Skip to main content

Finite-Difference Time-Domain Technique

  • Reference work entry
  • First Online:
  • 145 Accesses

Synonyms

FDTD

Definition

Finite-difference time-domain technique is one of the most popular numerical approaches in computational nano-optics. It is a numerical solver of macroscopic Maxwell’s equations on a special grid in time domain utilizing finite differences.

Overview

The field of nano-optics has been tremendously impacted by both a fast growth of laser technology and significant advances in nanofabrication techniques in recent years. Owing to such progress, researchers now have the ability to go far beyond the diffraction limit to explore optics at the nanoscale, opening up a wide variety of applications ranging from metamaterials, through plasmonic circuitry and efficient solar energy harvesting, to biomedical applications [1]. Among those applications is the long-standing question of controlling light at the subdiffraction scale aiming for optical nanodevices and nanoscale coherent sources operating in the visible region of spectrum [2]. From the fundamental physics point of...

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   2,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Hutter, E., Fendler, J.H.: Exploitation of localized surface plasmon resonance. Adv. Mater. 16, 1685 (2004)

    Article  Google Scholar 

  2. Murray, W.A., Barnes, W.L.: Plasmonic materials. Adv. Mater. 19, 3771 (2007)

    Article  Google Scholar 

  3. Kreibig, U., Vollmer, M.: Optical Properties of Metal Clusters. Springer, Berlin (1995)

    Book  Google Scholar 

  4. Taflove, A., Hagness, S.C.: Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd edn. Artech House, Boston (2005)

    Google Scholar 

  5. Yee, K.S.: Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans. Antennas Propag. 14, 302 (1966)

    Article  Google Scholar 

  6. Berenger, J.P.: Perfectly matched layer (PML) for computational electromagnetics. In: Balanis, C.A. (ed.) Synthesis Lectures on Computational Electromagnetics. Morgan and Claypool, San Rafael (2007)

    Google Scholar 

  7. Pacheco, P.S.: Parallel Programming with MPI. Morgan Kaufmann, San Francisco (1993)

    Google Scholar 

  8. Pernice, W.H.P., Payne, F.P., Gallagher, D.F.G.: An FDTD method for the simulation of dispersive metallic nanostructures. Opt. Quant. Electron. 38, 843 (2006)

    Article  Google Scholar 

  9. Rakic, A.D., Djurisic, A.B.., Elazar, J.M., Majewski, M.L.: Optical properties of metallic films for vertical-cavity optoelectronic devices. Appl. Opt. 37, 5271 (1998)

    Article  Google Scholar 

  10. Sukharev, M., Sievert, P.R., Seideman, T., Ketterson, J.B.: Perfect coupling of light to surface plasmons with ultra-narrow linewidths. J. Chem. Phys. 131, 034708 (2009)

    Article  Google Scholar 

  11. Sung, J., Sukharev, M., Hicks, E.M., Van Duyne, R.P., Seideman, T., Spears, K.G.: Nanoparticle spectroscopy: birefringence in 2D arrays of L-shaped silver nanoparticles. J. Phys. Chem. C 112, 3252 (2008)

    Article  Google Scholar 

  12. Zeng, Y., Hoyer, W., Liu, J., Koch, S.W., Moloney, J.V.: Classical theory for second-harmonic generation from metallic nanoparticles. Phys. Rev. B 79, 235109 (2009)

    Article  Google Scholar 

  13. Mukamel, S.: Principles of Nonlinear Optical Spectroscopy. Oxford University Press, New York (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maxim Sukharev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Sukharev, M. (2016). Finite-Difference Time-Domain Technique. In: Bhushan, B. (eds) Encyclopedia of Nanotechnology. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9780-1_15

Download citation

Publish with us

Policies and ethics