Skip to main content

Neurological Research in Idiopathic Scoliosis

  • Chapter
  • First Online:
Book cover Pathogenesis of Idiopathic Scoliosis

Abstract

Despite years of research, a neurological etiology for sdolescent idiopathic scoliosis is still being explored. The task is complicated by the difficulty in differentiating a characteristic of scoliosis as a primary etiologic factor or an effect that is secondary to the spinal deformity. Here, we provide an overview of the accumulating data pointing to the involvement of neurological causes in the onset for adolescent idiopathic scoliosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Kouwenhoven JW, Castelein RM. The pathogenesis of adolescent idiopathic scoliosis: review of the literature. Spine. 2008;33:2898–908.

    Article  PubMed  Google Scholar 

  2. Low TG, Edgard M, Margulies JY, et al. Etiology of idiopathic scoliosis: current trends in research. J Bone Joint Surg. 2000;82A:1157–68.

    Article  Google Scholar 

  3. Machida M, Murai I, Miyashita Y, et al. Pathogenesis of idiopathic scoliosis: experimental study in rats. Spine. 1999;24:1985–9.

    Article  CAS  PubMed  Google Scholar 

  4. Machida M, Saito M, Dubousset J, et al. Pathological mechanism of idiopathic scoliosis: experimental scoliosis in pinealectomized rats. Eur Spine J. 2005;14:843–8.

    Article  PubMed  Google Scholar 

  5. Guerin J. Letter sur le traitement des deviations laterals de l’epine par la section sous-cutanee des muscles de dos et de la colonne vertebrale. Gaz Med Paris. 1839;7:403–4.

    Google Scholar 

  6. Adams W. Lectures on the pathology and treatment of lateral and other forms of curvature of the spine. London: Churchill & Sons; 1865.

    Google Scholar 

  7. Trontelj JV, Pecak F, Dimitrijevic MR. Segmental neurophysiological mechanisms in scoliosis. J Bone Joint Surg. 1979;61B:310–3.

    Article  Google Scholar 

  8. Spencer GSG, Eccles MJ. Spinal muscle in scoliosis. Part 2. The proportion and size of type I and type II skeletal muscle fibers measured using a computer controlled microscope. J Neurol Sci. 1976;30:143–54.

    Article  CAS  PubMed  Google Scholar 

  9. Bylund P, Jansson E, Dahlberg E, et al. Muscle fiber types in thoracic erector spinae muscles. Fiber types in idiopathic and other forms of scoliosis. Clin Orthop. 1987;214:222–8.

    Google Scholar 

  10. Slager UT, Hsu JD. Morphometry and pathology of the paraspinous muscles in idiopathic scoliosis. Dev Med Child Neurol. 1986;28:749–56.

    Article  CAS  PubMed  Google Scholar 

  11. Yarom R, Robin GC, Gorodetsky R. X-Ray fluorescence analysis of muscle in scoliosis. Spine. 1978;3:142–5.

    Article  CAS  PubMed  Google Scholar 

  12. Yarom R, Robin GC. Studies on spinal and peripheral muscles from patients with scoliosis. Spine. 1979;4:12–21.

    Article  CAS  PubMed  Google Scholar 

  13. Riddle HVF, Roaf R. Muscle imbalance in the causation of scoliosis. Lancet. 1955;1:1245–7.

    Article  Google Scholar 

  14. Henssge J. Are signs of denervation of muscles of the spine primary or secondary findings in cases of scoliosis? J Bone Joint Surg. 1968;50B:882.

    Google Scholar 

  15. Badger VM. Correlation studies on muscle in scoliosis: histochemistry, EMG, EM and quantitative enzyme estimation. J Bone Joint Surg. 1969;51A:204.

    Google Scholar 

  16. Walf E, Robin GC, Yarom R, et al. Myopathy of deltoid muscle in patients with idiopathic scoliosis. Electromyogr Clin Neurophysiol. 1982;22:357–69.

    Google Scholar 

  17. Trontelj JV. The motor unit in idiopathic scoliosis. Acta Orth Jugosl. 1984;15:7–14.

    Google Scholar 

  18. Fernandez JM. Single fiber EMG in juvenile idiopathic scoliosis. Muscle Nerve. 1988;11:297–300.

    Article  PubMed  Google Scholar 

  19. Valentino B, Maccauro L, Mango G. Electromyography in the investigation and early diagnosis of scoliosis. Anat Clin. 1985;7:55–9.

    Article  CAS  PubMed  Google Scholar 

  20. Yarom R, Robin GC. Muscle pathology in idiopathic scoliosis. Isr J Med Sci. 1979;15:917–24.

    CAS  PubMed  Google Scholar 

  21. Gibson JN, McMaster MJ, Scrimgeour CM, et al. Rates of muscle protein synthesis in paraspinal muscle: lateral disparity in children with idiopathic scoliosis. Clin Sci. 1988;75:79–83.

    Article  CAS  PubMed  Google Scholar 

  22. Ebashi S, Endo M. Calcium and muscle contraction. Prog Biophys Mol Biol. 1968;18:123–83.

    Article  CAS  PubMed  Google Scholar 

  23. Cohen DS, Solomons CS, Lowe TG. Altered platelet calmodulin activity in AIS. Orthop Trans. 1985;9:106.

    Google Scholar 

  24. Kindsfater K, Lowe T, Lawellin D, et al. Levels of platelet calmodulin for the prediction of progression and severity of adolescent idiopathic scoliosis. J Bone Joint Surg. 1994;76A:1186–92.

    Article  Google Scholar 

  25. Acaroglu RE, Akel I, Alanay A, et al. Comparison of the melatonin and calmodulin in paraventral muscle and platelets of patients with or without adolescent idiopathic scoliosis. Spine J. 2009;34:E659–63.

    Article  Google Scholar 

  26. Lowe TG, Lawellin D, Smith D, et al. Platelet calmodulin levels in adolescent idiopathic scoliosis: do the levels correlate with curve progression and severity? Spine. 2002;27:768–75.

    Article  PubMed  Google Scholar 

  27. Lowe TG, Buewell RG, Dangerfield PH. Platelet calmodulin levels in adolescent idiopathic scoliosis (AIS): can they predict curve progression and severity? Summary of an electronic focus group debate of the IBSE. Eur Spine J. 2004;13:257–65.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Benitex-King G, Anton-Tay F. Calmodulin mediates melatonin cytoskeletal effects. Experientia. 1993;49:635–41.

    Article  Google Scholar 

  29. Brezeniski AA. melatonin in humans. New Engl J Med. 1997;336:186–9.

    Article  Google Scholar 

  30. Thillard MJ. Deformation de la colonne vertebrale consecutives a l’epiphysectomie chez le poussin. Extrait Compt Rendus Assoc Anat. 1959;XLVI:22–6.

    Google Scholar 

  31. Dubousset J, Queneau P, Thillard MJ. Experimental scoliosis induced by pineal and dicephalic lesions in young chickens: its relation with clinical findings in idiopathic scoliosis. Orthop Trans. 1983;7:7.

    Google Scholar 

  32. Machida M, Dubousset J, Imamura Y, et al. An experimental study in chickens for the pathogenesis of idiopathic scoliosis. Spine. 1993;18:1609–15.

    Article  CAS  PubMed  Google Scholar 

  33. Machida M, Dubousset J, Imamura Y, et al. Role of melatonin deficiency in the development of scoliosis in pinealectomised chickens. J Bone Joint Surg. 1995;77B:134–8.

    Article  Google Scholar 

  34. Dubousset J, Machida M. Possible role of the pineal gland in the pathogenesis of idiopathic scoliosis. Experimental and clinical studies. Bull Acad Natl Med. 2001;185:593–602.

    CAS  PubMed  Google Scholar 

  35. Machida M, Dubousset J, Sato T, et al. Pathological mechanism of experimental scoliosis in pinealectomized chickens. Spine. 2001;26:E385–91.

    Article  CAS  PubMed  Google Scholar 

  36. Machida M, Dubousset J, Yamada T, et al. Experimental scoliosis in melatonin-deficient C57BL/6J mice without pinealectomy. J Pineal Res. 2006;41:1–7.

    Article  CAS  PubMed  Google Scholar 

  37. Cheung KM, Wang T, Poon AM, et al. The effect of pinealectomy in scoliosis development in young nonhuman primates. Spine. 2005;30:2009–13.

    Article  PubMed  Google Scholar 

  38. Machida M, Dubousset J, Miyake A, et al. The possible pathogenesis in adolescent idiopathic scoliosis based on experimental model of melatonin-deficient C57BL/65J mice. Presented at 51st annual meeting of Scoliosis Research Society in Prague, Sep 2016. Prague: Scoliosis Research Society; 2016. p. 22.

    Google Scholar 

  39. Machida M, Dubousset J, Imamura Y, et al. Melatonin. A possible role in pathogenesis of adolescent idiopathic scoliosis. Spine. 1996;21:1147–52.

    Article  CAS  PubMed  Google Scholar 

  40. Machida M. Cause of idiopathic scoliosis. Spine. 1999;24:2576–83.

    Article  CAS  PubMed  Google Scholar 

  41. Machida M, Dubousset J, Yamada T, et al. Serum melatonin levels in adolescent idiopathic scoliosis prediction and prevention for curve progression – a prospective study. J Pineal Res. 2009;46:344–8.

    Article  CAS  PubMed  Google Scholar 

  42. Morcuende JA, Minhas R, Dolan L, et al. Allelic variants of human melatonin 1A receptor in patients with familial adolescent idiopathic scoliosis. Spine. 2003;28:2025–8.

    Article  PubMed  Google Scholar 

  43. Qiu XS, Tang NL, Yeung HY, et al. The role of melatonin receptor 1B gene (MTNR1B) in adolescent idiopathic scoliosis – a genetic association study. Stud Health Technol Inform. 2006;123:3–8.

    CAS  PubMed  Google Scholar 

  44. Moreau A, Wang DS, Forget S, et al. Melatonin signaling dysfunction in adolescent idiopathic scoliosis. Spine. 2004;29:1772–81.

    Article  PubMed  Google Scholar 

  45. Akoume MY, Azeddine B, Turgeon I, et al. Cell-based screening test for idiopathic scoliosis using cellular dielectric spectroscopy. Spine. 2010;35:E601–8.

    Article  PubMed  Google Scholar 

  46. Wu J, Qiu Y, Zhang L, et al. Association of estrogen receptor gene polymorphisms with susceptibility to adolescent idiopathic scoliosis. Spine. 2006;31:1131–6.

    Article  PubMed  Google Scholar 

  47. Yamada K, Ikata T, Yamamoto H, et al. Equilibrium function in scoliosis and active corrective plaster jacket for the treatment. Tokushima J Med. 1969;16:1–7.

    CAS  Google Scholar 

  48. Tezuka A. Development of scoliosis in cases with congenital organic abnormalities of the brain stem. A report of seven cases. Tokushima J Exp Med. 1971;18:49–62.

    CAS  PubMed  Google Scholar 

  49. Yamamoto H, Yamada K. Equilibrium approach to scoliotic posture. Agressologie. 1976;17:61–6.

    CAS  PubMed  Google Scholar 

  50. Kawata S. Experimental scoliosis produced by stereotaxic destruction of the posterior part of the hypothalamus in bipedal rats. Shikoku Acta Med. 1976;32:125–31.

    Google Scholar 

  51. Yamada K, Yamamoto H. Neuromuscular and neurohormonal approaches to the etiology of idiopathic scoliosis. Orth Trans. 1978;2:277.

    Google Scholar 

  52. Shi L, Wang D, Chu WCW, et al. Volume-based morphometry of brain MR images in adolescent idiopathic scoliosis and healthy control subjects. Am J Neuroradiol. 2009;30:1302–7.

    Article  CAS  PubMed  Google Scholar 

  53. Rousie DL, Hache JC, Pellerin P, et al. Oculomotor, postural, and perceptual asymmetries and asymmetries in vestibular organ anatomy. Ann N Y Acad Sci. 1999;871:439–46.

    Article  CAS  PubMed  Google Scholar 

  54. Chu WC, Shi L, Wang D, et al. Variations of semicircular canals orientation and left-right asymmetry in adolescent idiopathic scoliosis (AIS) comparing with normal controls: MR morphometry study using advanced image computation techniques. Stud Health Technol Inform. 2008;140:333.

    Google Scholar 

  55. Shi L, Wang D, Chu WC, et al. Automatic MRI segmentation and morphoanatomy analysis of the vestibular system in adolescent idiopathic scoliosis. NeuroImage. 2011;54:S180–8.

    Article  PubMed  Google Scholar 

  56. Guo X, Chau W, Hui-Chan CWY, et al. Balance control in adolescents with idiopathic scoliosis and disturbed somatosensory function. Spine. 2006;31:E437–40.

    Article  PubMed  Google Scholar 

  57. Lao ML, Chow DH, Guo X, et al. Impaired dynamic balance control in adolescents with idiopathic scoliosis and abnormal somatosensory evoked potentials. J Pediatr Orthop. 2006;28:846–9.

    Article  Google Scholar 

  58. Beaulieu M, Toulotte C, Gatto L, et al. Postural imbalance in nontreated adolescent idiopathic scoliosis at different periods of progression. Eur Spine J. 2009;18:38–44.

    Article  PubMed  Google Scholar 

  59. Simoneau M, Richer N, Mercier P, et al. Sensory deprivation and balance control in idiopathic scoliosis adolescent. Exp Brain Res. 2006;170:576–82.

    Article  PubMed  Google Scholar 

  60. Barrack RL, Wyatt MP, Whitecloud TSIII, et al. Vibratory hypersensitivity in idiopathic scoliosis. J Pediatr Orthop. 1988;8:389–95.

    Article  CAS  PubMed  Google Scholar 

  61. Wiener-Vacher SR, Mazda K. Asymmetric otolith vestibule-ocular responses in children with idiopathic scoliosis. J Pediatr. 1998;132:1028–32.

    Article  CAS  PubMed  Google Scholar 

  62. Jen J, Coulin CJ, Bosley TM, et al. Familial horizontal gaze palsy with progressive scoliosis maps to chromosome 11q23-25. Neurology. 2002;59:432–5.

    Article  PubMed  Google Scholar 

  63. Cheung J, Veldhuizen AG, Jp H, et al. Geometric and myographic assessments in the evaluation of curve progression in idiopathic scoliosis. Spine. 2006;31:322–9.

    Article  PubMed  Google Scholar 

  64. Machida M, Dubousset J, Imamura Y, et al. Pathogenesis of idiopathic scoliosis: SEPs in chickens with experimentally induced scoliosis and in patients with idiopathic scoliosis. J Pediatr Orthop. 1994;14:329–35.

    Article  CAS  PubMed  Google Scholar 

  65. Cheng JC, Guo X, Sher AH, et al. Correlation between curve severity, somatosensory evoked potentials, and magnetic resonance imaging in adolescents idiopathic scoliosis. Spine. 1999;23:332–7.

    Article  Google Scholar 

  66. Hausmann ON, Boni T, Pfirrmann CW, et al. Preoperative radiological and electrophysiological evaluation in 100 adolescent idiopathic scoliosis patients. Eur Spine J. 2003;12:501–6.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Lao ML, Chow DH, Guo X, et al. Impaired dynamic balance control in adolescents with idiopathic scoliosis and abnormal somatosensory evoked potentials. J Pediatr Orthop. 2008;28:846–9.

    Article  PubMed  Google Scholar 

  68. Peterson I, Sahlstrand T, Sellden U. EEG investigation of patients with adolescent idiopathic scoliosis. Acta Orth Scand. 1979;50:283–93.

    Article  Google Scholar 

  69. McInnes E, Hill DL, Raso VJ, et al. Vibratory response in adolescents who have idiopathic scoliosis. J Bone Joint Surg. 1991;73A:1208–12.

    Article  Google Scholar 

  70. Kimiskidis VK, Potoupnis M, Papagiannopoulos SK, et al. Idiopathic scoliosis: a transcranial magnetic stimulation study. J Musculoskelet Neuronal Interact. 2007;7:155–60.

    CAS  PubMed  Google Scholar 

  71. Mihailia D, Calancie B. Is corticospinal tract organization different in idiopathic scoliosis? Stud Health Technol Inform. 2008;140:350.

    Google Scholar 

  72. Domenech J, Torms JM, Barrios C, et al. Motor cortical hyperexcitability in idiopathic scoliosis: could focal dystonia be a subclinical etiological factor? Eur Spine J. 2010;19:223–30.

    Article  PubMed  Google Scholar 

  73. Chockalingam N, Dangerfield PH, Rahmatalla A, et al. Assessment of ground reaction force during scoliotic gait. Eur Spine J. 2004;13:750–4.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Chow DH, Kwok ML, Cheng JC, et al. The effect of backpack weight on the standing posture and balance of schoolgirls with adolescent idiopathic scoliosis and normal controls. Gait Posture. 2006;24:173–81.

    Article  PubMed  Google Scholar 

  75. Bruyneel AV, Chavet P, Bollini G, et al. Dynamical asymmetries in idiopathic scoliosis during forward and lateral initiation step. Eur Spine J. 2009;18:188–95.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Mahaudens P, Banse X, Mousny M, et al. Gait in adolescent idiopathic scoliosis: kinematic electromyographic analysis. Eur Spine J. 2009;18:512–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Liszka O. Spinal cord mechanisms leading to scoliosis in animal experiments. Acta Med Pol. 1961;2:45–63.

    CAS  PubMed  Google Scholar 

  78. MacEwen GD. Experimental scoliosis. In: Zorab PA, editor. Proceedings of the 2nd symposium on scoliosis: causation. Livigstone: Edinburgh; 1968. p. 14–8.

    Google Scholar 

  79. Alexander MA, Bunch WH, Ebbesson SOE. Can experimental dorsal rhizotomy produce scoliosis? J Bone Joint Surg. 1972;54A:1509–13.

    Article  Google Scholar 

  80. Pincott JR, Davies JS, Taffs LF. Scoliosis caused by section of dorsal spinal nerve roots. J Bone Joint Surg. 1984;66B:27–9.

    Article  Google Scholar 

  81. Suk SI, Song HS, Lee CK. Scoliosis induced anterior and posterior rhizotomy. Spine. 1989;14:692–7.

    Article  CAS  PubMed  Google Scholar 

  82. Pincott JR, Taffs LF. Experimental scoliosis in primates. A neurological cause. J Bone Joint Surg. 1982;64B:503–7.

    Article  Google Scholar 

  83. deSalis J, Beguiristain JL, Canadell J. The production of experimental scoliosis by selective arterial ablation. Int Orthop. 1980;3:311–5.

    Article  CAS  Google Scholar 

  84. Barrios C, Tunon MT, deSalis JA, et al. Scoliosis induced by medullary damage: an experimental study in rabbits. Spine. 1987;12:433–9.

    Article  CAS  PubMed  Google Scholar 

  85. Dubousset J, Bancel PH, Missenard G. Spinal deformities secondary to the treatment of neuroblastomas in children. Presented at 15th annual meeting of scoliosis research society in Chicago, Sep 1980. Prague: Scoliosis Research Society; 1980. p. 17.

    Google Scholar 

  86. Cheng JC, Guo X, Shea AH. Posterior tibial nerve somatosensory cortical evoked potentials in idiopathic scoliosis. Spine. 1998;23:332–7.

    Article  CAS  PubMed  Google Scholar 

  87. Whitecloud TS III, Brinker MR, Barrack RL, et al. Vibratory response in congenital scoliosis. J Pediatr Orthop. 1989;9:422–6.

    Article  PubMed  Google Scholar 

  88. Isu T, Chono Y, Iwasaki Y, et al. Scoliosis associated with syringomyelia presenting in children. Childs Nerv Syst. 1992;8:97–100.

    Article  CAS  PubMed  Google Scholar 

  89. Arai S, Ohtsuka Y, Moriya H, et al. Scoliosis associated with syringomyelia. Spine. 1993;18:1591–2.

    Article  CAS  PubMed  Google Scholar 

  90. Gupta P, Lenke LG, Bridwell KH. Incidence of neural axis abnormalities in infantile and juvenile patients with spinal deformity. Is a magnetic resonance image screening necessary? Spine. 1998;23:206–10.

    Article  CAS  PubMed  Google Scholar 

  91. Singhal R, Perry DC, Prasad S, et al. The use of routine preoperative magnetic resonance imaging in identifying intraspinal anomalies in patients with idiopathic scoliosis: a 10-year review. Eur Spine J. 2013;22:355–9.

    Article  PubMed  Google Scholar 

  92. Roth M. Idiopathic scoliosis caused by a short spinal cord. Acta Radiol Diagn (Stockh). 1968;7:257–2571.

    Article  CAS  Google Scholar 

  93. Porter RW. Can a short spinal cord produce scoliosis? Eur Spine J. 2001;10:2–9.

    Article  CAS  PubMed  Google Scholar 

  94. Porter RW. Idiopathic scoliosis: the relation between the vertebral canal and the vertebral bodies. Spine. 2000;25:1360–6.

    Article  CAS  PubMed  Google Scholar 

  95. Porter RW. The pathogenesis of idiopathic scoliosis: uncoupled neuro-osseous growth? Eur Spine J. 2001;10:473–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Chu WC, Lam WW, Chan YL, et al. Relative shortening and functional tethering of spinal cord in adolescent idiopathic scoliosis?: study with multiplanar reformat magnetic resonance imaging and somatosensory evoked potential. Spine. 2001;10:482–7.

    Article  Google Scholar 

  97. Yamamoto H. A postural disequilibrium as an etiological factor in idiopathic scoliosis. In: Jacobs RR, editor. Pathogenesis of idiopathic scoliosis: proceeding of an international conference. Prague: Scoliosis Research Society; 1983.

    Google Scholar 

  98. Magnus R. Korperstellung. Berlin: Springer; 1925. (cited by Stilwell DL, 1962)

    Google Scholar 

  99. Horn E, Rayer B. Compensation of vestibular lesions in relation to development. Naturwissenscaften. 1978;65:441.

    Article  CAS  Google Scholar 

  100. Rayer B, Horn E. The development of the static vestibule-ocular reflex in the Southern Clawed Toad, Xenopus laevis. III Chronic hemilabyrinthectomized tadpoles. J Com Physiol A. 1986;159:887–95.

    Article  CAS  Google Scholar 

  101. Lambert FM, Malinvaud D, Glaunes J, et al. Vestibular asymmetry as the cause of idiopathic scoliosis: a possible answer from Xenopus. J Neurosci. 2009;29:12477–83.

    Article  CAS  PubMed  Google Scholar 

  102. Nachemson A, Sahlstrand F. Etiologic factors in adolescent idiopathic scoliosis. Spine. 1977;3:176–82.

    Article  Google Scholar 

  103. Yamada K, Yamamoto H, Nakagawa Y, et al. Etiology of idiopathic scoliosis. Clin Orthop. 1984;184:50–7.

    Google Scholar 

  104. Sahlstrand T, Petrusson B. A study of labyrinthine function in patients with adolescent idiopathic scoliosis. (i) An electronystagmographic study. Acta Orth Scan. 1979;50:759–69.

    Article  CAS  Google Scholar 

  105. Sahlstrand T, Ortengren R, Nachemson A. Postural equilibrium in idiopathic scoliosis. Acta Orth Scand. 1978;49:354–65.

    Article  CAS  Google Scholar 

  106. Gregoric M, Pecak F, Trontelj JV, et al. Postural control in scoliosis: a statokinesimetric study in patients with scoliosis due to neuromuscular disorders and in patients with idiopathic scoliosis. Acta Orthop Scand. 1981;52:59–63.

    Article  CAS  PubMed  Google Scholar 

  107. Sahlstrand T, Petrusson B. Postural effects on nystagmus response during caloric stimulation in patients with adolescent idiopathic scoliosis. (ii) an electronystagmographic study. Acta Orth Scan. 1979;50:771–5.

    Article  Google Scholar 

  108. Herman R, MacEwen GD. Idiopathic scoliosis: a visio-vesticular disorder of the central nervous system. In: Zorab PA, editor. Scoliosis. Preceeding of the sixth symposium. London: Academic; 1978. p. 61–9.

    Google Scholar 

  109. Hinoki M. Measurement of the slow phase of optokinetic nystagmus in patients with scoliosis. Agressologie. 1979;2D–C:223–4.

    Google Scholar 

  110. Herman R, Mixon J, Fisher A, et al. Idiopathic scoliosis and the central nervous system: a motor control problem. Spine. 1985;10:1–14.

    Article  CAS  PubMed  Google Scholar 

  111. Hamanishi C, Tanaka S, Kasahara Y, et al. Progressive scoliosis associated with lateral gaze palsy. Spine. 1993;18:2545–8.

    Article  CAS  PubMed  Google Scholar 

  112. Herman R, Maulucci R, Stuyck J, et al. Vestibular functioning in idiopathic scoliosis. Orth Trans. 1979;3:218–9.

    Google Scholar 

  113. O’Beirne J, Goldberg C, Dowling E, et al. Equilibrium dysfunction in scoliosis – cause or effect? J Spinal Dis. 1989;2:184–9.

    Google Scholar 

  114. Byl NH, Hollands S, Jurek A, et al. Postural imbalance and vibratory sensitivity in patients with idiopathic scoliosis: implications for treatment. J Orthop Sports Phys Ther. 1997;26:60–8.

    Article  CAS  PubMed  Google Scholar 

  115. Mirovsky Y, Blankstei A, Shlamkovitch N. Postural control in patients with severe idiopathic scoliosis: a prospective study. J Pediatr Orthop. 2006;15B:168–71.

    Article  Google Scholar 

  116. Simoneuau M, Lamothe V, Hutin T, et al. Evidence for cognitive vestibular integration impairment in idiopathic scoliosis patients. BMC Neurosci. 2009;10:102.

    Article  Google Scholar 

  117. Ghez C, Farn S. The cerebellum. In: Kandel ER, Schwartz JH, editors. Principle of neural science. 2nd ed. New York, NY: Elsevier; 1985. p. 502–22.

    Google Scholar 

  118. Barmack NH. Central vestibular system: vestibular nuclei and posterior cerebellum. Brain Res Bull. 2003;60:511–41.

    Article  PubMed  Google Scholar 

  119. Shi L, Wang D, Hui SCN, et al. Volumetric changes in cerebellar regions in adolescent idiopathic scoliosis compared with healthy controls. Spine J. 2013;

    Google Scholar 

  120. Liu T, Chu WC Yeung G, et al. MR analysis of regional brain volume in adolescent idiopathic scoliosis: neurological manifestation of a systemic disease. J Magn Reson Imaging. 2008;27:732–6.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Wang D, Shi L, Chu WC, et al. Abnormal cerebral cortical thinning pattern in adolescent idiopathic scoliosis. NeuroImage. 2012;59:935–42.

    Article  PubMed  Google Scholar 

  122. Wang D, Shi L, Chu WCW, et al. A comparison of morphometric techniques for studying the shape of corpus callosum in adolescent idiopathic scoliosis. NeuroImage. 2009;45:738–48.

    Article  CAS  PubMed  Google Scholar 

  123. Lee JS, Kim S-J, Suh KT, et al. Adolescent idiopathic scoliosis may not be associated with brain anomalies. Acta Radiol. 2009;50:941–6.

    Article  PubMed  Google Scholar 

  124. Joly O, Rousie D, Jissendi P, et al. A new approach to corpus callosum anomalies in idiopathic scoliosis using diffusion tensor magnetic resonance imaging. Eur Spine J. 2014;22:2643–9.

    Article  Google Scholar 

  125. Lukeschitsch G, Meznik F, Feldner-Bustin H. Zerebrale dysfunction bei patenten mit idiopatische skoliose. Ztsch Orth. 1980;118:372–5.

    Article  CAS  Google Scholar 

  126. Leonard MA. An investigation into the EEG findings in patients with idiopathic scoliosis. J Bone Joint Surg. 1981;63B:632.

    Google Scholar 

  127. Dretakins EK, Parskevaidis H, Zarkadoulas V, et al. Electroencephalographic study of school children with adolescent idiopathic scoliosis. Spine. 1988;13:143–5.

    Article  Google Scholar 

  128. Robb JE, Conner AN, Stephenson JBT. Normal electroencephalograms in idiopathic scoliosis. Act Orth Scand. 1985;57:220–1.

    Article  Google Scholar 

  129. Schneider E, Niethard FU, Schiek H, et al. Wie idioppathisch ist die idiopathische Skoliose? Ergebnisse neurologischer Untersuchungen mit somatosensorisch evozierten Potentialen bei Kindern und Jugendlichen. Z Orthop. 1991;129:355–61.

    Article  CAS  PubMed  Google Scholar 

  130. Chau WW, Guo X, Fu LL, et al. Abnormal sensory evoked potential (SSEP) in adolescents with idiopathic scoliosis – the site of abnormality. In: Sawatzky BJ, editor. International Research Society of spinal deformities symposium. Vancouver, BC: International Research Society; 2004. p. 279–81.

    Google Scholar 

  131. Maguire J, Madigan R, Wallance S, et al. Intraoperative long-latency reflex activity in adolescent idiopathic scoliosis demonstrates abnormal central processing. A possible cause of adolescent idiopathic scoliosis. Spine. 1993;18:1621–6.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masafumi Machida M.D., D.Med.Sci .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Japan KK

About this chapter

Cite this chapter

Machida, M. (2018). Neurological Research in Idiopathic Scoliosis. In: Machida, M., Weinstein, S., Dubousset, J. (eds) Pathogenesis of Idiopathic Scoliosis. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56541-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-56541-3_7

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-56539-0

  • Online ISBN: 978-4-431-56541-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics