Skip to main content

Molecular Imaging of Brain Tumors

  • Chapter
  • First Online:
Tumors of the Central Nervous System, Volume 11

Part of the book series: Tumors of the Central Nervous System ((TCNS,volume 11))

Abstract

Non-invasive energy metabolism measurements in brain tumors in vivo are now performed widely as molecular imaging by positron emission tomography. This capability has developed from a large number of basis and clinical science investigations, which have cross- fertilized one another. Apart from precise anatomical localization and quantification, the most intriguing advantage of such imaging is the opportunity to investigate the time course (dynamics) of disease-specific molecular events in the intact organism. Most importantly, molecular imaging represents a key technology in translational research, helping to develop experimental protocols that may later be applied to human patients. Common clinical indications for molecular imaging of primary brain tumors, therefore, contain (1) primary brain tumor diagnosis, (2) identification of metabolically most active brain tumor reactions (differentiation of viable tumor tissue from necrosis), and (3) prediction of treatment response by measurement of tumor perfusion or ischemia. The key question remains whether the magnitude of biochemical alterations demonstrated by molecular imaging reveals prognostic value with respect to survival. Molecular imaging may identify early disease and differentiate benign from malignant lesions. Moreover, an early identification of treatment effectiveness could influence patient management by providing objective criteria for evaluation of therapeutic strategies for primary brain tumors. Its novel potential to visualize metabolism and signal transduction to gene expression is used in reporter gene assays to trace the location and temporal level of expression of therapeutic and endogenous genes. Currently, molecular imaging probes are developed to image the function of targets without disturbing them or as a drug in order to modify the target’s function. In this new context, the microenvironment of malignant brain tumor and the blood-brain barrier shows increased interest. The objective is transfer gene therapy’s experimental knowledge into clinical applications. Molecular imaging closes the gap between in vitro to in vivo integrative biology of disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Blasberg RG, Tjuvajev JG (2003) Molecular-genetic imaging: current and future perspectives. J Clin Invest 111:1620–1629

    PubMed Central  PubMed  CAS  Google Scholar 

  • DeAngelis LM, Burger PC, Green SB, Cairncross JG (1998) Malignant glioma: who benefits from adjuvant chemotherapy? Ann Neurol 44:691–695

    Article  PubMed  CAS  Google Scholar 

  • Giese A, Laube B, Zapf S, Mangold U, Westphal M (1998) Glioma cell adhesion and migration on human brain sections. Anticancer Res 18:2435–2447

    PubMed  CAS  Google Scholar 

  • Haubner R, Wester HJ, Weber WA, Mang C, Ziegler SI, Goodman SL, Senekowitsch Schmidtke R, Kessler H, Schwaiger M (2001) Noninvasive imaging of alpha(v)beta3 integrin expression using 18F-labeled RGD-containing gylcopeptide and positron emission tomography. Cancer Res 61:1781–1785

    PubMed  CAS  Google Scholar 

  • Herholz K, Coope D, Jackson A (2007) Metabolic and molecular imaging in neuro-oncology. Lancet Neurol 6:711–724

    Article  PubMed  CAS  Google Scholar 

  • Jacobs A, Voges J, Reszka R, Lercher M, Gossmann A, Kracht L, Kaestle C, Wagner R, Wienhard K, Heiss WD (2001) Positron-emission tomography of vector-mediated gene expression in gene therapy for gliomas. Lancet 358:727–729

    Article  PubMed  CAS  Google Scholar 

  • Jacobs AH, Li H, Winkeler A, Hilker R, Knoess C, Rüger A, Galldiks N, Schaller B, Sobesky J, Kracht L, Monfared P, Klein M, Vollmar S, Bauer B, Wagner R, Graf R, Wienhard K, Herholz K, Heiss WD (2003a) PET-based molecular imaging in neuroscience. Eur J Nucl Med Mol Imaging 30:1051–1065

    Article  PubMed  CAS  Google Scholar 

  • Jacobs AH, Winkeler A, Hartung M, Slack M, Dittmar C, Kummer C, Knoess C, Galldiks N, Vollmar S, Wienhard K, Heiss WD (2003b) Improved herpes simplex virus type 1 amplicon vectors for proportional coexpression of positron emission tomography marker and therapeutic genes. Hum Gene Ther 14:277–297

    Article  PubMed  CAS  Google Scholar 

  • Jasanoff A (2005) Functional MRI using molecular imaging agents. Trends Neurosci 28:120–126

    Article  PubMed  CAS  Google Scholar 

  • Levivier M, Becerra A, De Witte O, Brotchi J, Goldman S (1996) Radiation necrosis or recurrence. J Neurosurg 84:148–149

    PubMed  CAS  Google Scholar 

  • Paulmurugan R, Massoud TF, Huang J, Gambhir SS (2004) Molecular imaging of drug-modulated protein-protein interactions in living subjects. Cancer Res 64:2113–2119

    Article  PubMed  CAS  Google Scholar 

  • Sandu N, Schaller B (2010) Stem cell transplantation in brain tumors: a new field for molecular imaging? Mol Med 16:433–437

    PubMed Central  PubMed  CAS  Google Scholar 

  • Sandu N, Pöpperl G, Toubert ME, Arasho B, Spiriev T, Orabi M, Schaller BJ (2011a) Molecular imaging of potential bone metastasis from differentiated thyroid cancer: a case report. J Med Case Rep 5:522

    Article  PubMed Central  PubMed  Google Scholar 

  • Sandu N, Pöpperl G, Toubert ME, Spiriev T, Arasho B, Orabi M, Schaller B (2011b) Current molecular imaging of spinal tumors in clinical practice. Mol Med 17:308–316

    PubMed Central  PubMed  CAS  Google Scholar 

  • Schaller B (2003) Neuroprotection in brain tumors-pathophysiological sense or nonsense? Nervenarzt 74:1134–1136

    Article  PubMed  CAS  Google Scholar 

  • Schaller B (2004) Usefulness of positron emission tomography in diagnosis and treatment follow-up of brain tumors. Neurobiol Dis 15:437–448

    Article  PubMed  CAS  Google Scholar 

  • Schaller B (2005) Influences of brain tumor- associated pH changes and hypoxia on epileptogenesis. Acta Neurol Scand 111:75–83

    Article  PubMed  CAS  Google Scholar 

  • Schaller B (2008) Strategies for molecular imaging dementia and neurodegenerative diseases. Neuropsychiatr Dis Treat 4:585–612

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Schaller BJ, Buchfelder M (2006) Neuroprotection in primary brain tumors: sense or nonsense? Expert Rev Neurother 6:723–730

    Article  PubMed  CAS  Google Scholar 

  • Schaller B, Graf R, Sanada Y, Tolnay M, Rosner G, Wienhard K, Heiss WD (2003a) Hemodynamic changes after occlusion of the posterior superior sagittal sinus: an experimental PET study in cats. AJNR Am J Neuroradiol 24:1876–1880

    PubMed  Google Scholar 

  • Schaller B, Graf R, Sanada Y, Rosner G, Wienhard K, Heiss WD (2003b) Hemodynamic and metabolic effects of decompressive hemicraniectomy in normal brain: an experimental PET-study in cats. Brain Res 982:31–37

    Article  PubMed  CAS  Google Scholar 

  • Schaller B, Graf R, Wienhard K, Heiss WD (2003c) A new animal model of cerebral venous infarction: ligation of the posterior part of the superior sagittal sinus in the cat. Swiss Med Wkly 133:412–418

    PubMed  CAS  Google Scholar 

  • Schaller B, Graf R, Jacobs AH (2003d) Ischaemic tolerance: a window to endogenous neuroprotection? Lancet 362:1007–1008

    Article  PubMed  Google Scholar 

  • Schaller B, Buchfelder M, Knauth M (2006) Trigemino-cardiac reflex during skull base surgery: a new entity of ischaemic preconditioning? The potential role of imaging. Eur J Nucl Med Mol Imaging 33:384–385

    Article  PubMed  CAS  Google Scholar 

  • Schaller BJ, Modo M, Buchfelder M (2007) Molecular imaging of brain tumors: a bridge between clinical and molecular medicine? Mol Imaging Biol 9:60–71

    Article  PubMed  CAS  Google Scholar 

  • Schaller BJ, Cornelius JF, Sandu N, Buchfelder M (2008) Molecular imaging of brain tumors: personal experience and review of the literature. Curr Mol Med 8:711–726

    Article  PubMed  CAS  Google Scholar 

  • Schmidt KF, Ziu M, Schmidt NO, Vaghasia P, Cargioli TG, Doshi S, Albert MS, Black PM, Carroll RS, Sun Y (2004) Volume reconstruction technique improve the correlation between histological and in vivo tumor volume measurements in mouse models of human gliomas. J Neurooncol 68:207–215

    Article  PubMed  Google Scholar 

  • Stockhammer F, Thomale UW, Plotkin M, Hartmann C, Von Deimling A (2007) Association between fluorine-18-labeled fluorodeoxyglucose uptake and 1′ and 19q loss of heterozygosity in World Health Organization Grade II gliomas. J Neurosurg 106:633–637

    Article  PubMed  CAS  Google Scholar 

  • Sundaresan G, Yazaki PJ, Shively JE, Finn RD, Larson SM, Raubitschek AA, Williams LE, Chatziioannou AF, Gambhir SS, Wu AM (2003) 124I-labeled engineered anti-CEA minibodies and diabodies allow high-contrast, antigen-specific small-animal PET imaging of xenografts in athymic mice. J Nucl Med 44:1962–1969

    PubMed  CAS  Google Scholar 

  • Tjuvajev JG, Doubrovin M, Akhurst T, Cai S, Balatoni J, Alauddin MM, Finn R, Bommann W, Thaler H, Conti PS, Blasberg RG (2002) Comparison of radiolabeled nucleoside probes (FIAU, FHBG, and FHPG) for PET imaging of HSV1-tk gene expression. J Nucl Med 43:1072–1083

    PubMed  Google Scholar 

  • Voges J, Herholz K, Hölzer T, Würker M, Bauer B, Pietrzyk U, Treuer H, Schröder R, Sturm V, Heiss WD (1997) 11C-methionine and 18-F-2-fluorodeoxyglucose positron emission tomography: a tool for diagnosis of cerebral glioma and monitoring after brachytherapy with 125I seeds. Stereotact Funct Neurosurg 69:129–135

    Article  PubMed  CAS  Google Scholar 

  • Voges J, Reszka R, Gossmann A, Dittmar C, Richter R, Garlip G, Kracht L, Coenen HH, Sturm V, Wienhard K, Heiss WD, Jacobs AH (2003) Imaging guided convection-enhanced delivery and gene therapy of glioblastoma. Ann Neurol 54:479–487

    Article  PubMed  CAS  Google Scholar 

  • Weissleder R, Mahmood U (2001) Molecular imaging. Radiology 219:316–333

    Article  PubMed  CAS  Google Scholar 

  • Woesler B, Kuwert T, Morgenroth C, Matheja P, Palkovic S, Schäfers M, Vollet B, Schäfers K, Lerch H, Brandau W, Samnick S, Wassmann H, Schober O (1997) Non-invasive grading of primary brain tumours: results of a comparative study between SPET with 123I-alpha-methyl tyrosine and PET with 18F-deoxyglucose. Eur J Nucl Med 24:428–434

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernhard Schaller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Sandu, N., Spiriev, T., Schaller, B. (2014). Molecular Imaging of Brain Tumors. In: Hayat, M. (eds) Tumors of the Central Nervous System, Volume 11. Tumors of the Central Nervous System, vol 11. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7037-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-7037-9_2

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-7036-2

  • Online ISBN: 978-94-007-7037-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics