Skip to main content

Development and Optimization of FLIPR High Throughput Calcium Assays for Ion Channels and GPCRs

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 740))

Abstract

Ca2+ permeable ion channels and GPCRs linked to Ca2+ release are important drug targets, with modulation of Ca2+ signaling increasingly recognized as a valid therapeutic strategy in a range of diseases. The FLIPR is a high throughput imaging plate reader that has contributed substantially to drug discovery efforts and pharmacological characterization of receptors and ion channels coupled to Ca2+. Now in its fourth generation, the FLIPRTETRA is an industry standard for high throughput Ca2+ assays. With an increasing number of excitation LED banks and emission filter sets available; FLIPR Ca2+ assays are becoming more versatile. This chapter describes general methods for establishing robust FLIPR Ca2+ assays, incorporating practical aspects as well as suggestions for assay optimization, to guide the reader in the development and optimization of high throughput FLIPR assays for ion channels and GPCRs.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

FLIPR:

Fluorescent Imaging Plate Reader

Ca2+ :

calcium ion

ATP:

adenosine triphosphate

PMCA:

Plasma Membrane Ca2+ ATPase

NCX:

Na+/Ca2+ exchanger

SERCA:

sarco/endoplasmic reticulum Ca2+ ATPase

IP3:

inositol-1,4,5,-triphosphate

RyR:

ryanodine receptors

GPCR:

G-protein coupled receptor

PIP2 :

phosphatidylinositol 4, 5 bisphosphate

DAG:

diacylglycerol

HTS:

high throughput screening

VGCC:

Voltage-gated Ca2+ channels

LGCC:

Ligand-gated Ca2+ channels

EGTA:

ethylene glycol-bis(2-aminoethylether)-N,N,N′,N′-tetraacetic acid

APTRA:

2-aminophenol-N,N,O-triacetic acid

BAPTA:

1,2-bis(o-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid

Kd :

dissociation constant

AM:

acetoxymethyl

ER:

endoplasmic reticulum

LED:

light-emitting diode

CCD:

charge-coupled device

PDL:

poly-D-lysine

PLL:

poly-L-lysine

PLO:

poly-L-ornithine

nAChR:

nicotinic acetylcholine receptors

HEPES:

4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid

PAR2:

protease-activated receptor 2

RFU:

relative fluorescence unit.

References

  1. Clapham DE (2007) Calcium signaling. Cell 131:1047–1058

    Article  PubMed  CAS  Google Scholar 

  2. Berridge MJ, Lipp P, Bootman MD (2000) The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol 1:11–21

    Article  PubMed  CAS  Google Scholar 

  3. Brini M, Carafoli E (2011) The plasma membrane Ca2+ ATPase and the plasma membrane sodium calcium exchanger cooperate in the regulation of cell calcium. Cold Spring Harb Perspect Biol 3. doi:10.1101/cshperspect.a004168

  4. Bygrave FL, Benedetti A (1996) What is the concentration of calcium ions in the endoplasmic reticulum? Cell Calcium 19:547–551

    Article  PubMed  CAS  Google Scholar 

  5. Berridge MJ (1993) Inositol trisphosphate and calcium signalling. Nature 361:315–325

    Article  PubMed  CAS  Google Scholar 

  6. Liu AM, Ho MK, Wong CS, Chan JH, Pau AH, Wong YH (2003) Galpha(16/z) chimeras efficiently link a wide range of G protein-coupled receptors to calcium mobilization. J Biomol Screen 8:39–49

    Article  PubMed  CAS  Google Scholar 

  7. Zhu T, Fang LY, Xie X (2008) Development of a universal high-throughput calcium assay for G-protein- coupled receptors with promiscuous G-protein Galpha15/16. Acta Pharmacol Sin 29:507–516

    Article  PubMed  CAS  Google Scholar 

  8. Kostenis E, Waelbroeck M, Milligan G (2005) Techniques: promiscuous Galpha proteins in basic research and drug discovery. Trends Pharmacol Sci 26:595–602

    Article  PubMed  CAS  Google Scholar 

  9. Catterall WA (2000) Structure and regulation of voltage-gated Ca2+ channels. Annu Rev Cell Dev Biol 16:521–555

    Article  PubMed  CAS  Google Scholar 

  10. Benjamin ER, Pruthi F, Olanrewaju S, Shan S, Hanway D, Liu X, Cerne R, Lavery D, Valenzano KJ, Woodward RM, Ilyin VI (2006) Pharmacological characterization of recombinant N-type calcium channel (Cav2.2) mediated calcium mobilization using FLIPR. Biochem Pharmacol 72:770–782

    Article  PubMed  CAS  Google Scholar 

  11. Belardetti F, Tringham E, Eduljee C, Jiang X, Dong H, Hendricson A, Shimizu Y, Janke DL, Parker D, Mezeyova J, Khawaja A, Pajouhesh H, Fraser RA, Arneric SP, Snutch TP (2009) A fluorescence-based high-throughput screening assay for the identification of T-type calcium channel blockers. Assay Drug Dev Technol 7:266–280

    Article  PubMed  CAS  Google Scholar 

  12. Monteith GR, McAndrew D, Faddy HM, Roberts-Thomson SJ (2007) Calcium and cancer: targeting Ca2+ transport. Nat Rev Cancer 7:519–530

    Article  PubMed  CAS  Google Scholar 

  13. Duncan RS, Goad DL, Grillo MA, Kaja S, Payne AJ, Koulen P (2010) Control of intracellular calcium signaling as a neuroprotective strategy. Molecules 15:1168–1195

    Article  PubMed  CAS  Google Scholar 

  14. Talukder MA, Zweier JL, Periasamy M (2009) Targeting calcium transport in ischaemic heart disease. Cardiovasc Res 84:345–352

    Article  PubMed  CAS  Google Scholar 

  15. Otten PA, London RE, Levy LA (2001) A new approach to the synthesis of APTRA indicators. Bioconjug Chem 12:76–83

    Article  PubMed  CAS  Google Scholar 

  16. Minta A, Kao JP, Tsien RY (1989) Fluorescent indicators for cytosolic calcium based on rhodamine and fluorescein chromophores. J Biol Chem 264:8171–8178

    PubMed  CAS  Google Scholar 

  17. Gee KR, Brown KA, Chen WN, Bishop-Stewart J, Gray D, Johnson I (2000) Chemical and physiological characterization of fluo-4 Ca(2+)-indicator dyes. Cell Calcium 27:97–106

    Article  PubMed  CAS  Google Scholar 

  18. Tsien RY (1980) New calcium indicators and buffers with high selectivity against magnesium and protons: design, synthesis, and properties of prototype structures. Biochemistry 19:2396–2404

    Article  PubMed  CAS  Google Scholar 

  19. Grynkiewicz G, Poenie M, Tsien RY (1985) A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 260:3440–3450

    PubMed  CAS  Google Scholar 

  20. Thomas D, Tovey SC, Collins TJ, Bootman MD, Berridge MJ, Lipp P (2000) A comparison of fluorescent Ca2+ indicator properties and their use in measuring elementary and global Ca2+ signals. Cell Calcium 28:213–223

    Article  PubMed  CAS  Google Scholar 

  21. Paredes RM, Etzler JC, Watts LT, Zheng W, Lechleiter JD (2008) Chemical calcium indicators. Methods 46:143–151

    Article  PubMed  CAS  Google Scholar 

  22. Yasuda R, Nimchinsky EA, Scheuss V, Pologruto TA, Oertner TG, Sabatini BL, Svoboda K (2004) Imaging calcium concentration dynamics in small neuronal compartments. Sci STKE 2004:pl5

    Article  PubMed  Google Scholar 

  23. Lattanzio FA Jr (1990) The effects of pH and temperature on fluorescent calcium indicators as determined with Chelex-100 and EDTA buffer systems. Biochem Biophys Res Commun 171:102–108

    Article  PubMed  CAS  Google Scholar 

  24. Oliver AE, Baker GA, Fugate RD, Tablin F, Crowe JH (2000) Effects of temperature on calcium-sensitive fluorescent probes. Biophys J 78:2116–2126

    Article  PubMed  CAS  Google Scholar 

  25. O’Malley DM, Burbach BJ, Adams PR (1999) Fluorescent calcium indicators: subcellular behavior and use in confocal imaging. Methods Mol Biol 122:261–303

    PubMed  Google Scholar 

  26. Poenie M (1990) Alteration of intracellular Fura-2 fluorescence by viscosity: a simple correction. Cell Calcium 11:85–91

    Article  PubMed  CAS  Google Scholar 

  27. Kao JP, Tsien RY (1988) Ca2+ binding kinetics of fura-2 and azo-1 from temperature-jump relaxation measurements. Biophys J 53:635–639

    Article  PubMed  CAS  Google Scholar 

  28. Naraghi M (1997) T-jump study of calcium binding kinetics of calcium chelators. Cell Calcium 22:255–268

    Article  PubMed  CAS  Google Scholar 

  29. Dustin LB (2000) Ratiometric analysis of calcium mobilization. Clin Appl Immunol Rev 1:5–15

    Article  CAS  Google Scholar 

  30. Hesketh TR, Bavetta S, Smith GA, Metcalfe JC (1983) Duration of the calcium signal in the mitogenic stimulation of thymocytes. Biochem J 214:575–579

    PubMed  CAS  Google Scholar 

  31. O’Connor N, Silver RB (2007) Ratio imaging: practical considerations for measuring intracellular Ca2+ and pH in living cells. Methods Cell Biol 81:415–433

    Article  PubMed  Google Scholar 

  32. Becker PL, Fay FS (1987) Photobleaching of fura-2 and its effect on determination of calcium concentrations. Am J Physiol 253:C613–C618

    PubMed  CAS  Google Scholar 

  33. Scheenen WJ, Makings LR, Gross LR, Pozzan T, Tsien RY (1996) Photodegradation of indo-1 and its effect on apparent Ca2+ concentrations. Chem Biol 3:765–774

    Article  PubMed  CAS  Google Scholar 

  34. Wahl M, Lucherini MJ, Gruenstein E (1990) Intracellular Ca2+ measurement with Indo-1 in substrate-attached cells: advantages and special considerations. Cell Calcium 11:487–500

    Article  PubMed  CAS  Google Scholar 

  35. Spence MTZ, Johnson ID (2010) Molecular probes handbook, a guide to fluorescent probes and labeling technologies. Invitrogen, Carlsbad

    Google Scholar 

  36. Wokosin DL, Loughrey CM, Smith GL (2004) Characterization of a range of fura dyes with two-photon excitation. Biophys J 86:1726–1738

    Article  PubMed  CAS  Google Scholar 

  37. Vorndran C, Minta A, Poenie M (1995) New fluorescent calcium indicators designed for cytosolic retention or measuring calcium near membranes. Biophys J 69:2112–2124

    Article  PubMed  CAS  Google Scholar 

  38. Etter EF, Minta A, Poenie M, Fay FS (1996) Near-membrane [Ca2+] transients resolved using the Ca2+ indicator FFP18. Proc Natl Acad Sci USA 93:5368–5373

    Article  PubMed  CAS  Google Scholar 

  39. Kurebayashi N, Harkins AB, Baylor SM (1993) Use of fura red as an intracellular calcium indicator in frog skeletal muscle fibers. Biophys J 64:1934–1960

    Article  PubMed  CAS  Google Scholar 

  40. Floto RA, Mahaut-Smith MP, Somasundaram B, Allen JM (1995) IgG-induced Ca2+ oscillations in differentiated U937 cells; a study using laser scanning confocal microscopy and co-loaded fluo-3 and fura-red fluorescent probes. Cell Calcium 18:377–389

    Article  PubMed  CAS  Google Scholar 

  41. Lipp P, Niggli E (1993) Ratiometric confocal Ca(2+)-measurements with visible wavelength indicators in isolated cardiac myocytes. Cell Calcium 14:359–372

    Article  PubMed  CAS  Google Scholar 

  42. Schild D, Jung A, Schultens HA (1994) Localization of calcium entry through calcium channels in olfactory receptor neurones using a laser scanning microscope and the calcium indicator dyes Fluo-3 and Fura-Red. Cell Calcium 15:341–348

    Article  PubMed  CAS  Google Scholar 

  43. Lohr C (2003) Monitoring neuronal calcium signalling using a new method for ratiometric confocal calcium imaging. Cell Calcium 34:295–303

    Article  PubMed  CAS  Google Scholar 

  44. Martinez-Zaguilan R, Parnami J, Martinez GM (1998) Mag-Fura-2 (Furaptra) exhibits both low (microM) and high (nM) affinity for Ca2+. Cell Physiol Biochem 8:158–174

    Article  PubMed  CAS  Google Scholar 

  45. Zhao M, Hollingworth S, Baylor SM (1996) Properties of tri- and tetracarboxylate Ca2+ indicators in frog skeletal muscle fibers. Biophys J 70:896–916

    Article  PubMed  CAS  Google Scholar 

  46. Hofer AM (2005) Measurement of free [ca(2+)] changes in agonist-sensitive internal stores using compartmentalized fluorescent indicators. Methods Mol Biol 312:229–247

    PubMed  CAS  Google Scholar 

  47. Claflin DR, Morgan DL, Stephenson DG, Julian FJ (1994) The intracellular Ca2+ transient and tension in frog skeletal muscle fibres measured with high temporal resolution. J Physiol 475:319–325

    PubMed  CAS  Google Scholar 

  48. Konishi M, Hollingworth S, Harkins AB, Baylor SM (1991) Myoplasmic calcium transients in intact frog skeletal muscle fibers monitored with the fluorescent indicator furaptra. J Gen Physiol 97:271–301

    Article  PubMed  CAS  Google Scholar 

  49. Berlin JR, Konishi M (1993) Ca2+ transients in cardiac myocytes measured with high and low affinity Ca2+ indicators. Biophys J 65:1632–1647

    Article  PubMed  CAS  Google Scholar 

  50. MacFarlane AW 4th, Oesterling JF, Campbell KS (2010) Measuring intracellular calcium signaling in murine NK cells by flow cytometry. Methods Mol Biol 612:149–157

    Article  PubMed  CAS  Google Scholar 

  51. Takahashi A, Camacho P, Lechleiter JD, Herman B (1999) Measurement of intracellular calcium. Physiol Rev 79:1089–1125

    PubMed  CAS  Google Scholar 

  52. Overholt JL, Ficker E, Yang T, Shams H, Bright GR, Prabhakar NR (2000) HERG-Like potassium current regulates the resting membrane potential in glomus cells of the rabbit carotid body. J Neurophysiol 83:1150–1157

    PubMed  CAS  Google Scholar 

  53. Launikonis BS, Zhou J, Royer L, Shannon TR, Brum G, Rios E (2005) Confocal imaging of [Ca2+] in cellular organelles by SEER, shifted excitation and emission ratioing of fluorescence. J Physiol 567:523–543

    Article  PubMed  CAS  Google Scholar 

  54. Smith SJ, Augustine GJ (1988) Calcium ions, active zones and synaptic transmitter release. Trends Neurosci 11:458–464

    Article  PubMed  CAS  Google Scholar 

  55. Eberhard M, Erne P (1989) Kinetics of calcium binding to fluo-3 determined by stopped-flow fluorescence. Biochem Biophys Res Commun 163:309–314

    Article  PubMed  CAS  Google Scholar 

  56. Lee S, Lee HG, Kang SH (2009) Real-time observations of intracellular Mg2+ signaling and waves in a single living ventricular myocyte cell. Anal Chem 81:538–542

    Article  PubMed  CAS  Google Scholar 

  57. Shmigol AV, Eisner DA, Wray S (2001) Simultaneous measurements of changes in sarcoplasmic reticulum and cytosolic. J Physiol 531:707–713

    Article  PubMed  CAS  Google Scholar 

  58. Hollingworth S, Gee KR, Baylor SM (2009) Low-affinity Ca2+ indicators compared in measurements of skeletal muscle Ca2+ transients. Biophys J 97:1864–1872

    Article  PubMed  CAS  Google Scholar 

  59. Scott R, Rusakov DA (2006) Main determinants of presynaptic Ca2+ dynamics at individual mossy fiber-CA3 pyramidal cell synapses. J Neurosci 26:7071–7081

    Article  PubMed  CAS  Google Scholar 

  60. Woodruff ML, Sampath AP, Matthews HR, Krasnoperova NV, Lem J, Fain GL (2002) Measurement of cytoplasmic calcium concentration in the rods of wild-type and transducin knock-out mice. J Physiol 542:843–854

    Article  PubMed  CAS  Google Scholar 

  61. Goldberg JH, Tamas G, Aronov D, Yuste R (2003) Calcium microdomains in aspiny dendrites. Neuron 40:807–821

    Article  PubMed  CAS  Google Scholar 

  62. Bioquest A (2011) Quest Fluo-8™ calcium reagents and screen quest™ Fluo-8 NW calcium assay kits

    Google Scholar 

  63. Falk S, Rekling JC (2009) Neurons in the preBotzinger complex and VRG are located in proximity to arterioles in newborn mice. Neurosci Lett 450:229–234

    Article  PubMed  CAS  Google Scholar 

  64. Gerencser AA, Adam-Vizi V (2005) Mitochondrial Ca2+ dynamics reveals limited intramitochondrial Ca2+ diffusion. Biophys J 88:698–714

    Article  PubMed  CAS  Google Scholar 

  65. Tao J, Haynes DH (1992) Actions of thapsigargin on the Ca(2+)-handling systems of the human platelet. Incomplete inhibition of the dense tubular Ca2+ uptake, partial inhibition of the Ca2+ extrusion pump, increase in plasma membrane Ca2+ permeability, and consequent elevation of resting cytoplasmic Ca2+. J Biol Chem 267:24972–24982

    PubMed  CAS  Google Scholar 

  66. Trollinger DR, Cascio WE, Lemasters JJ (1997) Selective loading of Rhod 2 into mitochondria shows mitochondrial Ca2+ transients during the contractile cycle in adult rabbit cardiac myocytes. Biochem Biophys Res Commun 236:738–742

    Article  PubMed  CAS  Google Scholar 

  67. Davidson SM, Yellon D, Duchen MR (2007) Assessing mitochondrial potential, calcium, and redox state in isolated mammalian cells using confocal microscopy. Methods Mol Biol 372:421–430

    Article  PubMed  CAS  Google Scholar 

  68. Gerencser AA, Adam-Vizi V (2001) Selective, high-resolution fluorescence imaging of mitochondrial Ca2+ concentration. Cell Calcium 30:311–321

    Article  CAS  Google Scholar 

  69. Pologruto TA, Yasuda R, Svoboda K (2004) Monitoring neural activity and [Ca2+] with genetically encoded Ca2+ indicators. J Neurosci 24:9572–9579

    Article  PubMed  CAS  Google Scholar 

  70. David G, Talbot J, Barrett EF (2003) Quantitative estimate of mitochondrial [Ca2+] in stimulated motor nerve terminals. Cell Calcium 33:197–206

    Article  PubMed  CAS  Google Scholar 

  71. Simpson AW (2006) Fluorescent measurement of [Ca2+]c: basic practical considerations. Methods Mol Biol 312:3–36

    PubMed  Google Scholar 

  72. Eberhard M, Erne P (1991) Calcium binding to fluorescent calcium indicators: calcium green, calcium orange and calcium crimson. Biochem Biophys Res Commun 180:209–215

    Article  PubMed  CAS  Google Scholar 

  73. Stout AK, Reynolds IJ (1999) High-affinity calcium indicators underestimate increases in intracellular calcium concentrations associated with excitotoxic glutamate stimulations. Neuroscience 89:91–100

    Article  PubMed  CAS  Google Scholar 

  74. Rajdev S, Reynolds IJ (1993) Calcium green-5N, a novel fluorescent probe for monitoring high intracellular free Ca2+ concentrations associated with glutamate excitotoxicity in cultured rat brain neurons. Neurosci Lett 162:149–152

    Article  PubMed  CAS  Google Scholar 

  75. Eilers J, Callewaert G, Armstrong C, Konnerth A (1995) Calcium signaling in a narrow somatic submembrane shell during synaptic activity in cerebellar Purkinje neurons. Proc Natl Acad Sci USA 92:10272–10276

    Article  PubMed  CAS  Google Scholar 

  76. Agronskaia AV, Tertoolen L, Gerritsen HC (2004) Fast fluorescence lifetime imaging of ­calcium in living cells. J Biomed Opt 9:1230–1237

    Article  PubMed  CAS  Google Scholar 

  77. Gaillard S, Yakovlev A, Luccardini C, Oheim M, Feltz A, Mallet JM (2007) Synthesis and characterization of a new red-emitting Ca2+ indicator, calcium ruby. Org Lett 9: 2629–2632

    Article  PubMed  CAS  Google Scholar 

  78. Roe MW, Lemasters JJ, Herman B (1990) Assessment of Fura-2 for measurements of cytosolic free calcium. Cell Calcium 11:63–73

    Article  PubMed  CAS  Google Scholar 

  79. Tsien RY (1981) A non-disruptive technique for loading calcium buffers and indicators into cells. Nature 290:527–528

    Article  PubMed  CAS  Google Scholar 

  80. Williams DA, Bowser DN, Petrou S (1999) Confocal Ca2+ imaging of organelles, cells, ­tissues, and organs. Methods Enzymol 307:441–469

    Article  PubMed  CAS  Google Scholar 

  81. Johnson I (1998) Fluorescent probes for living cells. Histochem J 30:123–140

    Article  PubMed  CAS  Google Scholar 

  82. Cronshaw DG, Kouroumalis A, Parry R, Webb A, Brown Z, Ward SG (2006) Evidence that phospholipase-C-dependent, calcium-independent mechanisms are required for directional migration of T-lymphocytes in response to the CCR4 ligands CCL17 and CCL22. J Leukoc Biol 79:1369–1380

    Article  PubMed  CAS  Google Scholar 

  83. Mehlin C, Crittenden C, Andreyka J (2003) No-wash dyes for calcium flux measurement. Biotechniques 34:164–166

    PubMed  CAS  Google Scholar 

  84. Di Virgilio F, Steinberg TH, Silverstein SC (1990) Inhibition of Fura-2 sequestration and secretion with organic anion transport blockers. Cell Calcium 11:57–62

    Article  PubMed  Google Scholar 

  85. Vetter I, Cheng W, Peiris M, Wyse BD, Roberts-Thomson SJ, Zheng J, Monteith GR, Cabot PJ (2008) Rapid, opioid-sensitive mechanisms involved in transient receptor potential vanilloid 1 sensitization. J Biol Chem 283:19540–19550

    Article  PubMed  CAS  Google Scholar 

  86. Kabbara AA, Allen DG (2001) The use of the indicator fluo-5N to measure sarcoplasmic reticulum calcium in single muscle fibres of the cane toad. J Physiol 534:87–97

    Article  PubMed  CAS  Google Scholar 

  87. Rehberg M, Lepier A, Solchenberger B, Osten P, Blum R (2008) A new non-disruptive strategy to target calcium indicator dyes to the endoplasmic reticulum. Cell Calcium 44:386–399

    Article  PubMed  CAS  Google Scholar 

  88. Solovyova N, Verkhratsky A (2002) Monitoring of free calcium in the neuronal endoplasmic reticulum: an overview of modern approaches. J Neurosci Methods 122:1–12

    Article  PubMed  CAS  Google Scholar 

  89. Oakes SG, Martin WJ 2nd, Lisek CA, Powis G (1988) Incomplete hydrolysis of the calcium indicator precursor fura-2 pentaacetoxymethyl ester (fura-2 AM) by cells. Anal Biochem 169:159–166

    Article  PubMed  CAS  Google Scholar 

  90. Gillis JM, Gailly P (1994) Measurements of [Ca2+]i with the diffusible Fura-2 AM: can some potential pitfalls be evaluated? Biophys J 67:476–477

    Article  PubMed  CAS  Google Scholar 

  91. Jobsis PD, Rothstein EC, Balaban RS (2007) Limited utility of acetoxymethyl (AM)-based intracellular delivery systems, in vivo: interference by extracellular esterases. J Microsc 226:74–81

    Article  PubMed  CAS  Google Scholar 

  92. Vetter I, Lewis RJ (2010) Characterization of endogenous calcium responses in neuronal cell lines. Biochem Pharmacol 79:908–920

    Article  PubMed  CAS  Google Scholar 

  93. Dai G, Haedo RJ, Warren VA, Ratliff KS, Bugianesi RM, Rush A, Williams ME, Herrington J, Smith MM, McManus OB, Swensen AM (2008) A high-throughput assay for evaluating state dependence and subtype selectivity of Cav2 calcium channel inhibitors. Assay Drug Dev Technol 6:195–212

    Article  PubMed  CAS  Google Scholar 

  94. Di Virgilio F, Fasolato C, Steinberg TH (1988) Inhibitors of membrane transport system for organic anions block fura-2 excretion from PC12 and N2A cells. Biochem J 256:959–963

    PubMed  Google Scholar 

  95. Redondo PC, Rosado JA, Pariente JA, Salido GM (2005) Collaborative effect of SERCA and PMCA in cytosolic calcium homeostasis in human platelets. J Physiol Biochem 61:507–516

    Article  PubMed  CAS  Google Scholar 

  96. Brini M, Bano D, Manni S, Rizzuto R, Carafoli E (2000) Effects of PMCA and SERCA pump overexpression on the kinetics of cell Ca(2+) signalling. EMBO J 19:4926–4935

    Article  PubMed  CAS  Google Scholar 

  97. Kaler G, Otto M, Okun A, Okun I (2002) Serotonin antagonist profiling on 5HT2A and 5HT2C receptors by nonequilibrium intracellular calcium response using an automated flow-through fluorescence analysis system, HT-PS 100. J Biomol Screen 7:291–301

    PubMed  CAS  Google Scholar 

  98. Miller TR, Witte DG, Ireland LM, Kang CH, Roch JM, Masters JN, Esbenshade TA, Hancock AA (1999) Analysis of apparent noncompetitive responses to competitive H(1)-histamine receptor antagonists in fluorescent imaging plate reader-based calcium assays. J Biomol Screen 4:249–258

    Article  PubMed  CAS  Google Scholar 

  99. Westerblad H, Allen DG (1996) Intracellular calibration of the calcium indicator indo-1 in isolated fibers of Xenopus muscle. Biophys J 71:908–917

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irina Vetter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Vetter, I. (2012). Development and Optimization of FLIPR High Throughput Calcium Assays for Ion Channels and GPCRs. In: Islam, M. (eds) Calcium Signaling. Advances in Experimental Medicine and Biology, vol 740. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2888-2_3

Download citation

Publish with us

Policies and ethics