Skip to main content

Circadian Clocks and Immune Functions

  • Chapter
  • First Online:

Abstract

In mammals, circadian rhythms modulate many physiological processes, including the immune system. This system is divided into two interconnected arms, the innate and the adaptive immune systems. Immunocompetent cells, such as macrophages, natural killer cells, and lymphocytes, have a functional circadian clock. Indeed, daily variations are observed in numbers of circulating cells, as well as in their capacity to secrete cytolytic factors and cytokines. The daily variation is also observed, for example, in lymphocyte expansion after immunization with an antigen across the day and in effector functions against the antigen. In this chapter, we review the current knowledge of circadian rhythms in the immune system, from the first line of immune defense (the innate immune response) to the pathogen-specific control of infections (the adaptive immune response). We end with some examples of immune pathologies influenced by the circadian system.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Balsalobre A (2002) Clock genes in mammalian peripheral tissues. Cell Tissue Res 309:193–199

    Article  CAS  PubMed  Google Scholar 

  2. Boivin DB, James FO, Wu A, Cho-Park PF, Xiong H, Sun ZS (2003) Circadian clock genes oscillate in human peripheral blood mononuclear cells. Blood 102:4143–4145

    Article  CAS  PubMed  Google Scholar 

  3. Keller M, Mazuch J, Abraham U, Eom GD, Herzog ED, Volk H-D, Kramer A, Maier B (2009) A circadian clock in macrophages controls inflammatory immune responses. Proc Natl Acad Sci U S A 106:21407–21412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Silver AC, Arjona A, Hughes ME, Nitabach MN, Fikrig E (2012) Circadian expression of clock genes in mouse macrophages, dendritic cells, and B cells. Brain Behav Immun 26:407–413

    Article  CAS  PubMed  Google Scholar 

  5. Arjona A, Sarkar DK (2005) Circadian oscillations of clock genes, cytolytic factors, and cytokines in rat NK cells. J Immunol Baltim Md 1950 174:7618–7624

    CAS  Google Scholar 

  6. Bollinger T, Leutz A, Leliavski A, Skrum L, Kovac J, Bonacina L, Benedict C, Lange T, Westermann J, Oster H et al (2011) Circadian clocks in mouse and human CD4+ T Cells. PLoS One 6:e29801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Nguyen KD, Fentress SJ, Qiu Y, Yun K, Cox JS, Chawla A (2013) Circadian gene Bmal1 regulates diurnal oscillations of Ly6Chi inflammatory monocytes. Science 341:1483–1488

    Article  CAS  PubMed  Google Scholar 

  8. Hayashi M, Shimba S, Tezuka M (2007) Characterization of the molecular clock in mouse peritoneal macrophages. Biol Pharm Bull 30:621–626

    Article  CAS  PubMed  Google Scholar 

  9. Sato S, Sakurai T, Ogasawara J, Takahashi M, Izawa T, Imaizumi K, Taniguchi N, Ohno H, Kizaki T (2014) A circadian clock gene, Rev-erbα, modulates the inflammatory function of macrophages through the negative regulation of Ccl2 expression. J Immunol Baltim Md 1950(192):407–417

    Google Scholar 

  10. Gibbs JE, Blaikley J, Beesley S, Matthews L, Simpson KD, Boyce SH, Farrow SN, Else KJ, Singh D, Ray DW et al (2012) The nuclear receptor REV-ERBα mediates circadian regulation of innate immunity through selective regulation of inflammatory cytokines. Proc Natl Acad Sci U S A 109:582–587

    Article  CAS  PubMed  Google Scholar 

  11. Marpegan L, Leone MJ, Katz ME, Sobrero PM, Bekinstein TA, Golombek DA (2009) Diurnal variation in endotoxin-induced mortality in mice: correlation with proinflammatory factors. Chronobiol Int 26:1430–1442

    Article  CAS  PubMed  Google Scholar 

  12. Spengler ML, Kuropatwinski KK, Comas M, Gasparian AV, Fedtsova N, Gleiberman AS, Gitlin II, Artemicheva NM, Deluca KA, Gudkov AV et al (2012) Core circadian protein CLOCK is a positive regulator of NF- B-mediated transcription. Proc Natl Acad Sci 109:E2457–E2465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Silver AC, Arjona A, Walker WE, Fikrig E (2012) The circadian clock controls toll-like receptor 9-mediated innate and adaptive immunity. Immunity 36:251–261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Narasimamurthy R, Hatori M, Nayak SK, Liu F, Panda S, Verma IM (2012) Circadian clock protein cryptochrome regulates the expression of proinflammatory cytokines. Proc Natl Acad Sci 109:E12662–E12667

    Article  Google Scholar 

  15. Curtis AM, Fagundes CT, Yang G, Palsson-McDermott EM, Wochal P, McGettrick AF, Foley NH, Early JO, Chen L, Zhang H et al (2015) Circadian control of innate immunity in macrophages by miR-155 targeting Bmal1. Proc Natl Acad Sci 112:E7231–E7236

    Article  Google Scholar 

  16. Born J, Lange T, Hansen K, Mölle M, Fehm HL (1997) Effects of sleep and circadian rhythm on human circulating immune cells. J Immunol Baltim Md 1950(158):4454–4464

    Google Scholar 

  17. Logan RW, Wynne O, Levitt D, Price D, Sarkar DK (2013) Altered circadian expression of cytokines and cytolytic factors in splenic natural killer cells of Per1(−/−) mutant mice. J Interferon Cytokine Res Off J Int Soc Interferon Cytokine Res 33:108–114

    Article  CAS  Google Scholar 

  18. Gatti G, Del Ponte D, Cavallo R, Sartori ML, Salvadori A, Carignola R, Carandente F, Angeli A (1987) Circadian changes in human natural killer-cell activity. Prog Clin Biol Res 227A:399–409

    CAS  PubMed  Google Scholar 

  19. Arjona A, Boyadjieva N, Sarkar DK (2004) Circadian rhythms of granzyme B, perforin, IFN-gamma, and NK cell cytolytic activity in the spleen: effects of chronic ethanol. J Immunol Baltim Md 1950(172):2811–2817

    Google Scholar 

  20. Logan RW, Arjona A, Sarkar DK (2011) Role of sympathetic nervous system in the entrainment of circadian natural-killer cell function. Brain Behav Immun 25:101–109

    Article  CAS  PubMed  Google Scholar 

  21. Halberg F, Johnson EA, Brown BW, Bittner JJ (1960) Susceptibility rhythm to E. coli endotoxin and bioassay. Proc Soc Exp Biol Med N Y N 103:142–144

    Article  CAS  Google Scholar 

  22. Liu J, Malkani G, Mankani G, Shi X, Meyer M, Cunningham-Runddles S, Ma X, Sun ZS (2006) The circadian clock Period 2 gene regulates gamma interferon production of NK cells in host response to lipopolysaccharide-induced endotoxic shock. Infect Immun 74:4750–4756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lahti TA, Partonen T, Kyyrönen P, Kauppinen T, Pukkala E (2008) Night-time work predisposes to non-Hodgkin lymphoma. Int J Cancer J Int Cancer 123:2148–2151

    Article  CAS  Google Scholar 

  24. Davis S, Mirick DK, Stevens RG (2001) Night shift work, light at night, and risk of breast cancer. J Natl Cancer Inst 93:1557–1562

    Article  CAS  PubMed  Google Scholar 

  25. Conlon M, Lightfoot N, Kreiger N (2007) Rotating shift work and risk of prostate cancer. Epidemiol Camb Mass 18:182–183

    Article  Google Scholar 

  26. Kloog I, Haim A, Stevens RG, Portnov BA (2009) Global co-distribution of light at night (LAN) and cancers of prostate, colon, and lung in men. Chronobiol Int 26:108–125

    Article  PubMed  Google Scholar 

  27. Filipski E, Delaunay F, King VM, Wu M-W, Claustrat B, Gréchez-Cassiau A, Guettier C, Hastings MH, Francis L (2004) Effects of chronic jet lag on tumor progression in mice. Cancer Res 64:7879–7885

    Article  CAS  PubMed  Google Scholar 

  28. Lee S, Donehower LA, Herron AJ, Moore DD, Fu L (2010) Disrupting circadian homeostasis of sympathetic signaling promotes tumor development in mice. PLoS One 6:e10995

    Article  Google Scholar 

  29. Logan RW, Zhang C, Murugan S, O’Connell S, Levitt D, Rosenwasser AM, Sarkar DK (2012) Chronic shift-lag alters the circadian clock of NK cells and promotes lung cancer growth in rats. J Immunol Baltim Md 1950(188):2583–2591

    Google Scholar 

  30. Haimovich B, Calvano J, Haimovich AD, Calvano SE, Coyle SM, Lowry SF (2010) In vivo endotoxin synchronizes and suppresses clock gene expression in human peripheral blood leukocytes. Crit Care Med 38:751–758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Gibbs J, Ince L, Matthews L, Mei J, Bell T, Yang N, Saer B, Begley N, Poolman T, Pariollaud M, Farrow S, DeMayo F, Hussell T, Worthen GS, Ray D, Loudon A (2014) An epithelial circadian clock controls pulmonary inflammation and glucocorticoid action. Nat Med 20:919–928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Alvarez JD, Sehgal A (2005) The thymus is similar to the testis in its pattern of circadian clock gene expression. J Biol Rhythms 20:111–121

    Article  CAS  PubMed  Google Scholar 

  33. Alvarez JD, Chen D, Storer E, Sehgal A (2003) Non-cyclic and developmental stage-specific expression of circadian clock proteins during murine spermatogenesis. Biol Reprod 69:81–91

    Article  CAS  PubMed  Google Scholar 

  34. Hemmers S, Rudensky AY (2015) The cell-intrinsic circadian clock is dispensable for lymphocyte differentiation and function. Cell Rep 11:1339–1349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Miyawaki T, Taga K, Nagaoki T, Seki H, Suzuki Y, Taniguchi N (1984) Circadian changes of T lymphocyte subsets in human peripheral blood. Clin Exp Immunol 55:618–622

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Dimitrov S, Benedict C, Heutling D, Westermann J, Born J, Lange T (2009) Cortisol and epinephrine control opposing circadian rhythms in T cell subsets. Blood 113:5134–5143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kirsch S, Thijssen S, Alarcon Salvador S, Heine GH, van Bentum K, Fliser D, Sester M, Sester U (2012) T-cell numbers and antigen-specific T-cell function follow different circadian rhythms. J Clin Immunol 32:1381–1389

    Article  CAS  PubMed  Google Scholar 

  38. Cohen JJ (1972) Thymus-derived lymphocytes sequestered in the bone marrow of hydrocortisone-treated mice. J Immunol Baltim Md 1950(108):841–844

    Google Scholar 

  39. Besedovsky L, Linz B, Dimitrov S, Groch S, Born J, Lange T (2014) Cortisol increases CXCR4 expression but does not affect CD62L and CCR7 levels on specific T cell subsets in humans. Am J Physiol Endocrinol Metab 306:E1322–E1329

    Article  CAS  PubMed  Google Scholar 

  40. Fortier EE, Rooney J, Dardente H, Hardy M-P, Labrecque N, Cermakian N (2011) Circadian variation of the response of T cells to antigen. J Immunol 187:6291–6300

    Article  CAS  PubMed  Google Scholar 

  41. Esquifino AI, Selgas L, Arce A, Maggiore VD, Cardinali DP (1996) Twenty-four-hour rhythms in immune responses in rat submaxillary lymph nodes and spleen: effect of cyclosporine. Brain Behav Immun 10:92–102

    Article  CAS  PubMed  Google Scholar 

  42. Dimitrov S, Lange T, Tieken S, Fehm HL, Born J (2004) Sleep associated regulation of T helper 1/T helper 2 cytokine balance in humans. Brain Behav Immun 18:341–348

    Article  CAS  PubMed  Google Scholar 

  43. Jostins L, Ripke S, Weersma RK, Duerr RH, McGovern DP, Hui KY, Lee JC, Schumm LP, Sharma Y, Anderson CA et al (2012) Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature 491:119–124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Yu X, Rollins D, Ruhn KA, Stubblefield JJ, Green CB, Kashiwada M, Rothman PB, Takahashi JS, Hooper LV (2013) TH17 cell differentiation is regulated by the circadian clock. Science 342:727–730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Farez MF, Mascanfroni ID, Méndez-Huergo SP, Yeste A, Murugaiyan G, Garo LP, Balbuena Aguirre ME, Patel B, Ysrraelit MC, Zhu C et al (2015) Melatonin contributes to the seasonality of multiple sclerosis relapses. Cell 162:1338–1352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Brzezinski A (1997) Melatonin in humans. N Engl J Med 336:186–195

    Article  CAS  PubMed  Google Scholar 

  47. Bollinger T, Bollinger A, Naujoks J, Lange T, Solbach W (2010) The influence of regulatory T cells and diurnal hormone rhythms on T helper cell activity: hormones and T cells. Immunology 131:488–500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Bollinger T, Bollinger A, Skrum L, Dimitrov S, Lange T, Solbach W (2009) Sleep-dependent activity of T cells and regulatory T cells. Clin Exp Immunol 155:231–238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Sun Y, Yang Z, Niu Z, Peng J, Li Q, Xiong W, Langnas AN, Ma MY, Zhao Y (2006) MOP3, a component of the molecular clock, regulates the development of B cells. Immunology 119:451–460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Arnett FC, Edworthy SM, Bloch DA, McShane DJ, Fries JF, Cooper NS, Healey LA, Kaplan SR, Liang MH, Luthra HS (1988) The American Rheumatism Association 1987 revised criteria for the classification of rheumatoid arthritis. Arthritis Rheum 31:315–324

    Article  CAS  PubMed  Google Scholar 

  51. Hashiramoto A, Yamane T, Tsumiyama K, Yoshida K, Komai K, Yamada H, Yamazaki F, Doi M, Okamura H, Shiozawa S (2010) Mammalian clock gene Cryptochrome regulates arthritis via proinflammatory cytokine TNF-alpha. J Immunol Baltim Md 1950(184):1560–1565

    Google Scholar 

  52. Yoshida K, Hashiramoto A, Okano T, Yamane T, Shibanuma N, Shiozawa S (2013) TNF-α modulates expression of the circadian clock gene Per2 in rheumatoid synovial cells. Scand J Rheumatol 42:276–280

    Article  CAS  PubMed  Google Scholar 

  53. Chikanza IC, Petrou P, Chrousos G, Kingsley G, Panayi GS (1993) Excessive and dysregulated secretion of prolactin in rheumatoid arthritis: immunopathogenetic and therapeutic implications. Br J Rheumatol 32:445–448

    Article  CAS  PubMed  Google Scholar 

  54. Zoli A, Ferlisi EM, Lizzio M, Altomonte L, Mirone L, Barini A, Scuderi F, Bartolozzi F, Magaro M (2002) Prolactin/cortisol ratio in rheumatoid arthritis. Ann N Y Acad Sci 966:508–512

    Article  CAS  PubMed  Google Scholar 

  55. Straub RH, Cutolo M (2007) Circadian rhythms in rheumatoid arthritis: implications for pathophysiology and therapeutic management. Arthritis Rheum 56:399–408

    Article  PubMed  Google Scholar 

  56. Turner-Warwick M (1988) Epidemiology of nocturnal asthma. Am J Med 85:6–8

    Article  CAS  PubMed  Google Scholar 

  57. Nakamura Y, Nakano N, Ishimaru K, Hara M, Ikegami T, Tahara Y, Katoh R, Ogawa H, Okumura K, Shibata S et al (2014) Circadian regulation of allergic reactions by the mast cell clock in mice. J Allergy Clin Immunol 133:568–575

    Article  CAS  PubMed  Google Scholar 

  58. Nakamura Y, Harama D, Shimokawa N, Hara M, Suzuki R, Tahara Y, Ishimaru K, Katoh R, Okumura K, Ogawa H et al (2011) Circadian clock gene Period2 regulates a time-of-day-dependent variation in cutaneous anaphylactic reaction. J Allergy Clin Immunol 127:1038–1045, e1–e3

    Article  CAS  PubMed  Google Scholar 

  59. Nakamura Y, Ishimaru K, Tahara Y, Shibata S, Nakao A (2014) Disruption of the suprachiasmatic nucleus blunts a time of day-dependent variation in systemic anaphylactic reaction in mice. J Immunol Res 2014:474217

    Article  PubMed  PubMed Central  Google Scholar 

  60. Rubinstein ML, Selwyn PA (1998) High prevalence of insomnia in an outpatient population with HIV infection. J Acquir Immune Defic Syndr Hum Retrovirol Off Publ Int Retrovirol Assoc 19:260–265

    Article  CAS  Google Scholar 

  61. Clark JP, Sampair CS, Kofuji P, Nath A, Ding JM (2005) HIV protein, transactivator of transcription, alters circadian rhythms through the light entrainment pathway. Am J Physiol Regul Integr Comp Physiol 289:R656–R662

    Article  CAS  PubMed  Google Scholar 

  62. Duncan MJ, Bruce-Keller AJ, Conner C, Knapp PE, Xu R, Nath A, Hauser KF (2008) Effects of chronic expression of the HIV-induced protein, transactivator of transcription, on circadian activity rhythms in mice, with or without morphine. Am J Physiol Regul Integr Comp Physiol 295:1680–1687

    Article  Google Scholar 

  63. Huitron-Resendiz S, Marcondes MCG, Flynn CT, Lanigan CMS, Fox HS (2007) Effects of simian immunodeficiency virus on the circadian rhythms of body temperature and gross locomotor activity. Proc Natl Acad Sci U S A 104:15138–15143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Cermakian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer (India) Pvt. Ltd.

About this chapter

Cite this chapter

Nobis, C.C., Kiessling, S., Labrecque, N., Cermakian, N. (2017). Circadian Clocks and Immune Functions. In: Kumar, V. (eds) Biological Timekeeping: Clocks, Rhythms and Behaviour. Springer, New Delhi. https://doi.org/10.1007/978-81-322-3688-7_22

Download citation

Publish with us

Policies and ethics