Skip to main content

Heart Rate Variability (HRV) and Sympathetic Nerve Activity

  • Chapter
  • First Online:
Clinical Assessment of the Autonomic Nervous System

Abstract

The available epidemiological and clinical data implicate increased sympathetic nervous system activity in increased cardiovascular morbidity and mortality and show that it has strong predictive power for mortality and cardiovascular events. Analysis of heart rate variability (HRV) has been widely used as a noninvasive assessment tool for autonomic nervous system function, and results show that reduced and/or abnormal HRV is associated with an increased risk of mortality in cardiac patients such as patients after acute myocardial infarction and patients with congestive heart failure. However, most indices derived from HRV primarily reflect vagal function. In contrast, few indices have been suggested as markers of sympathetic nervous system activity. This chapter reviews characteristics of HRV that have been proposed as potential markers of cardiac sympathetic activity, such as (in the frequency domain) low-frequency (LF) power, short-term scaling exponent, and non-Gaussianity index. While there is no widely accepted and well-tested HRV-based index of cardiac sympathetic activity, we discuss the key issues for the assessment of cardiac sympathetic activity based on HRV analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Esler M, Kaye D. Sympathetic nervous system activation in essential hypertension, cardiac failure and psychosomatic heart disease. J Cardiovasc Pharmacol. 2000;35:S1–7.

    Article  CAS  PubMed  Google Scholar 

  2. Malpas SC. Sympathetic nervous system overactivity and its role in the development of cardiovascular disease. Physiol Rev. 2010;90:513–57. doi:10.1152/physrev.00007.2009.

    Article  CAS  PubMed  Google Scholar 

  3. Perret-Guillaume C, Joly L, Benetos A. Heart rate as a risk factor for cardiovascular disease. Prog Cardiovasc Dis. 2009;52:6–10. doi:10.1016/j.pcad.2009.05.003.

    Article  PubMed  Google Scholar 

  4. Palatini P, Benetos A, Grassi G, Julius S, Kjeldsen SE, Mancia G, et al. Identification and management of the hypertensive patient with elevated heart rate: statement of a European Society of Hypertension Consensus Meeting. J Hypertens. 2006;24:603–10.

    Article  CAS  PubMed  Google Scholar 

  5. Palatini P. Elevated heart rate in cardiovascular diseases: a target for treatment? Prog Cardiovasc Dis. 2009;52:46–60. doi:10.1016/j.pcad.2009.05.005.

    Article  PubMed  Google Scholar 

  6. Lang CC, Gupta S, Kalra P, Keavney B, Menown I, Morley C, et al. Elevated heart rate and cardiovascular outcomes in patients with coronary artery disease: clinical evidence and pathophysiological mechanisms. Atherosclerosis. 2010;212:1–8. doi:10.1016/j.atherosclerosis.2010.01.029.

    Article  CAS  PubMed  Google Scholar 

  7. Custodis F, Reil JC, Laufs U, Bohm M. Heart rate: a global target for cardiovascular disease and therapy along the cardiovascular disease continuum. J Cardiol. 2013;62:183–7. doi:10.1016/j.jjcc.2013.02.018.

    Article  PubMed  Google Scholar 

  8. Goldberg RJ, Larson M, Levy D. Factors associated with survival to 75 years of age in middle-aged men and women. The Framingham Study. Arch Intern Med. 1996;156:505–9.

    Article  CAS  PubMed  Google Scholar 

  9. Kannel WB. Office assessment of coronary candidates and risk factor insights from the Framingham study. J Hypertens Suppl. 1991;9:S13–9.

    Article  CAS  PubMed  Google Scholar 

  10. Hozawa A, Ohkubo T, Kikuya M, Ugajin T, Yamaguchi J, Asayama K, et al. Prognostic value of home heart rate for cardiovascular mortality in the general population: the Ohasama study. Am J Hypertens. 2004;17:1005–10.

    PubMed  Google Scholar 

  11. Bohm M, Swedberg K, Komajda M, Borer JS, Ford I, Dubost-Brama A, et al. Heart rate as a risk factor in chronic heart failure (SHIFT): the association between heart rate and outcomes in a randomised placebo-controlled trial. Lancet. 2010;376:886–94. doi:10.1016/S0140-6736(10)61259-7.

    Article  PubMed  Google Scholar 

  12. Sundlof G, Wallin BG. Human muscle nerve sympathetic activity at rest. Relationship to blood pressure and age. J Physiol. 1978;274:621–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ng AV, Callister R, Johnson DG, Seals DR. Age and gender influence muscle sympathetic nerve activity at rest in healthy humans. Hypertension. 1993;21:498–503.

    Article  CAS  PubMed  Google Scholar 

  14. Ziegler MG, Lake CR, Kopin IJ. Plasma noradrenaline increases with age. Nature. 1976;261:333–5.

    Article  CAS  PubMed  Google Scholar 

  15. Barnes RF, Raskind M, Gumbrecht G, Halter JB. The effects of age on the plasma catecholamine response to mental stress in man. J Clin Endocrinol Metab. 1982;54:64–9.

    Article  CAS  PubMed  Google Scholar 

  16. Seals DR, Esler MD. Human ageing and the sympathoadrenal system. J Physiol. 2000;528(Pt 3):407–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Esler MD, Thompson JM, Kaye DM, Turner AG, Jennings GL, Cox HS, et al. Effects of aging on the responsiveness of the human cardiac sympathetic nerves to stressors. Circulation. 1995;91:351–8.

    Article  CAS  PubMed  Google Scholar 

  18. Kaye D, Esler M. Sympathetic neuronal regulation of the heart in aging and heart failure. Cardiovasc Res. 2005;66:256–64.

    Article  CAS  PubMed  Google Scholar 

  19. Furberg CD, Psaty BM, Meyer JV. Nifedipine dose-related increase in mortality in patients with coronary heart disease. Circulation. 1995;92:1326–31.

    Google Scholar 

  20. Frohlich ED, McLoughlin MJ, Losem CJ, Ketelhut R, Messerli FH. Hemodynamic comparison of two nifedipine formulations in patients with essential hypertension. Am J Cardiol. 1991;68:1346–50.

    Article  CAS  PubMed  Google Scholar 

  21. Thattassery E, Gheorghiade M. Beta blocker therapy after acute myocardial infarction in patients with heart failure and systolic dysfunction. Heart Fail Rev. 2004;9:107–13.

    Article  CAS  PubMed  Google Scholar 

  22. Manurung D, Trisnohadi HB. Beta blockers for congestive heart failure. Acta Med Indones. 2007;39(1):44–8.

    PubMed  Google Scholar 

  23. Kezerashvili A, Marzo K, De Leon J. Beta blocker use after acute myocardial infarction in the patient with normal systolic function: when is it “ok” to discontinue? Curr Cardiol Rev. 2012;8:77–84.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Cohn JN, Levine TB, Olivari MT, Garberg V, Lura D, Francis GS, et al. Plasma norepinephrine as a guide to prognosis in patients with chronic congestive heart failure. N Engl J Med. 1984;311:819–23.

    Article  CAS  PubMed  Google Scholar 

  25. Cohn JN. Plasma norepinephrine and mortality. Clin Cardiol. 1995;18:I9–12.

    Article  CAS  PubMed  Google Scholar 

  26. de Lucia C, Femminella GD, Gambino G, Pagano G, Allocca E, Rengo C, et al. Adrenal adrenoceptors in heart failure. Front Physiol. 2014;5:246. doi:10.3389/fphys.2014.00246.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Gheorghiade M, Colucci WS, Swedberg K. β-blockers in chronic heart failure. Circulation. 2003;107:1570–5. doi:10.1161/01.CIR.0000065187.80707.18.

    Article  PubMed  Google Scholar 

  28. Kubon C, Mistry NB, Grundvold I, Halvorsen S, Kjeldsen SE, Westheim AS. The role of beta-blockers in the treatment of chronic heart failure. Trends Pharmacol Sci. 2011;32:206–12. doi:10.1016/j.tips.2011.01.006.

    Article  CAS  PubMed  Google Scholar 

  29. Gilbert EM, Abraham WT, Olsen S, Hattler B, White M, Mealy P, et al. Comparative hemodynamic, left ventricular functional, and antiadrenergic effects of chronic treatment with metoprolol versus carvedilol in the failing heart. Circulation. 1996;94:2817–25.

    Article  CAS  PubMed  Google Scholar 

  30. Schwartz PJ, Billman GE, Stone HL. Autonomic mechanisms in ventricular fibrillation induced by myocardial ischemia during exercise in dogs with healed myocardial infarction. An experimental preparation for sudden cardiac death. Circulation. 1984;69:790–800.

    Article  CAS  PubMed  Google Scholar 

  31. Vanoli E, De Ferrari GM, Stramba-Badiale M, Hull Jr SS, Foreman RD, Schwartz PJ. Vagal stimulation and prevention of sudden death in conscious dogs with a healed myocardial infarction. Circ Res. 1991;68:1471–81.

    Article  CAS  PubMed  Google Scholar 

  32. Zhou S, Jung BC, Tan AY, Trang VQ, Gholmieh G, Han SW, et al. Spontaneous stellate ganglion nerve activity and ventricular arrhythmia in a canine model of sudden death. Heart Rhythm. 2008;5:131–9.

    Article  PubMed  Google Scholar 

  33. Malliani A, Schwartz PJ, Zanchetti A. A sympathetic reflex elicited by experimental coronary occlusion. Am J Physiol. 1969;217:703–9.

    CAS  PubMed  Google Scholar 

  34. Schwartz PJ, Foreman RD, Stone HL, Brown AM. Effect of dorsal root section on the arrhythmias associated with coronary occlusion. Am J Physiol. 1976;231:923–8.

    CAS  PubMed  Google Scholar 

  35. Camm J, Malik M, Bigger Jr JT, Breithardt G, Cerutti S, Cohen RJ, et al. Heart rate variability: standards of measurement, physiological interpretation and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Circulation. 1996;93:1043–65.

    Article  Google Scholar 

  36. Kleiger RE, Miller JP, Bigger Jr JT, Moss AJ. Decreased heart rate variability and its association with increased mortality after acute myocardial infarction. Am J Cardiol. 1987;59:256–62.

    Article  CAS  PubMed  Google Scholar 

  37. La Rovere MT, Pinna GD, Maestri R, Mortara A, Capomolla S, Febo O, et al. Short-term heart rate variability strongly predicts sudden cardiac death in chronic heart failure patients. Circulation. 2003;107:565–70.

    Article  PubMed  Google Scholar 

  38. Buccelletti E, Gilardi E, Scaini E, Galiuto L, Persiani R, Biondi A, et al. Heart rate variability and myocardial infarction: systematic literature review and metanalysis. Eur Rev Med Pharmacol Sci. 2009;13:299–307.

    CAS  PubMed  Google Scholar 

  39. Malliani A, Pagani M, Lombardi F, Cerutti S. Cardiovascular neural regulation explored in the frequency domain. Circulation. 1991;84:482–92.

    Article  CAS  PubMed  Google Scholar 

  40. Furlan R, Guzzetti S, Crivellaro W, Dassi S, Tinelli M, Baselli G, et al. Continuous 24-hour assessment of the neural regulation of systemic arterial pressure and RR variabilities in ambulant subjects. Circulation. 1990;81:537–47.

    Article  CAS  PubMed  Google Scholar 

  41. Hopf HB, Skyschally A, Heusch G, Peters J. Low-frequency spectral power of heart rate variability is not a specific marker of cardiac sympathetic modulation. Anesthesiology. 1995;82:609–19.

    Article  CAS  PubMed  Google Scholar 

  42. Taylor JA, Carr DL, Myers CW, Eckberg DL. Mechanisms underlying very-low-frequency RR-interval oscillations in humans. Circulation. 1998;98:547–55.

    Article  CAS  PubMed  Google Scholar 

  43. Goldstein DS, Bentho O, Park MY, Sharabi Y. Low-frequency power of heart rate variability is not a measure of cardiac sympathetic tone but may be a measure of modulation of cardiac autonomic outflows by baroreflexes. Exp Physiol. 2011;96:1255–61. doi:10.1113/expphysiol.2010.056259.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Reyes del Paso GA, Langewitz W, Mulder LJ, van Roon A, Duschek S. The utility of low frequency heart rate variability as an index of sympathetic cardiac tone: a review with emphasis on a reanalysis of previous studies. Psychophysiology. 2013;50:477–87. doi:10.1111/psyp.12027.

    Article  PubMed  Google Scholar 

  45. Bigger Jr JT, Fleiss JL, Steinman RC, Rolnitzky LM, Kleiger RE, Rottman JN. Frequency domain measures of heart period variability and mortality after myocardial infarction. Circulation. 1992;85:164–71.

    Article  PubMed  Google Scholar 

  46. Bigger Jr JT, Fleiss JL, Rolnitzky LM, Steinman RC. Frequency domain measures of heart period variability to assess risk late after myocardial infarction. J Am Coll Cardiol. 1993;21:729–36. Erratum in: J Am Coll Cardiol 1993;21:1537.

    Article  PubMed  Google Scholar 

  47. Huikuri HV, Makikallio TH, Peng CK, Goldberger AL, Hintze U, Moller M. Fractal correlation properties of R-R interval dynamics and mortality in patients with depressed left ventricular function after an acute myocardial infarction. Circulation. 2000;101:47–53.

    Article  CAS  PubMed  Google Scholar 

  48. Stein PK, Domitrovich PP, Huikuri HV, Kleiger RE, Cast Investigators. Traditional and nonlinear heart rate variability are each independently associated with mortality after myocardial infarction. J Cardiovasc Electrophysiol. 2005;16:13–20.

    Article  PubMed  Google Scholar 

  49. Voss A, Schulz S, Schroeder R, Baumert M, Caminal P. Methods derived from nonlinear dynamics for analysing heart rate variability. Philos Trans A Math Phys Eng Sci. 2009;367:277–96.

    Article  PubMed  Google Scholar 

  50. Sassi R, Cerutti S, Lombardi F, Malik M, Huikuri HV, Peng C-K, et al. Advances in heart rate variability signal analysis: joint position statement by the e-Cardiology ESC Working Group and the European Heart Rhythm Association co-endorsed by the Asia Pacific Heart Rhythm Society. Europace. 2015;17:1341–53. doi:10.1093/europace/euv015.

    Article  PubMed  Google Scholar 

  51. Peng CK, Havlin S, Stanley HE, Goldberger AL. Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series. Chaos. 1995;5:82–7.

    Article  CAS  PubMed  Google Scholar 

  52. Makikallio TH, Huikuri HV, Makikallio A, Sourander LB, Mitrani RD, Castellanos A, et al. Prediction of sudden cardiac death by fractal analysis of heart rate variability in elderly subjects. J Am Coll Cardiol. 2001;37:1395–402.

    Article  CAS  PubMed  Google Scholar 

  53. Tapanainen JM, Thomsen PE, Kober L, Torp-Pedersen C, Makikallio TH, Still AM, et al. Fractal analysis of heart rate variability and mortality after an acute myocardial infarction. Am J Cardiol. 2002;90:347–52.

    Article  PubMed  Google Scholar 

  54. Kiyono K, Hayano J, Watanabe E, Struzik ZR, Yamamoto Y. Non-Gaussian heart rate as an independent predictor of mortality in patients with chronic heart failure. Heart Rhythm. 2008;5:261–8. doi:10.1016/j.hrthm.2007.10.030.

    Article  PubMed  Google Scholar 

  55. Hayano J, Kiyono K, Struzik ZR, Yamamoto Y, Watanabe E, Stein PK, et al. Increased non-gaussianity of heart rate variability predicts cardiac mortality after an acute myocardial infarction. Front Physiol. 2011;2:65. doi:10.3389/fphys.2011.00065.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Kiyono K, Hayano J, Kwak S, Watanabe E, Yamamoto Y. Non-gaussianity of low frequency heart rate variability and sympathetic activation: lack of increases in multiple system atrophy and Parkinson disease. Front Physiol. 2012;3:34. doi:10.3389/fphys.2012.00034.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Willson K, Francis DP, Wensel R, Coats AJ, Parker KH. Relationship between detrended fluctuation analysis and spectral analysis of heart-rate variability. Physiol Meas. 2002;23:385–401.

    Article  PubMed  Google Scholar 

  58. Willson K, Francis DP. A direct analytical demonstration of the essential equivalence of detrended fluctuation analysis and spectral analysis of RR interval variability. Physiol Meas. 2003;24:N1–7.

    Article  PubMed  Google Scholar 

  59. Cacioppo JT, Berntson GG, Binkley PF, Quigley KS, Uchino BN, Fieldstone A. Autonomic cardiac control. II. Noninvasive indices and basal response as revealed by autonomic blockades. Psychophysiology. 1994;31:586–98.

    Article  CAS  PubMed  Google Scholar 

  60. Taylor JA, Myers CW, Halliwill JR, Seidel H, Eckberg DL. Sympathetic restraint of respiratory sinus arrhythmia: implications for vagal-cardiac tone assessment in humans. Am J Physiol Heart Circ Physiol. 2001;280:H2804–14.

    CAS  PubMed  Google Scholar 

  61. Grossman P, Taylor EW. Toward understanding respiratory sinus arrhythmia: relations to cardiac vagal tone, evolution and biobehavioral functions. Biol Psychol. 2007;74:263–85.

    Article  PubMed  Google Scholar 

  62. Pomeranz B, Macaulay RJ, Caudill MA, Kutz I, Adam D, Gordon D, et al. Assessment of autonomic function in humans by heart rate spectral analysis. Am J Physiol. 1985;248:H151–3.

    CAS  PubMed  Google Scholar 

  63. Moak JP, Goldstein DS, Eldadah BA, Saleem A, Holmes C, Pechnik S, et al. Supine low-frequency power of heart rate variability reflects baroreflex function, not cardiac sympathetic innervation. Heart Rhythm. 2007;4:1523–9.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Rahman F, Pechnik S, Gross D, Sewell L, Goldstein DS. Low frequency power of heart rate variability reflects baroreflex function, not cardiac sympathetic innervation. Clin Auton Res. 2011;21:133–41. doi:10.1007/s10286-010-0098-y.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Hamilton JD. Time series analysis. Princeton: Princeton University Press; 1994.

    Google Scholar 

  66. Huikuri HV, Makikallio TH, Airaksinen KE, Seppanen T, Puukka P, Raiha IJ, et al. Power-law relationship of heart rate variability as a predictor of mortality in the elderly. Circulation. 1998;97:2031–6.

    Article  CAS  PubMed  Google Scholar 

  67. Ivanov PC, Amaral LA, Goldberger AL, Havlin S, Rosenblum MG, Struzik ZR, et al. Multifractality in human heartbeat dynamics. Nature. 1999;399:461–5.

    Article  CAS  PubMed  Google Scholar 

  68. Tulppo MP, Mäkikallio TH, Takala TE, Seppänen T, Huikuri HV. Quantitative beat-to-beat analysis of heart rate dynamics during exercise. Am J Physiol. 1996;271:H244–52.

    CAS  PubMed  Google Scholar 

  69. Richman JS, Moorman JR. Physiological time-series analysis using approximate entropy and sample entropy. Am J Physiol Heart Circ Physiol. 2000;278:H2039–49.

    CAS  PubMed  Google Scholar 

  70. Porta A, Guzzetti S, Montano N, Furlan R, Pagani M, Malliani A, et al. Entropy, entropy rate, and pattern classification as tools to typify complexity in short heart period variability series. IEEE Trans Biomed Eng. 2001;48:1282–91.

    Article  CAS  PubMed  Google Scholar 

  71. Costa M, Goldberger AL, Peng C-K. Multiscale entropy analysis of physiologic time series. Phys Rev Lett. 2002;89:062102.

    Article  Google Scholar 

  72. Yang AC, Hseu SS, Yien HW, Goldberger AL, Peng CK. Linguistic analysis of the human heartbeat using frequency and rank order statistics. Phys Rev Lett. 2003;90:108103.

    Article  PubMed  Google Scholar 

  73. Kiyono K, Struzik ZR, Aoyagi N, Sakata S, Hayano J, Yamamoto Y. Critical scale invariance in a healthy human heart rate. Phys Rev Lett. 2004;93:178103.

    Article  PubMed  Google Scholar 

  74. Jokinen V, Tapanainen JM, Seppänen T, Huikuri HV. Temporal changes and prognostic significance of measures of heart rate dynamics after acute myocardial infarction in the beta-blocking era. Am J Cardiol. 2003;92:907–12.

    Article  PubMed  Google Scholar 

  75. Perkiömäki JS, Bloch Thomsen PE, Kiviniemi AM, Messier MD, Huikuri HV, CARISMA Study Investigators. Risk factors of self-terminating and perpetuating ventricular tachyarrhythmias in post-infarction patients with moderately depressed left ventricular function, a CARISMA sub-analysis. Europace. 2011;13:1604–11. doi:10.1093/europace/eur166.

    Article  PubMed  Google Scholar 

  76. Gang UJ, Jøns C, Jørgensen RM, Abildstrøm SZ, Messier MD, Haarbo J, et al. Risk markers of late high-degree atrioventricular block in patients with left ventricular dysfunction after an acute myocardial infarction: a CARISMA substudy. Europace. 2011;13:1471–7. doi:10.1093/europace/eur165.

    Article  PubMed  Google Scholar 

  77. Perkiömäki JS, Jokinen V, Tapanainen J, Airaksinen KE, Huikuri HV. Autonomic markers as predictors of nonfatal acute coronary events after myocardial infarction. Ann Noninvasive Electrocardiol. 2008;13:120–9. doi:10.1111/j.1542-474X.2008.00211.x.

  78. Kiyono K, Struzik ZR, Aoyagi N, Yamamoto Y. Multiscale probability density function analysis: non-Gaussian and scale-invariant fluctuations of healthy human heart rate. IEEE Trans Biomed Eng. 2006;53(1):95–102.

    Google Scholar 

  79. Kiyono K, Struzik ZR, Yamamoto Y. Estimator of a non-Gaussian parameter in multiplicative log-normal models. Phys Rev E. 2007;76:041113.

    Article  Google Scholar 

  80. Frish U. Turbulence. Cambridge: Cambridge University Press; 1995.

    Google Scholar 

  81. Altimiras J. Understanding autonomic sympathovagal balance from short-term heart rate variations. Are we analyzing noise? Comp Biochem Physiol A Mol Integr Physiol. 1999;124:447–60.

    Article  CAS  PubMed  Google Scholar 

  82. Sone M, Yoshida M, Hashizume Y, Hishikawa N, Sobue G. Alpha-synuclein-immunoreactive structure formation is enhanced in sympathetic ganglia of patients with multiple system atrophy. Acta Neuropathol. 2005;110:19–26.

    Article  CAS  PubMed  Google Scholar 

  83. Braune S, Reinhardt M, Bathmann J, Krause T, Lehmann M, Lücking CH. Impaired cardiac uptake of meta-[123I]iodobenzylguanidine in Parkinson’s disease with autonomic failure. Acta Neurol Scand. 1998;97:307–14.

    Article  CAS  PubMed  Google Scholar 

  84. Braune S, Reinhardt M, Schnitzer R, Riedel A, Lücking CH. Cardiac uptake of [123I]MIBG separates Parkinson’s disease from multiple system atrophy. Neurology. 1999;53:1020–5.

    Article  CAS  PubMed  Google Scholar 

  85. Vikman S, Mäkikallio TH, Yli-Mäyry S, Pikkujämsä S, Koivisto AM, Reinikainen P, et al. Altered complexity and correlation properties of R-R interval dynamics before the spontaneous onset of paroxysmal atrial fibrillation. Circulation. 1999;100:2079–84.

    Article  CAS  PubMed  Google Scholar 

  86. Porta A, Gnecchi-Ruscone T, Tobaldini E, Guzzetti S, Furlan R, Montano N. Progressive decrease of heart period variability entropy-based complexity during graded head-up tilt. J Appl Physiol. 2007;103:1143–9.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ken Kiyono .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Japan

About this chapter

Cite this chapter

Kiyono, K., Hayano, J., Watanabe, E., Yamamoto, Y. (2017). Heart Rate Variability (HRV) and Sympathetic Nerve Activity. In: Iwase, S., Hayano, J., Orimo, S. (eds) Clinical Assessment of the Autonomic Nervous System. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56012-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-56012-8_9

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-56010-4

  • Online ISBN: 978-4-431-56012-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics