Skip to main content

Peripheral Neural Control of the Lower Urinary Tract

  • Chapter
  • First Online:
  • 1184 Accesses

Abstract

Storage and elimination of urine are dependent upon the coordinated activity of two functional units in the lower urinary tract; the urinary bladder and its outlet, which are innervated by three sets of peripheral nerves: sacral parasympathetic (pelvic nerves), thoracolumbar sympathetic (hypogastric nerves and sympathetic chain) and sacral somatic nerves (pudendal nerves). The efferent neurotransmission is modulated by cholinergic, adrenergic, and non-cholinergic and non-adrenergic mechanisms. The Pelvic nerve afferents monitor the volume of the bladder and the amplitude of the bladder contraction. The afferent signalling is modulated by a varity of receptors and transmitters including ATP, nitric oxides, P2X3 receptors, TRP cation channels, and Cannabinoids.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Inskip JA, Ramer LM, Ramer MS, Krassioukov AV. Autonomic assessment of animals with spinal cord injury: tools, techniques and translation. Spinal Cord. 2009;47(1):2–35.

    Article  CAS  PubMed  Google Scholar 

  2. Barrington F. The effect of lesions of the hind- and mid-brain on micturition in the cat. Quart J Exp Physiol. 1925;15:81–102.

    Article  Google Scholar 

  3. Kuru M. Nervous control of micturition. Physiol Rev. 1965;45:425–94.

    Article  CAS  PubMed  Google Scholar 

  4. de Groat WC, Booth AM, Yoshimura N. Neurophysiology of micturition and its modification in animal models of human disease. In: Maggi CA, editor. The Autonomic Nervous System. London: Harwood Academic Publishers; 1993. p. 227–89.

    Google Scholar 

  5. Fowler CJ, Griffiths D, de Groat WC. The neural control of micturition. Nat Rev Neurosci. 2008;9:453–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. de Groat WC, Wickens C. Organization of the neural switching circuitry underlying reflex micturition. Acta Physiol (Oxf). 2013;207:66–84.

    Article  CAS  Google Scholar 

  7. Fry CH, Kanai AJ, Roosen A, Takeda M, Wood DN. Cell biology. In: Abrams P, Cardozo L, Khoury S, Wein A, editors. Incontinence. 4th ed. Paris: Health Publications, Ltd; 2009. p. 113–66.

    Google Scholar 

  8. de Groat WC, Ryall RW. The identification and characteristics of sacral parasympathetic preganglionic neurones. J Physiol. 1968;196:563–77.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Nadelhaft I, de Groat WC, Morgan C. Location and morphology of parasympathetic preganglionic neurons in the sacral spinal cord of the cat revealed by retrograde axonal transport of horseradish peroxidase. J Comp Neurol. 1980;193:265–81.

    Article  CAS  PubMed  Google Scholar 

  10. Morgan C, deGroat WC, Nadelhaft I. The spinal distribution of sympathetic preganglionic and visceral primary afferent neurons that send axons into the hypogastric nerves of the cat. J Comp Neurol. 1986;243:23–40.

    Article  CAS  PubMed  Google Scholar 

  11. Kuo DC, Hisamitsu T, de Groat WC. A sympathetic projection from sacral paravertebral ganglia to the pelvic nerve and to postganglionic nerves on the surface of the urinary bladder and large intestine of the cat. J Comp Neurol. 1984;226:76–86.

    Article  CAS  PubMed  Google Scholar 

  12. de Groat WC, Saum WR. Sympathetic inhibition of the urinary bladder and of pelvic ganglionic transmission in the cat. J Physiol. 1972;220:297–314.

    Article  PubMed  PubMed Central  Google Scholar 

  13. de Groat WC, Theobald RJ. Reflex activation of sympathetic pathways to vesical smooth muscle and parasympathetic ganglia by electrical stimulation of vesical afferents. J Physiol. 1976;259:223–37.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Keast JR, Kawatani M, de Groat WC. Sympathetic modulation of cholinergic transmission in cat vesical ganglia is mediated by alpha 1- and alpha 2-adrenoceptors. Am J Phys. 1990;258:44–50.

    Google Scholar 

  15. Thor KB, de Groat WC. Neural control of the female urethral and anal rhabdosphincters and pelvic floor muscles. Am J Physiol Regul Integr Comp Physiol. 2010;299:416–38.

    Article  CAS  Google Scholar 

  16. Arvidsson U, Riedl M, Elde R, Meister B. Vesicular acetylcholine transporter (VAChT) protein: a novel and unique marker for cholinergic neurons in the central and peripheral nervous systems. J Comp Neurol. 1997;378:454–67.

    Article  CAS  PubMed  Google Scholar 

  17. Dixon JS, Jen PYP, Gosling JA. The distribution of vesicular acetylcholine transporter in the human male genitourinary organs and its co-localization with neuropeptide Y and nitric oxide synthase. Neurourol Urodyn. 2000;19:185–94.

    Article  CAS  PubMed  Google Scholar 

  18. Sigala S, Mirabella G, Peroni A, Pezzotti G, Simeone C, Spano P, et al. Differential gene expression of cholinergic muscarinic receptor subtypes in male and female normal human urinary bladder. Urology. 2002;60:719–25.

    Article  PubMed  Google Scholar 

  19. Yamaguchi O, Shisda K, Tamura K, Ogawa T, Fujimura T, Ohtsuka M. Evaluation of mRNAs encoding muscarinic receptor subtypes in human detrusor muscle. J Urol. 1996;156:1208–13.

    Article  CAS  PubMed  Google Scholar 

  20. Eglen RM, Hegde S, Watson N. Muscarinic receptor subtypes and smooth nuscle function. Pharmacol Rev. 1996;48:31–565.

    Google Scholar 

  21. Hegde SS, Eglen RM. Muscarinic receptor subtypes modulating smooth muscle contractility in the urinary bladder. Life Sci. 1999;64:419–28.

    Article  CAS  PubMed  Google Scholar 

  22. Chess-Williams R. Muscarinic receptors of the urinary bladder: detrusor, urothelial and prejunctional. Auton Autacoid Pharmacol. 2002;22:133–45.

    Article  CAS  PubMed  Google Scholar 

  23. Andersson KE, Holmquist F, Fovaeus M, Hedlund H, Sundler R. Muscarinic receptor stimulation of phosphoinositide hydrolysis in the human isolated urinary bladder. J Urol. 1991;146:1156–9.

    Article  CAS  PubMed  Google Scholar 

  24. Harriss DR, Marsh KA, Birmingham AT, Hill SJ. Expression of muscarinic M3-receptors coupled to inositol phospholipid hydrolysis in human detrusor cultured smooth muscle cells. J Urol. 1995;154:1241–5.

    Article  CAS  PubMed  Google Scholar 

  25. Andersson KE, Wein AJ. Pharmacology of the lower urinary tract: basis for current and future treatments of urinary incontinence. Pharmacol Rev. 2004;56:581–631.

    Article  CAS  PubMed  Google Scholar 

  26. Hegde SS, Choppin A, Bonhaus D, Briaud S, Loeb M, Moy TM, et al. Functional role of M2 and M3 muscarinic receptors in the urinary bladder of rats in vitro and in vivo. Br J Pharmacol. 1997;120:1409–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Braverman AS, Luthin GR, Ruggieri MR. M2 muscarinic receptor contributes to contraction of the denervated rat urinary bladder. Am J Phys. 1998;275:1654–60.

    Google Scholar 

  28. Braverman A, Legos J, Young W, Luthin G, Ruggieri M. M2 receptors in genito-urinary smooth muscle pathology. Life Sci. 1999;64:429–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Braverman AS, Tallarida RJ, Ruggieri MR Sr. Interaction between muscarinic receptor subtype signal transduction pathways mediating bladder contraction. Am J Physiol Regul Integr Comp Physiol. 2002;283:663–8.

    Article  Google Scholar 

  30. Braverman AS, Ruggieri MR Sr. Hypertrophy changes the muscarinic receptor subtype mediating bladder contraction from M3 toward M2. Am J Physiol Regul Integr Comp Physiol. 2003;285:701–8.

    Article  Google Scholar 

  31. Pontari MA, Braverman AS, Ruggieri MR Sr. The M2 muscarinic receptor mediates in vitro bladder contractions from patients with neurogenic bladder dysfunction. Am J Physiol Regul Integr Comp Physiol. 2004;286:874–80.

    Article  Google Scholar 

  32. Tobin G, Sjögren C. In vivo and in vitro effects of muscarinic receptor antagonists on contractions and release of [3H] acetylcholine in the rabbit urinary bladder. Eur J Pharmacol. 1995;28:1–8.

    Article  Google Scholar 

  33. Inadome A, Yoshida M, Takahashi W, Yono M, Seshita H, Miyamoto Y, et al. Prejunctional muscarinic receptors modulating acetylcholine release in rabbit detrusor smooth muscles. Urol Int. 1998;61:135–41.

    Article  CAS  PubMed  Google Scholar 

  34. Somogyi GT, de Groat WC. Evidence for inhibitory nicotinic and facilitatory muscarinic receptors in cholinergic nerve terminals of the rat urinary bladder. J Auton Nerv Syst. 1992;37:89–98.

    Article  CAS  PubMed  Google Scholar 

  35. Alberts P. Subtype classification of the presynaptic _-adrenoceptors which regulate [3H] noradrenaline secretion in guinea-pig isolated urethra. Br J Pharmacol. 1992;105:142–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. D’Agostino G, Barbieri A, Chiossa E, Tonini M. M4 muscarinic autoreceptor-mediated inhibition of [3H] acetylcholine release in the rat isolated urinary bladder. J Pharmacol Exp Ther. 1997;283:750–6.

    PubMed  Google Scholar 

  37. D’Agostino G, Bolognesi ML, Lucchelli A, Vicini D, Balestra B, Spelta V, et al. Prejunctional muscarinic inhibitory control of acetylcholine release in the human isolated detrusor: involvement of the M4 receptor subtype. Br J Pharmacol. 2000;129:493–500.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Somogyi GT, de Groat WC. Function, signal transduction mechanisms and plasticity of presynaptic muscarinic receptors in the urinary bladder. Life Sci. 1999;64:411–8.

    Article  CAS  PubMed  Google Scholar 

  39. Somogyi GT, Zernova GV, Yoshiyama M, Rocha JN, Smith CP, de Groat WC. Change in muscarinic modulation of transmitter release in the rat urinary bladder after spinal cord injury. Neurochem Int. 2003;43:73–7.

    Article  CAS  PubMed  Google Scholar 

  40. Gosling JA, Dixon JS, Jen PYP. The distribution of noradrenergic nerves in the human lower urinary tract. Eur Urol. 1999;38:23–30.

    Article  Google Scholar 

  41. Anderson KE. Pharmacology of lower urinary tract smooth muscles and penile erectile tissues. Pharmacol Rev. 1993;45:253–308.

    CAS  PubMed  Google Scholar 

  42. Goepel M, Wittmann A, Rubben H, Michel MC. Comparison of adrenoceptor subtype expression in porcine and human bladder and prostate. Urol Res. 1997;25:199–206.

    Article  CAS  PubMed  Google Scholar 

  43. Nomiya M, Yamaguchi O. A quantitative analysis of mRNA expression of α1 and β-adrenoceptor subtypes and their functional roles in human normal and obstructed bladders. J Urol. 2003;170:649–53.

    Article  CAS  PubMed  Google Scholar 

  44. Amark P. The effect of noradrenaline on the contractile response of the urinary bladder. Scand J Urol Nephrol. 1986;20:203–7.

    Article  CAS  PubMed  Google Scholar 

  45. Igawa Y, Yamazaki Y, Takeda H, Hayakawa K, Akahane M, Ajisawa Y, et al. Functional and molecular biological evidence for a possible β3-adrenoceptor in the human detrusor muscle. Br J Pharmacol. 1999;126:819–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Igawa Y, Yamazaki Y, Takeda H, Kaidoh K, Akahane M, Ajisawa Y, et al. Relaxant effects of isoproterenol and selective β3-adrenoceptor agonists on normal, low compliant and hyperreflexic human bladders. J Urol. 2001;165:240–4.

    Article  CAS  PubMed  Google Scholar 

  47. Takeda M, Obara K, Mizusawa T, Tomita Y, Arai K, Tsutsui T, et al. Evidence for β3-adrenoceptor subtypes in relaxation of the human urinary bladder detrusor: analysis by molecular biological and pharmacological methods. J Pharmacol Exp Ther. 1999;288:1367–73.

    CAS  PubMed  Google Scholar 

  48. Morita T, Iizuka H, Iwata T, Kondo S. Function and distribution of β3-adrenoceptors in rat, rabbit and human urinary bladder and external urethral sphincter. J Smooth Muscle Res. 2000;36:21–32.

    Article  CAS  PubMed  Google Scholar 

  49. Andersson KE. Clinical relevance of some findings in neuro-anatomy and neurophysiology of the lower urinary tract. Clin Sci. 1986;70:21–32.

    Article  Google Scholar 

  50. de Groat WC, Yoshimura N. Pharmacology of the lower urinary tract. Annu Rev Pharmacol Toxicol. 2001;41:691–721.

    Article  PubMed  Google Scholar 

  51. Sjögren C, Andersson K-E, Husted S, Mattiasson A, Møller-Madsen B. Atropine resistance of the transmurally stimulated isolated human bladder. J Urol. 1982;128:1368–71.

    Article  PubMed  Google Scholar 

  52. Sibley GN. A comparison of spontaneous and nerve-mediated activity in bladder muscle from man, pig and rabbit. J Physiol Lond. 1984;354:431–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kinder RB, Mundy AR. Atropine blockade of nerve-mediated stimulation of the human detrusor. Br J Urol. 1985;57:418–21.

    Article  CAS  PubMed  Google Scholar 

  54. Palea S, Artibani W, Ostardo E, Trist DG, Pietra C. Evidence for purinergic neurotransmission in human urinary bladder affected by interstitial cystitis. J Urol. 1993;150:2007–12.

    Article  CAS  PubMed  Google Scholar 

  55. Bayliss M, Wu C, Newgreen D, Mundy AR, Fry CH. A quantitative study of atropine-resistant contractile responses in human detrusor smooth muscle, from stable, unstable and obstructed bladders. J Urol. 1999;162:1833–9.

    Article  CAS  PubMed  Google Scholar 

  56. Moore KH, Lam DS, Lynch W, Burcher E. The tachykinin NK-2 receptor antagonist SR48968 does not block noncholinergic contractions in unstable human bladder. Peptides. 2002;23:1155–60.

    Article  CAS  PubMed  Google Scholar 

  57. O’Reilly BA, Kosaka AH, Knight GF, Chang TK, Ford AP, Rymer JM, et al. P2X receptors and their role in female idiopathic detrusor instability. J Urol. 2002;167:157–64.

    Article  PubMed  Google Scholar 

  58. de Groat WC, Yoshimura N. Afferent nerve regulation of bladder function in health and disease. Handb Exp Pharmacol. 2009;194:91–138.

    Article  CAS  Google Scholar 

  59. Morgan C, Nadelhaft I, de Groat WC. The distribution of visceral primary afferents from the pelvic nerve to Lissauer’s tract and the spinal gray matter and its relationship to the sacral parasympathetic nucleus. J Comp Neurol. 1981;201:415–40.

    Article  CAS  PubMed  Google Scholar 

  60. de Groat WC. Spinal cord projections and neuropeptides in visceral afferent neurons. Prog Brain Res. 1986;67:165–87.

    Article  PubMed  Google Scholar 

  61. Thor KB, Hisamitsu T, Roppolo JR, Tuttle P, Nagel J, de Groat WC. Selective inhibitory effects of ethylketocyclazocine on reflex pathways to the external urethral sphincter of the cat. J Pharmacol Exp Ther. 1989;248:1018–25.

    CAS  PubMed  Google Scholar 

  62. Birder L, Blok B, Burnstock G, Cruz F, Griffiths D, Kuo HC, et al. Neural control. In: Abrams P, Cardozo L, Wagg A, Wein A, editors. Incontinence. 6th ed. Paris: Health Publications, Ltd; 2016. p. 275–375.

    Google Scholar 

  63. Habler HJ, Janig W, Koltzenburg M. Receptive properties of myelinated primary afferents innervating the inflamed urinary bladder of the cat. J Neurophysiol. 1993;69:395–405.

    Article  CAS  PubMed  Google Scholar 

  64. Sengupta JN, Gebhart GF. Mechanosensitive properties of pelvic nerve afferent fibers innervating the urinary bladder of the rat. J Neurophysiol. 1994;72:2420–30.

    Article  CAS  PubMed  Google Scholar 

  65. Shea VK, Cai R, Crepps B, Mason JL, Perl ER. Ensory fibers of the pelvic nerve innervating the Rat’s urinary bladder. J Neurophysiol. 2000;84:1924–33.

    Article  CAS  PubMed  Google Scholar 

  66. Gillespie JI, van Koeveringe GA, de Wachter SG, de Vente J. On the origins of the sensory output from the bladder: the concept of afferent noise. BJU Int. 2009;103:1324–33.

    Article  PubMed  Google Scholar 

  67. Kanai A, Wyndaele JJ, Andersson KE, Fry C, Ikeda Y, Zabbarova I, et al. Researching bladder afferents-determining the effects of beta (3) –adrenergic receptor agonists and botulinum toxin type-A. Neurourol Urodyn. 2011;30:684–91.

    Article  CAS  PubMed  Google Scholar 

  68. Habler HJ, Janig W, Koltzenburg M. Activation of unmyelinated afferent fibres by mechanical stimuli and inflammation of the urinary bladder in the cat. J Physiol. 1990;425:545–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Crowe R, Light K, Chilton CP, Burnstock G. Vasoactive intestinal polypeptide-, somatostatin- and substance P-immunoreactive nerves in the smooth and striated muscle of the intrinsic external urethral sphincter of patients with spinal cord injury. J Urol. 1986;136:487–91.

    Article  CAS  PubMed  Google Scholar 

  70. Tainio H. Neuropeptidergic innervation of the human male distal urethra and intrinsic external urethral sphincter. Acta Histochem. 1993;94:197–201.

    Article  CAS  PubMed  Google Scholar 

  71. Fahrenkrug J, Hannibal J. Pituitary adenylate cyclase activating polypeptide immunoreactivity in capsaicin-sensitive nerve fibres supplying the rat urinary tract. Neuroscience. 1998;83:1261–72.

    Article  CAS  PubMed  Google Scholar 

  72. Gosling JA, Dixon JS, Critchley HO, Thompson SA. A comparative study of the human external sphincter and periurethral levator ani muscles. Br J Urol. 1981;53:35–41.

    Article  CAS  PubMed  Google Scholar 

  73. Lassmann G. Muscle spindles and sensory nerve endings in the urethral sphincter. Acta Neuropathol. 1984;63:344–6.

    Article  CAS  PubMed  Google Scholar 

  74. Snellings AE, Yoo PB, Grill WM. Urethral flow-responsive afferents in the cat sacral dorsal root ganglia. Neurosci Lett. 2012;516:34–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Birder L, Andersson KE. Urothelial signaling. Physiol Rev. 2013;93:653–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Vergnolle N. Postinflammatory visceral sensitivity and pain mechanisms. Neurogastroenterol Motil. 2008;1:73–80.

    Article  Google Scholar 

  77. Burnstock G, Dumsday B, Smythe A. Atropine resistant excitation of the urinary bladder: the possibility of transmission via nerves releasing a purine nucleotide. Br J Pharmacol. 1972;44:451–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Birder LA, Wolf-Johnston AS, Sun Y, Chai TC. Alteration in TRPV1 and muscarinic M3 receptor expression and function in idiopathic overactive bladder urothelial cells. Acta Physiol (Oxf). 2013;207:123–9.

    Article  CAS  Google Scholar 

  79. Cockayne DA, Hamilton SG, Zhu QM, Dunn PM, Zhong Y, Novakovic S, et al. Urinary bladder hyporeflexia and reduced pain-related behavior in P2X3-deficient mice. Nature. 2000;407:1011–5.

    Article  CAS  PubMed  Google Scholar 

  80. Moldwin R, Kitt M, Mangel J, Beyer R, Hanno P, Butera P, et al. A phase 2 study in women with interstitial cystitis/bladder pain syndrome (IC/BPS) of the novel p2x3 antagonist AF219. Paper presented at the 45th Annual meeing of international contionence society. Montreal, 6–9 Octobor 2015.

    Google Scholar 

  81. Andersson KE, Persson K. Nitric oxide synthase and the lower urinary tract: possible implications for physiology and pathophysiology. Scand J Urol Nephrol. 1995;175:43–53.

    CAS  Google Scholar 

  82. Birder LA, Nealen ML, Kiss S, de Groat WC, Caterina MJ, Wang E, et al. Beta-adrenoceptor agonists stimulate endothelial nitric oxide synthase in rat urinary bladder urothelial cells. J Neurosci. 2002a;22:8063–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Gillespie JI, Marerink-van Ittersum M, de Vente J. Expression of neuronal nitric oxide synthase (nNOS) and nitric-oxide-induced changes in cGMP in the urothelial layer of the guinea pig bladder. Cell Tissue Res. 2005;321:341–51.

    Article  CAS  PubMed  Google Scholar 

  84. Gillespie JI, Markerink-van Ittersum M, de Vente J. Endogenous nitric oxide/cGMP signalling in the guinea pig bladder: evidence for distinct populations of sub-urothelial interstitial cells. Cell Tissue Res. 2006;325:325–32.

    Article  CAS  PubMed  Google Scholar 

  85. Aizawa N, Igawa Y, Nishizawa O, Wyndaele JJ. Effects of nitric oxide on the primary bladder afferent activities of the rat with and without intravesical acrolein treatment. Eur Urol. 2011;59:264–71.

    Article  CAS  PubMed  Google Scholar 

  86. Rahnama’I MS, Uckert S, Hohnen R, van Koeveringe GA. The role of phosphodiesterases in bladder pathophysiology. Nat Rev Urol. 2013;10:414–24.

    Article  PubMed  CAS  Google Scholar 

  87. Truss MC, Becker AJ, Uckert S, Schultheiss D, Machtens S, Jonas U, et al. Selective pharmacological manipulation of the smooth muscle tissue of the genitourinary tract: a glimpse into the future. BJU Int. 1999;83:36–41.

    Article  CAS  PubMed  Google Scholar 

  88. Truss MC, Stief CG, Uckert S, Becker AJ, Wefer J, Schultheiss D, et al. Phosphodiesterase 1 inhibition in the treatment of lower urinary tract dysfunction: from bench to bedside. World J Urol. 2001;19:344–50.

    Article  CAS  PubMed  Google Scholar 

  89. Minagawa T, Aizawa N, Igawa Y, Wyndaele JJ. Inhibitory effects of phosphodiesterase 5 inhibitor, tadalafil, on mechanosensitive bladder afferent nerve activities of the rat, and on acrolein-induced hyperactivity of these nerves. BJU Int. 2012;110:259–66.

    Article  CAS  Google Scholar 

  90. Nilius B. TRP channels in disease. Biochim Biophys Acta. 2007;1772:805–12.

    Article  CAS  PubMed  Google Scholar 

  91. Deruyver Y, Voets T, De Ridder D, Everaerts W. Transient receptor potential channel modulators as pharmacological treatments for lower urinary tract symptoms (LUTS): myth or reality? BJU Int. 2015;115:686–97.

    Article  CAS  PubMed  Google Scholar 

  92. Franken J, Uvin P, De Ridder D, Voets T. TRP channels in lower urinary tract dysfunction. Br J Pharmacol. 2014;171:2537–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Birder LA, Nakamura Y, Kiss S, Nealen ML, Barrick SR, Kanai AJ, et al. Altered urinary bladder function in mice lacking the vanilloid receptor TRPV1. Nat Neurosci. 2002b;5:856–60.

    Article  CAS  PubMed  Google Scholar 

  94. Apostolidis A, Brady CM, Yoangou Y, Davis J, Fowler CJ, Anand P. Capsaicin receptor TRPV1 in urothelium of neurogenic human bladders and effect of intravesical resiniferatoxin. Urology. 2005;65:400–5.

    Article  PubMed  Google Scholar 

  95. Daly D, Rong W, Chess-Williams R, Chapple C, Grundy D. Bladder afferent sensitivity in wild-type and TRPV1 knockout mice. J Physiol. 2007;583:663–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Round P, Priestley A, Robinson J. An investigation of the safety and pharmacokinetics of the novel TRPV1 antagonist XEN-D0501 in healthy subjects. Br J Clin Pharmacol. 2011;72:921–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Andrade EL, Forner S, Bento AF, Leite DF, Dias MA, Leal PC, et al. TRPA1 receptor modulation attenuates bladder overactivity induced by spinal cord injury. Am J Physiol Renal Physiol. 2011;300:1223–34.

    Article  CAS  Google Scholar 

  98. Deberry JJ, Schwartz ES, Davis BM. TRPA1 mediates bladder hyperalgesia in a mouse model of cystitis. Pain. 2014;155:1280–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Ferrer-Montiel A, Fernandez-Carvajal A, Planells-Cases R, Fernández-Ballester G, González-Ros JM, Messeguer A, et al. Advances in modulating thermosensory TRP channels. Expert Opin Ther Pat. 2012;22:999–1017.

    Article  CAS  PubMed  Google Scholar 

  100. Gevaert T, Vriens J, Segal A, Everaerts W, Roskams T, Talavera K, et al. Deletion of the transient receptor potential cation channel TRPV4 impairs murine bladder voiding. J Clin Invest. 2007;117:3453–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Janssen DA, Hoenderop JG, Jansen KC, Kemp AW, Heesakkers JP, Schalken JA. The mechanoreceptor TRPV4 is localized in adherence junctions of the human bladder urothelium: a morphological study. J Urol. 2011;186:1121–7.

    Article  CAS  PubMed  Google Scholar 

  102. Mochizuki T, Sokabe T, Araki I, Fujishita K, Shibasaki K, Uchida K, et al. The TRPV4 cation channel mediates stretch-evoked Ca2+ influx and ATP release in primary urothelial cell cultures. J Biol Chem. 2009;284:21257–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Thorneloe KS, Sulpizio AC, Lin Z, Figueroa DJ, Clouse AK, McCafferty GP, et al. N-((1S)-1-{[4-((2S)-2-{[(2,4-dichlorophenyl)sulfonyl]amino}-3-hydroxypropanoyl)-1-piperazinyl]carbonyl}-3-methylbutyl)-1-benzothiophene-2-carboxamide(GSK1016790A), a novel and potent transient receptor potential vanilloid 4 channel agonist induces urinary bladder contraction and hyperactivity: Part I. J Pharmacol Exp Ther. 2008;326:432–42.

    Article  CAS  PubMed  Google Scholar 

  104. Aizawa N, Wyndaele JJ, Homma Y, Igawa Y. Effects of TRPV4 cation channel activation on the primary bladder afferent activities of the rat. Neurourol Urodyn. 2012;31:148–55.

    Article  CAS  PubMed  Google Scholar 

  105. Everaerts W, Zhen X, Ghosh D, Vriens J, Gevaert T, Gilbert JP, et al. Inhibition of the cation channel TRPV4 improves bladder function in mice and rats with cyclophosphamide-induced cystitis. Proc Natl Acad Sci U S A. 2010;107:19084–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Charrua A, Cruz CD, Jansen D, Rozenberg B, Heesakkers J, Cruz F. Co-administration of transient receptor potential vanilloid 4 (TRPV4) and TRPV1 antagonists potentiate the effect of each drug in a rat model of cystitis. BJU Int. 2015;115:452–60.

    Article  CAS  PubMed  Google Scholar 

  107. Thorneloe KS, Cheung M, Bao W, Alsaid H, Lenhard S, Jian MY, et al. An orally active TRPV4 channel blocker prevents and resolves pulmonary edema induced by heart failure. Sci Transl Med. 2012;4:159–48.

    Article  CAS  Google Scholar 

  108. Voets T, Owsianik G, Nilius B. TRPM8. Handb Exp Pharmacol. 2007;179:329–44.

    Article  CAS  Google Scholar 

  109. Mukerji G, Yiangou Y, Corcoran SL, Selmer IS, Smith GD, Benham CD, et al. Cool and menthol receptor TRPM8 in human urinary bladder disorders and clinical correlations. BMC Urol. 2006;6:6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Hayashi T, Kondo T, Ishimatsu M, Yamada S, Nakamura K, Matsuoka K, et al. Expression of the TRPM8-immunoreactivity in dorsal root ganglion neurons innervating the rat urinary bladder. Neurosci Res. 2009;65:245–51.

    Article  CAS  PubMed  Google Scholar 

  111. Lashinger ES, Steiginga MS, Hieble JP, Leon LA, Gardner SD, Nagilla R, et al. AMTB, a TRPM8 channel blocker: evidence in rats for activity in overactive bladder and painful bladder syndrome. Am J Physiol Renal Physiol. 2008;295:803–10.

    Article  CAS  Google Scholar 

  112. Lei Z, Ishizuka O, Imamura T, Noguchi W, Yamagishi T, Yokoyama H, et al. Functional roles of transient receptor potential melastatin 8 (TRPM8) channels in the cold stress-induced detrusor overactivity pathways in conscious rats. Neurourol Urodyn. 2013;32:500–4.

    Article  CAS  PubMed  Google Scholar 

  113. Ito H, Aizawa N, Sugiyama R, Watanabe S, Takahashi N, Tajimi M, et al. Functional role of the transient receptor potential melastatin 8 (TRPM8) ion channel in the urinary bladder assessed by conscious cystometry and ex vivo measurements of single-unit mechanosensitive bladder afferent activities in the rat. BJU Int. 2016;117:484–94.

    Article  CAS  PubMed  Google Scholar 

  114. Almeida MC, Hew-Butler T, Soriano RN, Rao S, Wang W, Wang J, et al. Pharmacological blockade of the cold receptor TRPM8 attenuates autonomic and behavioral cold defenses and decreases deep body temperature. J Neurosci. 2012;32:2086–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Freeman RM, Adekanmi O, Waterfield MR, Waterfield AE, Wright D, Zajicek J. The effect of cannabis on urge incontinence in patients with multiple sclerosis: A multicentre, randomised placebo-controlled trial (CAMS-LUTS). Int Urogynecol J Pelvic Floor Dysfunct. 2006;17:636–41.

    Article  CAS  PubMed  Google Scholar 

  116. Kavia RB, De Ridder D, Constantinescu CS, Stott CG, Fowler CJ. Randomized controlled trial of Sativex to treat detrusor overactivity in multiple sclerosis. Mult Scler. 2010;16:1349–59.

    Article  CAS  PubMed  Google Scholar 

  117. Tyagi V, Philips BJ, Su R, Smaldone MC, Erickson VL, Chancellor MB, et al. Differential expression of functional cannabinoid receptors in human bladder detrusor and urothelium. J Urol. 2009;181:1932–8.

    Article  CAS  PubMed  Google Scholar 

  118. Mukerji G, Yiangou Y, Agarwal SK, Anand P. Increased cannabinoid receptor 1-immunoreactive nerve fibers in overactive and painful bladder disorders and their correlation with symptoms. Urology. 2010;75:1514.

    Article  PubMed  Google Scholar 

  119. Gratzke C, Streng T, Park A, Christ G, Stief CG, Hedlund P, et al. Distribution and function of cannabinoid receptors 1 and 2 in the rat, monkey and human bladder. J Urol. 2009;181:1939–48.

    Article  CAS  PubMed  Google Scholar 

  120. Aizawa N, Hedlund P, Füllhase C, Ito H, Homma Y, Igawa Y. Inhibition of peripheral FAAH depresses activities of bladder mechanosensitive nerve fibers of the rat. J Urol. 2014;192:956–63.

    Article  CAS  PubMed  Google Scholar 

  121. Aizawa N, Gandaglia G, Hedlund P, Fujimura T, Fukuhara H, Montorsi F, et al. URB937, a peripherally restricted inhibitor for fatty acid amide hydrolase, reduces prostaglandin E2 -induced bladder overactivity and hyperactivity of bladder mechano-afferent nerve fibres in rats. BJU Int. 2016;117:821–8.

    Article  CAS  PubMed  Google Scholar 

  122. Hedlund P. Cannabinoids and the endocannabinoid system in lower urinary tract function and dysfunction. Neurourol Urodyn. 2014;33:46–53.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuhiko Igawa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature B.V.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Igawa, Y. (2019). Peripheral Neural Control of the Lower Urinary Tract. In: Liao, L., Madersbacher, H. (eds) Neurourology. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7509-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-7509-0_3

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-017-7507-6

  • Online ISBN: 978-94-017-7509-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics