl} & & \sum _{k=1}^{K} -\frac{1} {\theta _{k}}\log \left \{\!\mathbb{E}_{\gamma }\left [\exp \!\left \{-\theta _{k}T_{f}B\log _{2}\!\left (\!1 + \frac{4P_{S}^{(k)}(\boldsymbol{\mu })P_{R}^{(k)}(\boldsymbol{\mu })\gamma _{S,0}^{(k)}\gamma _{R,0}^{(k)}} {1 + 2P_{S}^{(k)}(\boldsymbol{\mu })\gamma _{S,0}^{(k)} + 2P_{R}^{(k)}(\boldsymbol{\mu })\gamma _{R,0}^{(k)}}\!\right )\!\right \}\!\right ]\!\right \} \\ & & \quad = -\frac{1} {\theta _{o}}\sum _{k=1}^{K}\log \Bigg\{\mathbb{E}_{\gamma }\Bigg[\exp \Bigg\{-\theta _{ k}T_{f}B \\ & & \qquad \qquad \qquad \quad \qquad \,\,\,\, \cdot \log _{2}\Bigg(1 + \frac{4P_{S}^{(k)}(\boldsymbol{\mu })P_{R}^{(k)}(\boldsymbol{\mu })\gamma _{S,0}^{(k)}\gamma _{R,0}^{(k)}} {1 + 2P_{S}^{(k)}(\boldsymbol{\mu })\gamma _{S,0}^{(k)} + 2P_{R}^{(k)}(\boldsymbol{\mu })\gamma _{R,0}^{(k)}}\Bigg)\Bigg\}\Bigg]\Bigg\} {}\end{array}$$
(79)

Considering that the effective capacity for one link can be increased when using the QoS-driven power allocation as compared with the effective capacity using the average transmit power control, we have

$$\displaystyle\begin{array}{rcl} & & -\frac{1} {\theta _{k}}\log \left \{\mathbb{E}_{\gamma }\left [\exp \left \{-\theta _{k}T_{f}B\log _{2}\left (1 + \frac{4P_{S}^{(k)}(\boldsymbol{\mu })P_{R}^{(k)}(\boldsymbol{\mu })\gamma _{S,0}^{(k)}\gamma _{R,0}^{(k)}} {1 + 2P_{S}^{(k)}(\boldsymbol{\mu })\gamma _{S,0}^{(k)} + 2P_{R}^{(k)}(\boldsymbol{\mu })\gamma _{R,0}^{(k)}}\right )\right \}\right ]\right \} \\ & & = -\frac{1} {\theta _{k}}\log \Bigg\{\mathbb{E}_{\gamma }\Bigg[\exp \Bigg\{-\theta _{k}T_{f}B \\ & & \qquad \qquad \qquad \quad \cdot \log _{2}\Bigg(1 + \frac{4P_{S}^{(k)}(\boldsymbol{\mu })P_{R}^{(k)}(\boldsymbol{\mu })\gamma _{S,0}^{(k)}\gamma _{R,0}^{(k)}} {1 + 2P_{S}^{(k)}(\boldsymbol{\mu })\gamma _{S,0}^{(k)} + 2P_{R}^{(k)}(\boldsymbol{\mu })\gamma _{R,0}^{(k)}}\Bigg)\Bigg\}\Bigg]\Bigg\} + I_{k}, {}\end{array}$$
(80)

for 1 ≤ kK where I k represents the increased aggregate effective capacity when using the heterogeneous-statistical-QoS-driven power allocation scheme for the kth downlink. Then, substituting Eq. (80) back into Eq. (79), we can obtain the expression for θ o in Eq. (81) as follows:

$$\displaystyle\begin{array}{rcl} \theta _{o}& =& \\ & & \,\,\, \frac{\prod \limits _{n=1}^{K}\theta _{n}\!\left [\!\sum \limits _{k=1}^{K}\!\log \!\left \{\!\mathbb{E}_{\gamma }\!\left [\exp \!\left \{\!-\theta _{k}T_{f}B\log _{2}\!\!\left (\!1\! +\! \frac{4\overline{P}_{S}^{(k)}(\boldsymbol{\mu })\overline{P}_{ R}^{(k)}(\boldsymbol{\mu })\gamma _{ S,0}^{(k)}\gamma _{ R,0}^{(k)}} {\!1+2\overline{P}_{S}^{(k)}(\boldsymbol{\mu })\gamma _{S,0}^{(k)}+2\overline{P}_{R}^{(k)}(\boldsymbol{\mu })\gamma _{R,0}^{(k)}} \!\right )\!\right \}\!\right ]\right \}\!\right ]\! -\!\varLambda _{1}} {\!\sum \limits _{k=1}^{K}\!\left [\!\left (\!\prod \limits _{n\neq k}^{K}\theta _{n}\!\!\right )\!\log \!\left \{\!\mathbb{E}_{\gamma }\!\left [\exp \!\left \{\!-\theta _{k}T_{f}B\log _{2}\!\!\left (\!1\! +\! \frac{4\overline{P}_{S}^{(k)}(\boldsymbol{\mu })\overline{P}_{R}^{(k)}(\boldsymbol{\mu })\gamma _{S,0}^{(k)}\gamma _{R,0}^{(k)}} {\!1+2\overline{P}_{S}^{(k)}(\boldsymbol{\mu })\gamma _{S,0}^{(k)}+2\overline{P}_{R}^{(k)}(\boldsymbol{\mu })\gamma _{R,0}^{(k)}} \!\right )\!\right \}\!\right ]\right \}\!\!\right ]\!\! -\!\varLambda _{2}},{}\end{array}$$
(81)

where

$$\displaystyle{ \left \{\begin{array}{@{}l@{\quad }l@{}} \varLambda _{1} \triangleq \sum \limits _{k=1}^{K}\theta _{k}I_{k}\left (\prod \limits _{n=1}^{K}\theta _{n}\right );\quad \\ \varLambda _{2} \triangleq \prod \limits _{k=1}^{K}\theta _{k}\left (\sum \limits _{n=1}^{K}I_{n}\right ). \quad \end{array} \right. }$$
(82)

According to [7], the approximation of θ o can be classified into the following four cases based on the values of Nakagami-m channel parameter m:

Case 1: m ≤ 1. For this case, because the average transmit power is the determining factor for the effective capacity, we have

$$\displaystyle\begin{array}{rcl} & & -\frac{1} {\theta _{k}}\log \Bigg\{\mathbb{E}_{\gamma }\Bigg[\exp \Bigg\{-\theta _{k}T_{f}B \\ & & \phantom{-\frac{1} {\theta _{k}}\log }\qquad \qquad \quad \cdot \log _{2}\Bigg(1 + \frac{4\overline{P}_{S}^{(k)}(\boldsymbol{\mu })\overline{P}_{R}^{(k)}(\boldsymbol{\mu })\gamma _{S,0}^{(k)}\gamma _{R,0}^{(k)}} {1 + 2\overline{P}_{S}^{(k)}(\boldsymbol{\mu })\gamma _{S,0}^{(k)} + 2\overline{P}_{R}^{(k)}(\boldsymbol{\mu })\gamma _{R,0}^{(k)}}\Bigg)\Bigg\}\Bigg]\Bigg\} \gg I_{k}{}\end{array}$$
(83)

for 1 ≤ kK. Thus, we can omit the terms containing I k in Eq. (81).

Case 2: m > 1 and θ max is small (θ max ≤ 10−2). We consider θ is large if θ > 10−2 and if θ ≤ 10−2, we claim that θ is small [7]. For small θ, the optimal power-adaptation law allocates more power to worse channel. In contrast, for large θ, the power control assigns less power to the better channel, but more power to the worse channel. Because the average transmit power is the determining factor for the effective capacity, it is the same as Case 1.

Case 3: m > 1 and θ min is large (θ min > 10−2). For this case, because the QoS-driven power control is the determining factor for the effective capacity, we only need to consider each term containing I k in Eq. (81), we have

$$\displaystyle\begin{array}{rcl} & & -\frac{1} {\theta _{k}}\log \Bigg\{\mathbb{E}_{\gamma }\Bigg[\exp \Bigg\{-\theta _{k}T_{f}B \\ & & \phantom{-\frac{1} {\theta _{k}}\log }\qquad \qquad \quad \cdot \log _{2}\Bigg(1 + \frac{4\overline{P}_{S}^{(k)}(\boldsymbol{\mu })\overline{P}_{R}^{(k)}(\boldsymbol{\mu })\gamma _{S,0}^{(k)}\gamma _{R,0}^{(k)}} {1 + 2\overline{P}_{S}^{(k)}(\boldsymbol{\mu })\gamma _{S,0}^{(k)} + 2\overline{P}_{R}^{(k)}(\boldsymbol{\mu })\gamma _{R,0}^{(k)}}\Bigg)\Bigg\}\Bigg]\Bigg\} \ll I_{k}{}\end{array}$$
(84)

for 1 ≤ kK. Thus, we can obtain

$$\displaystyle{ \theta _{o} \approx \frac{\sum \limits _{k=1}^{K}\theta _{k}I_{k}} {\sum \limits _{k=1}^{K}I_{k}} \approx \frac{\sum \limits _{k=1}^{K}\theta _{k}} {K}. }$$
(85)

Case 4: m > 1, θ min is small and θ max is large. For this case, because we have

$$\displaystyle\begin{array}{rcl} & & -\frac{1} {\theta _{k}}\log \Bigg\{\mathbb{E}_{\gamma }\Bigg[\exp \Bigg\{-\theta _{k}T_{f}B \\ & & \phantom{-\frac{1} {\theta _{k}}\log }\,\,\,\,\,\, \cdot \log _{2}\Bigg(1 + \frac{4\overline{P}_{S}^{(k)}(\boldsymbol{\mu })\overline{P}_{R}^{(k)}(\boldsymbol{\mu })\gamma _{S,0}^{(k)}\gamma _{R,0}^{(k)}} {1 + 2\overline{P}_{S}^{(k)}(\boldsymbol{\mu })\gamma _{S,0}^{(k)} + 2\overline{P}_{R}^{(k)}(\boldsymbol{\mu })\gamma _{R,0}^{(k)}}\Bigg)\Bigg\}\Bigg]\Bigg\} \gg I_{k}\quad \text{and}\quad I_{n}{}\end{array}$$
(86)

and

$$\displaystyle\begin{array}{rcl} & & -\frac{1} {\theta _{k}}\log \left \{\mathbb{E}_{\gamma }\left [\exp \left \{-\theta _{k}T_{f}B\log _{2}\left (1 + \frac{4\overline{P}_{S}^{(k)}(\boldsymbol{\mu })\overline{P}_{R}^{(k)}(\boldsymbol{\mu })\gamma _{S,0}^{(k)}\gamma _{R,0}^{(k)}} {1 + 2\overline{P}_{S}^{(k)}(\boldsymbol{\mu })\gamma _{S,0}^{(k)} + 2\overline{P}_{R}^{(k)}(\boldsymbol{\mu })\gamma _{R,0}^{(k)}}\right )\right \}\right ]\right \} \\ & & \gg -\frac{1} {\theta _{n}}\log \Bigg\{\mathbb{E}_{\gamma }\Bigg[\exp \Bigg\{-\theta _{n}T_{f}B \cdot \log _{2}\Bigg(1 + \frac{4\overline{P}_{S}^{(n)}(\boldsymbol{\mu })\overline{P}_{R}^{(n)}(\boldsymbol{\mu })\gamma _{S,0}^{(n)}\gamma _{R,0}^{(n)}} {1 + 2\overline{P}_{S}^{(n)}(\boldsymbol{\mu })\gamma _{S,0}^{(n)} + 2\overline{P}_{R}^{(n)}(\boldsymbol{\mu })\gamma _{R,0}^{(n)}}\Bigg)\Bigg\}\Bigg]\Bigg\}{}\end{array}$$
(87)

where θ k (1 ≤ kNK) is small (θ k ≤ 10−2) and θ n ((N + 1) ≤ nK) is large (θ n > 10−2). Then, we can derive Eq. (60).

In order to derive the value of θ o , we also need to obtain the optimal values of \(\overline{P}_{S}^{(k)}\) and \(\overline{P}_{R}^{(k)}\) (1 ≤ kK), which can be obtained by solving the optimization problem P 2 . Therefore, the proof for Theorem 1 follows. □

Appendix B: Proof of Theorem 2

Proof.

Since P 4 is a strictly convex optimization problem, and thus it has the unique optimal solution. We construct the Lagrangian function for P 4 , denoted by J, as follows:

$$\displaystyle\begin{array}{rcl} J = \left ( \frac{MP_{R}\left (\lambda _{R}^{(k)}\right )^{2}} {KP_{R}(\boldsymbol{\nu })\left (1 -\left (\lambda _{R}^{(k)}\right )^{2}\right ) + 1}\right )^{-\beta _{2} } +\mu \left (\mathbb{E}\left [P_{R}\right ] -\overline{P}_{R}\right )& &{}\end{array}$$
(88)

where μ is the Lagrangian multiplier associated with the constraint specified by Eq. (58). Thus, the optimal solutions for the recourse adaptation law, and the optimal Lagrangian multiplier μ opt of the problem P 4 need to satisfy the following Karush-Kuhn-Tucker (KKT) conditions:

$$\displaystyle{ \left \{\begin{array}{@{}l@{\quad }l@{}} \frac{\partial J} {\partial P_{R}}\Big\vert _{P_{R}=P_{R}^{\mathrm{opt}}} = 0; \quad \\ \mu ^{\mathrm{opt}}\left (\mathbb{E}\left [P_{R}\right ] -\overline{P}_{R}\right ) = 0;\quad \\ \mu ^{\mathrm{opt}} \geq 0; \quad \\ P_{R}> 0. \quad \end{array} \right. }$$
(89)

Taking derivative of J with respect to P R , we can obtain

$$\displaystyle{ \frac{\partial J} {\partial P_{R}} = \frac{-\beta _{2}\left (P_{R}\right )^{-\beta _{2}-1}\left (M\left (\lambda _{R}^{(k)}\right )^{2}\right )^{-\beta _{2}}} {\left (KP_{R}\left (1 -\left (\lambda _{R}^{(k)}\right )^{2}\right ) + 1\right )^{-\beta _{2}+1}} +\mu. }$$
(90)

Then, for our proposed massive MIMO system (M), associated with Eq. (89), we can derive the optimal solutions expressed by Eq. (76). Therefore, the proof for Theorem 2 follows. □

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this entry

Cite this entry

Zhang, X., Wang, J. (2017). Heterogeneous Statistical QoS Provisioning Over Cognitive-Radio Based 5G Mobile Wireless Networks. In: Zhang, W. (eds) Handbook of Cognitive Radio . Springer, Singapore. https://doi.org/10.1007/978-981-10-1389-8_21-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-1389-8_21-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-1389-8

  • Online ISBN: 978-981-10-1389-8

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics