Skip to main content

Physiological Adaptations to Wetland Habitats

  • Reference work entry
  • First Online:
The Wetland Book

Abstract

Low gas-diffusivity and oxygen-solubility in water are primary constraints in wetland and aquatic environments. Consequentially, microbes may remove oxygen from all but surface layers of waterlogged soils and generate phytotoxins, while shoot-submergence may substantially reduce CO2-availability for photosynthesis, compromising carbohydrate production. Oxygen limitations may cause energy crises within the plant and self-generation of damaging reactive oxygen species; enhanced generation and entrapment of the gaseous hormone ethylene also accompany waterlogging and submergence. Globally, wetlands differ in altitude, timing, duration and depth of flooding, light, temperature, and biogeochemistry. Consequently, suites of adaptive traits have evolved in plants to accommodate these varied conditions. Adaptations include anoxia avoidance by facilitating gas exchange with the atmosphere to support aerobic metabolism, an emergence escape strategy or a medium-term submergence tolerance strategy, or production of leaves capable of photosynthesis when submerged. Other adaptations include short- or long-term anoxia tolerance or protection from reactive oxygen species and phytotoxins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Armstrong W. Aeration in higher plants. Adv Bot Res. 1979;7:225–332.

    Article  CAS  Google Scholar 

  • Armstrong W, Beckett PM. Experimental and modelling data contradict the idea of respiratory down-regulation in plant tissues at an internal [O2] substantially above the critical oxygen pressure for cytochrome oxidase. New Phytol. 2011;190:431–41.

    Article  CAS  Google Scholar 

  • Armstrong J, Armstrong W, Beckett PM. Phragmites australis: venturi- and humidity-induced pressure flows enhance rhizome aeration and rhizosphere oxidation. New Phytol. 1992;120:197–207.

    Article  Google Scholar 

  • Armstrong W, Strange ME, Cringle S, Beckett PM. Microelectrode and modelling study of oxygen distribution in roots. Ann Bot. 1994;74:287–99.

    Article  Google Scholar 

  • Armstrong W, Cousins D, Armstrong J, Turner DW, Beckett PM. Oxygen distribution in wetland plant roots and permeability barriers to gas-exchange with the rhizosphere: a microelectrode and modelling study with Phragmites australis. Ann Bot. 2000;86:687–703.

    Article  Google Scholar 

  • Bailey-Serres J, Voesenek LACJ. Flooding stress: acclimations and genetic diversity. Annu Rev Plant Biol. 2008;59:313–39.

    Article  CAS  Google Scholar 

  • Beckett PM, Armstrong W, Justin SHFW, Armstrong J. On the relative importance of convective and diffusive gas-flows in plant aeration. New Phytol. 1988;110:463–8.

    Article  Google Scholar 

  • Blokhina O, Virolainen E, Fagerstat KV. Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann Bot. 2003;91:179–94.

    Article  CAS  Google Scholar 

  • Brandle R, Crawford RM. Rhizome anoxia tolerance and habitat specialization in wetland plants. In: Crawford RMM, editor. Amphibious and Intertidal Plants. British Ecological Society Special Symposium 5. Oxford: Blackwell; 1987 pp 397–410.

    Google Scholar 

  • Brix H, Sorrell BK, Orr P. Internal pressurization and convective gas flow in some emergent freshwater macrophytes. Limnol. Oceanogr. 1992;37:1420–33.

    Article  Google Scholar 

  • Colmer TD, Voesenek LACJ. Flooding tolerance: suites of plant traits in variable environments. Funct Plant Biol. 2009;36:665–81.

    Article  CAS  Google Scholar 

  • Colmer TD, Winkel A, Pedersen O. A perspective on underwater photosynthesis in submerged terrestrial wetland plants. AoB Plants. 2011; plr030. doi:10.1093/aobpla/plr030.

    Google Scholar 

  • Gibbs J, Greenway H. Mechanisms of anoxia tolerance in plants. I. Growth, survival and anaerobic catabolism. Funct Plant Biol. 2003;330:1–47.

    Article  Google Scholar 

  • Gibbs DJ, Lee SC, Isa NM, Gramuglia S, Fukao T, et al. Homeostatic response to hypoxia is regulated by the N-end rule pathway in plants. Nature. 2011;479:415–8.

    Article  CAS  Google Scholar 

  • Greenway H, Gibbs J. Mechanisms of anoxia tolerance in plants. II. Energy requirements for maintenance and energy distribution to essential processes. Funct Plant Biol. 2003;30:999–1036.

    Article  CAS  Google Scholar 

  • Greenway H, Armstrong W, Colmer TD. Conditions leading to high CO2 (>5 kPa) in waterlogged–flooded soils and possible effects on root growth and metabolism. Ann Bot. 2006;98:9–32.

    Article  CAS  Google Scholar 

  • Justin SHFW, Armstrong W. The anatomical characteristics of roots and plant response to soil flooding. New Phytol. 1987;106:465–95.

    Article  Google Scholar 

  • Licausi F, Perata P. Low oxygen signaling and tolerance in plants. Adv Bot Res. 2009;50:139–98.

    Article  CAS  Google Scholar 

  • Licausi F, Kosmacz M, Weits DA, Giuntoli B, Giorgi FM, Voesenek LACJ, Perata P, van Dongen JT. Oxygen sensing in plants is mediated by an N-end rule pathway for protein destabilization. Nature. 2011;479:419–22.

    Article  CAS  Google Scholar 

  • Maberly SC, Madsen TV. Freshwater angiosperm carbon concentrating mechanisms: processes and patterns. Funct Plant Biol. 2002;29:393–405.

    Article  CAS  Google Scholar 

  • Mira M, Hill RD, Stasolla C. Regulation of programmed cell death by phytoglobins. J Exp Bot. 2016; doi: 10.1093/jxb/erw259.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pedersen O, Sand-Jensen K, Revsbech NP. Diel pulses of O2 and CO2 in sandy sediments inhabited by Lobelia dortmanna. Ecology. 1995;76:1536–1545.

    Google Scholar 

  • Vartapetian BB, Sachs MM, Fagerstedt KV. Plant anaerobic stress: II. Strategy of avoidance of anaerobiosis and other aspects of plant life under hypoxia and anoxia. Plant Stress. 2008; 2:1–19.

    Google Scholar 

  • Voesenek LACJ, Colmer TD, Pierik R, Millenaar FF, Peeters AJM. How plants cope with complete submergence. New Phytol. 2006;170:213–26.

    Article  CAS  Google Scholar 

  • Watanabe K, Nishiuchi S, Kulichikhin K, Nakazono M. Does suberin accumulation in plant roots contribute to waterlogging tolerance? Front Plant Sci. 2013;4(179):1–7.

    CAS  Google Scholar 

  • Waters I, Armstrong W, Thomson CJ, Setter TL, Adkins S, Gibbs J, Greenway H. Diurnal changes in radial oxygen loss and ethanol metabolism in roots of submerged and non-submerged rice seedlings. New Phytol. 1989;113:439–51.

    Article  CAS  Google Scholar 

  • Winkel A, Colmer TD, Ismail AM, Pedersen O. Internal aeration of paddy field rice (Oryza sativa L.) during complete submergence: importance of light and floodwater O2. New Phytol. 2013;197:1193–203.

    Article  CAS  Google Scholar 

  • Yamauchi T, Rajhi I, Nakazono M. Lysigenous aerenchyma formation in maize root is confined to cortical cells by regulation of genes related to generation and scavenging of reactive oxygen species. Plant Signal Behav. 2011; 615:759–761.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to William Armstrong or Timothy D. Colmer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media B.V., part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Armstrong, W., Colmer, T.D. (2018). Physiological Adaptations to Wetland Habitats. In: Finlayson, C.M., et al. The Wetland Book. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9659-3_79

Download citation

Publish with us

Policies and ethics