Skip to main content

Cytotoxic Effects of Snake Venoms

  • Living reference work entry
  • First Online:
Book cover Snake Venoms

Part of the book series: Toxinology ((TOXI))

  • 329 Accesses

Abstract

Venomous snake bites are known to cause large number of fatalities in many countries in Africa and Asia. However, apart from mortalities, a venomous bite of a member of Viperidae or Elapidae families also cause a number of severe local tissue damage which frequently leads to amputation of the bitten limb to save the life of the victim. Most of the victims of venomous snake bites are rural farmers of these developing or poor countries. Many families lose their livelihood as the bread earning member loses his active hand or leg. The major damages caused by these snakes include severe muscular damage and vascular damage, eventually causing gas gangrene. The cytological changes caused by some elapid snakes, like spitting cobras have been studied in some detail. However, the mechanisms of cytotoxicity caused by snake envenomations are far from clear. Present information indicates that metalloproteinases, lectins and phospholipases play important roles in cytotoxic damage in snake envenomation. Recent advances in cell biology and proteomics have started to reveal some facts related to their modes of actions. More in depth research on the cytotoxins will help us in at least two ways: first by better therapeutic intervention in snake envenomation and second, by developing the future arsenal against life threatening diseases by exploiting specificity of snake venom cytotoxins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abraham MT, Kuriakose MA, Sacks PG, Yee H, Chiriboga L, Bearer EL, Delacure MD. Motility-related proteins as markers for head and neck squamous cell cancer. Laryngoscope. 2001;111(7):1285–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aznar S, Lacal JC. Rho signals to cell growth and apoptosis. Cancer Lett. 2001;165(1):1–10.

    Article  CAS  PubMed  Google Scholar 

  • Aznar S, Fernandez-Valeron P, Espina C, Lacal JC. Rho GTPases: potential candidates for anticancer therapy. Cancer Lett. 2004;206:181–91.

    Article  CAS  PubMed  Google Scholar 

  • Boettner B, Aelst LV. The Rap GTPase activator Drosophila PDZ-GEF regulates cell shape in epithelial migration and morphogenesis. Mol Cell Biol. 2007;27(22):7966–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bright DJ, Portar DJT. Flavoprotein oxidases. In: Boyer PD, editor. The enzymes, vol. XIIB. 3rd ed. New York: Academic; 1975. p. 421–505.

    Google Scholar 

  • Chakrabarty D, Dutta K, Gomes A, Bhattacharyya D. Haemorrhagic protein of Russell’s viper venom with fibrinolytic and esterolytic activities. Toxicon. 2000;38:1475–90.

    Article  CAS  PubMed  Google Scholar 

  • Cummings RD, McEver RP. C-type lectins. In: Varki A, Cummings RD, Esko JD, editors. Essestials of glycobiology. IIth ed. New York: Cold Spring Harbor Laboratory Press, Cold Spring Harbor; 2009.

    Google Scholar 

  • de Carvalho DD, Schmitmeier S, Novello JC, Markland FS. Effect of BJcuL (a lectin from the venom of the snake Bothrops jararacussu) on adhesion and growth of tumor and endothelial cells. Toxicon. 2001;39(10):1471–6.

    Article  PubMed  Google Scholar 

  • Etienne-Manneville S, Hall A. Rho GTPase in cell biology. Nature. 2002;420:629–35.

    Article  CAS  PubMed  Google Scholar 

  • Fox JW, Serrano SMT. Structural considerations of the snake venom metallo-proteinases, key members of the M12 reprolysin family of metalloproteinases. Toxicon. 2005;45:969–85.

    Article  CAS  PubMed  Google Scholar 

  • Girish KS, Kemparaju K. The magic glue hyaluronan and its eraser hyaluronidase: a biological overview. Life Sci. 2007;80:1921–43.

    Article  CAS  PubMed  Google Scholar 

  • Gutierrez JM, Ownby CL, Odell GV. Skeletal muscle regeneration after myonecrosis induced by crude venom and a myotoxin from the snake Bothropsasper (Fer-de-Lance). Toxicon. 1984;22:719–31.

    Article  CAS  PubMed  Google Scholar 

  • Herrera C, Macêdo JKA, Feoli A, Escalante T, Rucavado A, Gutiérrez JM, Fox JW. Muscle tissue damage induced by the venom of Bothrops asper: identification of early and late pathological events through proteomic analysis. PLoS Negl Trop Dis 2016. doi:10.1371/journal.pntd.0004599.

    Google Scholar 

  • Jaffe AB, Hall A. Rho GTPases: biochemistry and biology. Annu Rev Cell Dev Biol. 2005;21:247–69.

    Article  CAS  PubMed  Google Scholar 

  • Jian D, Boon-Huat B, Gopalakrishnakone P. l-amino acid oxidase from Crotalas adamanteus venom induces caspase-independent apoptosis in human NUGC-3 gastric cancer cells. Proceedings: AACR Annual meeting 2014; 5–9 April 2014; San Diego.

    Google Scholar 

  • Kasturiratne A, Wickremasinghe AR, de Silva N, Gunawardena NK, Pathmeswaran A, Premaratna R, Savioli L, Lalloo DG, de Silva HJ. The global burden of snakebite: a literature analysis and modelling based on regional estimates of envenoming and deaths. PLoS Med. 2008;5(11), e218. doi:10.1371/journal.pmed.0050218.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kini RM, Evans HJ. Effect of Phospholipase A2 enzymes on platelet aggregation. In: Kini RM, editor. Venom Phospholipase A2 enzymes: structure, function and mechanism. Chichester: Wiley; 1997. p. 97–128.

    Google Scholar 

  • Kini RM, Evans HJ. A model to explain the pharmacological effects of snake venom phospholipases A2. Toxicon 1989;27:613–35.

    Article  CAS  PubMed  Google Scholar 

  • Kini RM. Phospholipase A2: a complex multifunctional protein puzzle. In: Kini RM, editor. Venom phospholipase A2 enzymes: structure, function and mechanism. Chichester: Wiley; 1997. p. 1–28.

    Google Scholar 

  • Kini RM. Excitement ahead: structure, function and mechanism of snake venom Phospholipase A2 enzymes. Toxicon. 2003;42:827–40.

    Article  CAS  PubMed  Google Scholar 

  • Kumar KK, Chandra KL, Sumanthi J, Reddy GS, Shekar PC, Reddy BV. Biological role of lectins: a review. J Orofac Sci. 2012;4(1):20.

    Article  Google Scholar 

  • Leduc M, Bon C. Cloning of subunits of convulxin, a collagen-like platelet aggregating protein from Crotalus durissus terrificus venom. Biochem J. 1998;333:389–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li B, Zhao WD, Tan ZM. Involvement of Rho/ROCK signalling in small cell lung cancer migration through human brain microvascular endothelial cells. FEBS Lett. 2006;580(17):4252–60.

    Article  CAS  PubMed  Google Scholar 

  • Lu Q, Navdaev A, Clemetson JM, Clemetson KJ. Snake venom C-type lectins interacting with platelet receptors. Structure -function relationships and effects on hemostasis. Toxicon. 2005;45:1089–98.

    Article  CAS  PubMed  Google Scholar 

  • Nunes ES, Souza MA, Vaz AF, Silva TG, Aguiar JS, Batista AM, Guerra MM, Guarnieri MC, Coelho LC, Correia MT. Cytotoxic effect and apoptosis induction by Bothrops leucurus venom lectin on tumor cell lines. Toxicon. 2012;59(7–8):667–71.

    Article  CAS  PubMed  Google Scholar 

  • Pathan J, Martin A, Chowdhury R, Chakrabarty D, Sarkar A. Russell’s viper venom affects regulation of small GTPases and causes nuclear damage. Toxicon. 2015;108:216–25.

    Article  CAS  PubMed  Google Scholar 

  • Pawelek PD, Cheah J, Coulombe R, Macheroux P, Ghisla S, Vrielink A. The structure of l-amino acid oxidase reveals the substrate trajectory into an enantiometrically conservative active site. EMBO J. 2000;19:4204–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodriguez-Hernandez I, Cantelli G, Bruce F, Sanz-Moreno V. Rho, ROCK and actomyosin contractility in metastasis as drug targets. F1000Research, 5(F1000 Faculty Rev). 2016;783:1–13.

    Google Scholar 

  • Sanz-Moreno V, Marshall CJ. The plasticity of cytoskeletal dynamics underlying neoplastic cell migration. Curr Opin Cell Biol. 2010;22(5):690–6.

    Article  CAS  PubMed  Google Scholar 

  • Satoh T, Minami Y, Kono T, Yamada K, Kawahara A, Taniguchi T, Kaziro Y. Interleukin 2-induced activation of Ras requires two domains of interleukin 2 receptor beta subunit, the essential region for growth stimulation and Lck-binding domain. J Biol Chem. 1992;267(35):25423–7.

    CAS  PubMed  Google Scholar 

  • Sarray S, Srairi N, Hatmi M, Luis J, Louzir H, Regaya I, Slema H, Marvaldi J, El Ayeb M, Marrakchi N. Lebecetin, a potent antiplatelet C-type lectin from Macrovipera lebetina venom. Biochim Biophys Acta. 2003;1651(1–2):30–40.

    Article  CAS  PubMed  Google Scholar 

  • Sarray S, Berthet V, Calvete JJ, Secchi J, Marvaldi J, El-Ayeb M, Marrakchi N, Luis J. Lebectin, a novel C-type lectin from Macrovipera lebetina venom, inhibits integrin-mediated adhesion, migration and invasion of human tumour cells. Lab Invest. 2004;84:573–81.

    Article  CAS  PubMed  Google Scholar 

  • Scott DL. Phospholipase A2 structure and catalytic properties. In: Kini RM, editor. Venom Phospholipase A2 enzymes: structure, function and mechanism. Chichester: Wiley; 1997. p. 97–128.

    Google Scholar 

  • Serrano SMT, Kim J, Wang D, Dragulev B, Shannon JD, Mann HH, Veit G, Wagener R, Koch M, Fox JW. The cysteine rich domain of snake venom metalloproteinases is a ligand for von Willebrand factor A domains: role in substrate targeting. J Biol Chem. 2006;281:39746–56.

    Article  CAS  PubMed  Google Scholar 

  • Suhr SM, Kim DS. Comparison of the apoptotic pathways induced by l-amino acid oxidase and hydrogen peroxide. J Biochem (Tokyo). 1996;125:305–9.

    Article  Google Scholar 

  • Tan NH, Saifuddin MN. Isolation and characterization of an unusual l-amino acid oxidase from king cobra (Ophiophagus hannah) venom. Biochem Int. 1989;19:937–44.

    CAS  PubMed  Google Scholar 

  • Tan NH. L-amino acid oxidases and lactate dehydrogenases. In: Bailey GS, editor. Enzymes from snake venoms. Ft. Collins: Alaken; 1998. p. 579–98.

    Google Scholar 

  • Tempone AG, Andrade HF Jr, Spencer PJ, Lourenco CO, Rogero JR, Nascimento N. Bothrops moojeni venom kills Leishmania spp. with hydrogen peroxide generated by its L-amino acid oxidase. Biochem Biophys Res Commun. 2001;280:620–24.

    Article  CAS  PubMed  Google Scholar 

  • Toole BP. Hyaluronan: from extracellular glue to pericellular cue. Nat Rev Cancer. 2004;4:528–39.

    Article  CAS  PubMed  Google Scholar 

  • Tsutomu H, Sonoko U, Terumi N, Elliott RM. Mastoparan, a peptide toxin from Wasp Venom, Mimics receptors by activating GTP-binding regulatory proteins (G Proteins). J Biol Chem. 1988;263(14):6491–4.

    Google Scholar 

  • Wei JF, Mo YZ, Qiao LY, Wei XL, Chen HQ, Xie H, Fu YL, Wang WY, Xiong YL, He SH. Potent histamine-releasing activity of atrahagin, a novel snake venom metalloproteinase. Int J Biochem Cell Biol. 2006;38:510–20.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dibakar Chakrabarty or Angshuman Sarkar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Chakrabarty, D., Sarkar, A. (2016). Cytotoxic Effects of Snake Venoms. In: Gopalakrishnakone, P., Inagaki, H., Mukherjee, A., Rahmy, T., Vogel, CW. (eds) Snake Venoms. Toxinology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6648-8_34-1

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-6648-8_34-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Online ISBN: 978-94-007-6648-8

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics