Skip to main content

Role of Clostridium difficile Toxins in Antibiotic-Associated Diarrhea and Pseudomembranous Colitis

  • Reference work entry
  • First Online:
Microbial Toxins

Part of the book series: Toxinology ((TOXI))

  • 1222 Accesses

Abstract

Clostridium difficile is a nosocomial agent affecting immunocompromised populations under antibiotic treatment. The clinical manifestations induced by this bacterium range from mild antibiotic-associated diarrhea to potentially fatal pseudomembranous colitis. Traditionally, all the signs and symptoms produced by C. difficile have been associated to the production of two toxins, toxin A and toxin B. Both toxins belong to the family of large clostridial cytotoxins (LCTs), and their mechanism of action relies on a series of complex steps. First, these toxins recognize cell-surface located receptors allowing the entrance in membrane-surrounded compartments. The toxins are then translocated through acid sensing-dependent conformational changes and the enzymatically active domain is released into the cytosol through an autoprocessing activity. This enzymatic domain modifies through glucosylation of small guanosine triphosphatase (GTPases) from the Rho and Ras families. Consequently, the signal transduction pathways mediated by these proteins are interrupted leading to the corresponding cytoskeletal alterations and different effects which might finally result in different types of cell death. In vivo, these toxins induce toxicity on epithelial cells lining the intestinal mucosa and induce a severe inflammatory reaction characterized by the recruitment of neutrophils and secretion of several cytokines. It is precisely a combination of dead intestinal epithelial cells combined with polymorphonuclear immune cells that constitutes the characteristic pseudomembrane observed in diarrheic depositions by patients suffering complications of this infection. In this chapter, the clinical manifestations induced by C. difficile toxins, the cellular consequences of their mechanism of action and the evolution of the pathogenicity locus where they are encoded are discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Aktories K, editor. Bacterial toxins: tools in cell biology and pharmacology. London/New York: Chapman & Hall; 1997.

    Google Scholar 

  • Bacci S, Mølbak K, Kjeldsen MK, Olsen KEP. Binary toxin and death after Clostridium difficile infection. Emerg Infect Dis. 2011;17(6):976–82.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bellanger X, Payot S, Leblond-Bourget N, Guédon G. Conjugative and mobilizable genomic islands in bacteria: evolution and diversity. FEMS Microbiol Rev. 2014;38(4):720–60.

    Article  CAS  PubMed  Google Scholar 

  • Braun V, Hundsberger T, Leukel P, Sauerborn M, von Eichel-Streiber C. Definition of the single integration site of the pathogenicity locus in Clostridium difficile. Gene. 1996;181(1–2):29–38.

    Article  CAS  PubMed  Google Scholar 

  • Braun V, Mehlig M, Moos M, Rupnik M, Kalt B, Mahony DE, et al. A chimeric ribozyme in Clostridium difficile combines features of group I introns and insertion elements: a novel chimeric ribozyme in Clostridium difficile. Mol Microbiol. 2002;36(6):1447–59.

    Article  Google Scholar 

  • Carter GP, Rood JI, Lyras D. The role of toxin A and toxin B in the virulence of Clostridium difficile. Trends Microbiol. 2012;20(1):21–9.

    Article  CAS  PubMed  Google Scholar 

  • Carter GP, Chakravorty A, Pham Nguyen TA, Mileto S, Schreiber F, Li L, et al. Defining the roles of TcdA and TcdB in localized gastrointestinal disease, systemic organ damage, and the host response during Clostridium difficile infections. mBio. 2015;6(3):e00551–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chaves-Olarte E, Freer E, Parra A, Guzmán-Verri C, Moreno E, Thelestaman M. R-Ras glucosylation and transient RhoA activation determine the cytopathic effect produced by toxin B variants from toxin A-negative strains of Clostridium difficile. J. Biol. Chem. 2003;278(10):7956–7963.

    Google Scholar 

  • Chen ML, Pothoulakis C, LaMont JT. Protein kinase C signaling regulates ZO-1 translocation and increased paracellular flux of T84 colonocytes exposed to Clostridium difficile toxin A. J Biol Chem. 2002;277(6):4247–54.

    Article  CAS  PubMed  Google Scholar 

  • Chumbler NM, Farrow MA, Lapierre LA, Franklin JL, Haslam D, Goldenring JR, et al. Clostridium difficile toxin B causes epithelial cell necrosis through an autoprocessing-independent mechanism. PLoS Pathog. 2012;8(12):e1003072.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cohen SH, Gerding DN, Johnson S, Kelly CP, Loo VG, McDonald LC, et al. Clinical practice guidelines for Clostridium difficile infection in adults: 2010 update by the Society for Healthcare Epidemiology of America (SHEA) and the Infectious Diseases Society of America (IDSA). Infect Control Hosp Epidemiol. 2010;31(5):431–55.

    Article  PubMed  Google Scholar 

  • D’Auria KM, Bloom MJ, Reyes Y, Gray MC, van Opstal EJ, Papin JA, et al. High temporal resolution of glucosyltransferase dependent and independent effects of Clostridium difficile toxins across multiple cell types. BMC Microbiol. 2015;15(1):7.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dhillon BK, Chiu TA, Laird MR, Langille MGI, Brinkman FSL. Island viewer update: improved genomic island discovery and visualization. Nucleic Acids Res. 2013;41(W1):W129–32.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dingle KE, Griffiths D, Didelot X, Evans J, Vaughan A, Kachrimanidou M, et al. Clinical Clostridium difficile: clonality and pathogenicity locus diversity. PLoS One. 2011;6(5):e19993.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dingle KE, Elliott B, Robinson E, Griffiths D, Eyre DW, Stoesser N, et al. Evolutionary history of the Clostridium difficile pathogenicity locus. Genome Biol Evol. 2014;6(1):36–52.

    Article  PubMed  Google Scholar 

  • Eichel-Streiber C, Zec-Pirnat I, Grabnar M, Rupnik M. A nonsense mutation abrogates production of a functional enterotoxin A in Clostridium difficile toxinotype VIII strains of serogroups F and X. FEMS Microbiol Lett. 1999;178(1):163–8.

    Article  Google Scholar 

  • Elliott B, Dingle KE, Didelot X, Crook DW, Riley TV. The complexity and diversity of the pathogenicity locus in Clostridium difficile clade 5. Genome Biol Evol. 2014;6(12):3159–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farrow MA, Chumbler NM, Lapierre LA, Franklin JL, Rutherford SA, Goldenring JR, et al. Clostridium difficile toxin B-induced necrosis is mediated by the host epithelial cell NADPH oxidase complex. Proc Natl Acad Sci. 2013;110(46):18674–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frädrich C, Beer L-A, Gerhard R. Reactive oxygen species as additional determinants for cytotoxicity of Clostridium difficile toxins A and B. Toxins. 2016;8(1):25.

    Article  PubMed Central  Google Scholar 

  • Genth H, Dreger SC, Huelsenbeck J, Just I. Clostridium difficile toxins: more than mere inhibitors of Rho proteins. Int J Biochem Cell Biol. 2008;40(4):592–7.

    Article  CAS  PubMed  Google Scholar 

  • Gerding DN, Johnson S, Rupnik M, Aktories K. Clostridium difficile binary toxin CDT: mechanism, epidemiology, and potential clinical importance. Gut Microbes. 2014;5(1):15–27.

    Article  PubMed  Google Scholar 

  • Gerhard R, Nottrott S, Schoentaube J, Tatge H, Olling A, Just I. Glucosylation of Rho GTPases by Clostridium difficile toxin A triggers apoptosis in intestinal epithelial cells. J Med Microbiol. 2008;57(6):765–70.

    Article  CAS  PubMed  Google Scholar 

  • Gerhard R, Queißer S, Tatge H, Meyer G, Dittrich-Breiholz O, Kracht M, et al. Down-regulation of interleukin-16 in human mast cells HMC-1 by Clostridium difficile toxins A and B. Naunyn Schmiedebergs Arch Pharmacol. 2011;383(3):285–95.

    Article  CAS  PubMed  Google Scholar 

  • Giesemann T, Guttenberg G, Aktories K. Human α-defensins inhibit Clostridium difficile toxin B. Gastroenterology. 2008;134(7):2049–58.

    Article  CAS  PubMed  Google Scholar 

  • Goh S. Effect of phage infection on toxin production by Clostridium difficile. J Med Microbiol. 2005;54(2):129–35.

    Article  CAS  PubMed  Google Scholar 

  • Goy SD, Olling A, Neumann D, Pich A, Gerhard R. Human neutrophils are activated by a peptide fragment of Clostridium difficile toxin B presumably via formyl peptide receptor: TcdB activates neutrophils. Cell Microbiol. 2015;17(6):893–909.

    Article  CAS  PubMed  Google Scholar 

  • Haraldsen JD, Sonenshein AL. Efficient sporulation in Clostridium difficile requires disruption of the σK gene: gene disruption essential for sporulation. Mol Microbiol. 2003;48(3):811–21.

    Article  CAS  PubMed  Google Scholar 

  • Hargreaves KR, Colvin HV, Patel KV, Clokie JJP, Clokie MRJ. Genetically diverse Clostridium difficile strains harboring abundant prophages in an estuarine environment. Appl Environ Microbiol. 2013;79(20):6236–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He D, Hagen SJ, Pothoulakis C, Chen M, Medina ND, Warny M, et al. Clostridium difficile toxin A causes early damage to mitochondria in cultured cells. Gastroenterology. 2000;119(1):139–50.

    Article  CAS  PubMed  Google Scholar 

  • He D, Sougioultzis S, Hagen S, Liu J, Keates S, Keates AC, et al. Clostridium difficile toxin A triggers human colonocyte IL-8 release via mitochondrial oxygen radical generation. Gastroenterology. 2002;122(4):1048–57.

    Article  CAS  PubMed  Google Scholar 

  • Huelsenbeck J, Dreger S, Gerhard R, Barth H, Just I, Genth H. Difference in the cytotoxic effects of toxin B from Clostridium difficile strain VPI 10463 and toxin B from variant Clostridium difficile strain 1470. Infect Immun. 2007;75(2):801–9.

    Article  CAS  PubMed  Google Scholar 

  • Huelsenbeck SC, May M, Schmidt G, Genth H. Inhibition of cytokinesis by Clostridium difficile toxin B and cytotoxic necrotizing factors-reinforcing the critical role of RhoA in cytokinesis. Cell Motil Cytoskeleton. 2009;66(11):967–75.

    Article  CAS  PubMed  Google Scholar 

  • Ishida Y, Maegawa T, Kondo T, Kimura A, Iwakura Y, Nakamura S, et al. Essential involvement of IFN- in Clostridium difficile toxin A-induced enteritis. J Immunol. 2004;172(5):3018–25.

    Article  CAS  PubMed  Google Scholar 

  • Jafari NV, Kuehne SA, Bryant CE, Elawad M, Wren BW, Minton NP, et al. Clostridium difficile modulates host innate immunity via toxin-independent and dependent mechanism(s). PLoS One. 2013;8(7):e69846.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jank T, Aktories K. Structure and mode of action of clostridial glucosylating toxins: the ABCD model. Trends Microbiol. 2008;16(5):222–9.

    Article  CAS  PubMed  Google Scholar 

  • Kim H, Rhee SH, Pothoulakis C, LaMont JT. Clostridium difficile toxin A binds colonocyte Src causing dephosphorylation of focal adhesion kinase and paxillin. Exp Cell Res. 2009;315(19):3336–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knight DR, Elliott B, Chang BJ, Perkins TT, Riley TV. Diversity and evolution in the genome of Clostridium difficile. Clin Microbiol Rev. 2015;28(3):721–41.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lanis JM, Hightower LD, Shen A, Ballard JD. TcdB from hypervirulent Clostridium difficile exhibits increased efficiency of autoprocessing: autoproteolysis of TcdBHIST and TcdBHV. Mol Microbiol. 2012;84(1):66–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li S, Shi L, Yang Z, Feng H. Cytotoxicity of Clostridium difficile toxin B does not require cysteine protease-mediated autocleavage and release of the glucosyltransferase domain into the host cell cytosol. Pathog Dis. 2013;67(1):11–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin MJ, Clare S, Goulding D, Faulds-Pain A, Barquist L, Browne HP, et al. The agr locus regulates virulence and colonization genes in Clostridium difficile 027. J Bacteriol. 2013;195(16):3672–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meyer GKA, Neetz A, Brandes G, Tsikas D, Butterfield JH, Just I, et al. Clostridium difficile toxins A and B directly stimulate human mast cells. Infect Immun. 2007;75(8):3868–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Monot M, Eckert C, Lemire A, Hamiot A, Dubois T, Tessier C, et al. Clostridium difficile: new insights into the evolution of the pathogenicity locus. Sci Rep. 2015;5:15023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Na X, Zhao D, Koon HW, Kim H, Husmark J, Moyer MP, et al. Clostridium difficile toxin B activates the EGF receptor and the ERK/MAP kinase pathway in human colonocytes. Gastroenterology. 2005;128(4):1002–11.

    Article  CAS  PubMed  Google Scholar 

  • Ng EK, Panesar N, Longo WE, Shapiro MJ, Kaminski DL, Tolman KC, et al. Human intestinal epithelial and smooth muscle cells are potent producers of IL-6. Mediators Inflamm. 2003;12(1):3–8.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nottrott S, Schoentaube J, Genth H, Just I, Gerhard R. Clostridium difficile toxin A-induced apoptosis is p53-independent but depends on glucosylation of Rho GTPases. Apoptosis. 2007;12(8):1443–53.

    Article  CAS  PubMed  Google Scholar 

  • Qiu B, Pothoulakis C, Castagliuolo I, Nikulasson S, LaMont JT. Participation of reactive oxygen metabolites in Clostridium difficile toxin A-induced enteritis in rats. Am J Physiol. 1999;276(2 Pt 1):G485–90.

    CAS  PubMed  Google Scholar 

  • Quesada-Gómez C, López-Ureña D, Chumbler N, Kroh HK, Castro-Peña C, Rodríguez C, et al. Analysis of TcdB proteins within the hypervirulent clade 2 reveals an impact of RhoA glucosylation on Clostridium difficile proinflammatory activities. Infect Immun. 2016;84(3):856–65.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rupnik M. Is Clostridium difficile-associated infection a potentially zoonotic and foodborne disease? Clin Microbiol Infect. 2007;13(5):457–9.

    Article  CAS  PubMed  Google Scholar 

  • Rupnik M, Avesani V, Janc M, von Eichel-Streiber C, Delmée M. A novel toxinotyping scheme and correlation of toxinotypes with serogroups of Clostridium difficile isolates. J Clin Microbiol. 1998;36(8):2240–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Scaria J, Ponnala L, Janvilisri T, Yan W, Mueller LA, Chang Y-F. Analysis of ultra low genome conservation in Clostridium difficile. PLoS One. 2010;5(12):e15147.

    Article  PubMed  PubMed Central  Google Scholar 

  • Schwan C, Stecher B, Tzivelekidis T, van Ham M, Rohde M, Hardt W-D, et al. Clostridium difficile toxin CDT induces formation of microtubule-based protrusions and increases adherence of bacteria. PLoS Pathog. 2009;5(10):e1000626.

    Article  PubMed  PubMed Central  Google Scholar 

  • Song L, Zhao M, Duffy DC, Hansen J, Shields K, Wungjiranirun M, et al. Development and validation of digital enzyme-linked immunosorbent assays for ultrasensitive detection and quantification of Clostridium difficile toxins in stool. J Clin Microbiol. 2015;53(10):3204–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steele J, Chen K, Sun X, Zhang Y, Wang H, Tzipori S, et al. Systemic dissemination of Clostridium difficile toxins A and B is associated with severe, fatal disease in animal models. J Infect Dis. 2012;205(3):384–91.

    Article  CAS  PubMed  Google Scholar 

  • Sun X, Hirota SA. The roles of host and pathogen factors and the innate immune response in the pathogenesis of Clostridium difficile infection. Mol Immunol. 2015;63(2):193–202.

    Article  CAS  PubMed  Google Scholar 

  • Sun X, He X, Tzipori S, Gerhard R, Feng H. Essential role of the glucosyltransferase activity in Clostridium difficile toxin-induced secretion of TNF-α by macrophages. Microb Pathog. 2009;46(6):298–305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun C, Wang H, Mao S, Liu J, Li S, Wang J. Reactive oxygen species involved in CT26 immunogenic cell death induced by Clostridium difficile toxin B. Immunol Lett. 2015;164(2):65–71.

    Article  CAS  PubMed  Google Scholar 

  • Voth DE, Ballard JD. Clostridium difficile toxins: mechanism of action and role in disease. Clin Microbiol Rev. 2005;18(2):247–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wohlan K, Goy S, Olling A, Srivaratharajan S, Tatge H, Genth H, et al. Pyknotic cell death induced by Clostridium difficile TcdB: chromatin condensation and nuclear blister are induced independently of the glucosyltransferase activity: TcdB-induced pyknosis. Cell Microbiol. 2014;16(11):1678–92.

    Article  CAS  PubMed  Google Scholar 

  • Xu H, Yang J, Wenquing G, Li L, Li P, Zhang L, et al. Innate immune sensing of bacterial modifications of Rho GTPases by the Pyrin inflammasome. Nature. 2014;513(7517):237–241.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Diana López-Ureña , Carlos Quesada-Gómez , César Rodríguez or Esteban Chaves-Olarte .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media B.V.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

López-Ureña, D., Quesada-Gómez, C., Rodríguez, C., Chaves-Olarte, E. (2018). Role of Clostridium difficile Toxins in Antibiotic-Associated Diarrhea and Pseudomembranous Colitis. In: Stiles, B., Alape-Girón, A., Dubreuil, J., Mandal, M. (eds) Microbial Toxins. Toxinology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6449-1_17

Download citation

Publish with us

Policies and ethics