Skip to main content

Myotonic Dystrophy

  • Chapter
  • First Online:

Abstract

Myotonic dystrophy (DM) is the most common form of muscular dystrophy in adults, caused by unstable genomic expansions of simple tandem repeats. Myotonic dystrophy type 1 (DM1) results from expansion of a CTG repeat in the 3′ untranslated region of DMPK. In myotonic dystrophy type 2 (DM2), the expanded repeat is a CCTG tetramer in intron 1 of CNBP/ZNF9. The mRNA transcripts containing expanded repeats form ribonuclear inclusions, thereby retained in the nucleus. The mutant RNA gives rise to a toxic gain of function by perturbing splicing factors, resulting in misregulation of alternative pre-mRNA splicing that may underlie the multisystemic symptoms of DM. Although no curative treatment exists, recent advances in basic and translational research and pharmacological approaches provide clues for therapeutic intervention in DM. In this review, we describe the RNA-dominant mechanism in DM and summarize potential therapeutic approaches that address RNA toxicity and current progress toward translational research.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Harper PS (2001) Myotonic dystrophy. W.B. Saunders Company, London

    Google Scholar 

  2. Harley HG, Brook JD, Rundle SA, Crow S, Reardon W, Buckler AJ, Harper PS, Housman DE, Shaw DJ (1992) Expansion of an unstable DNA region and phenotypic variation in myotonic dystrophy. Nature 355(6360):545–546

    Article  CAS  PubMed  Google Scholar 

  3. Liquori CL, Ricker K, Moseley ML, Jacobsen JF, Kress W, Naylor SL, Day JW, Ranum LP (2001) Myotonic dystrophy type 2 caused by a CCTG expansion in intron 1 of ZNF9. Science 293(5531):864–867

    Article  CAS  PubMed  Google Scholar 

  4. Osborne RJ, Thornton CA (2006) RNA-dominant diseases. Hum Mol Genet 15(2):R162–R169. doi:10.1093/hmg/ddl181

    Article  CAS  PubMed  Google Scholar 

  5. Vicart S, Sternberg D, Fontaine B, Meola G (2005) Human skeletal muscle sodium channelopathies. Neurol Sci 26(4):194–202. doi:10.1007/s10072-005-0461-x

    Article  CAS  PubMed  Google Scholar 

  6. de Die-Smulders CE, Howeler CJ, Thijs C, Mirandolle JF, Anten HB, Smeets HJ, Chandler KE, Geraedts JP (1998) Age and causes of death in adult-onset myotonic dystrophy. Brain 121(Pt 8):1557–1563

    Article  PubMed  Google Scholar 

  7. Gadalla SM, Lund M, Pfeiffer RM, Gortz S, Mueller CM, Moxley RT 3rd, Kristinsson SY, Bjorkholm M, Shebl FM, Hilbert JE, Landgren O, Wohlfahrt J, Melbye M, Greene MH (2011) Cancer risk among patients with myotonic muscular dystrophy. JAMA 306(22):2480–2486. doi:10.1001/jama.2011.1796

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Nakamori M, Thornton C (2010) Epigenetic changes and non-coding expanded repeats. Neurobiol Dis 39(1):21–27. doi:10.1016/j.nbd.2010.02.004

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Harley HG, Rundle SA, MacMillan JC, Myring J, Brook JD, Crow S, Reardon W, Fenton I, Shaw DJ, Harper PS (1993) Size of the unstable CTG repeat sequence in relation to phenotype and parental transmission in myotonic dystrophy. Am J Hum Genet 52(6):1164–1174

    PubMed Central  CAS  PubMed  Google Scholar 

  10. Lopez Castel A, Cleary JD, Pearson CE (2010) Repeat instability as the basis for human diseases and as a potential target for therapy. Nat Rev Mol Cell Biol 11(3):165–170. doi:10.1038/nrm2854

    Article  PubMed  Google Scholar 

  11. Ashizawa T, Anvret M, Baiget M, Barcelo JM, Brunner H, Cobo AM, Dallapiccola B, Fenwick RG Jr, Grandell U, Harley H (1994) Characteristics of intergenerational contractions of the CTG repeat in myotonic dystrophy. Am J Hum Genet 54(3):414–423

    PubMed Central  CAS  PubMed  Google Scholar 

  12. Thornton CA, Johnson K, Moxley RT (1994) Myotonic dystrophy patients have larger CTG expansions in skeletal muscle than in leukocytes. Ann Neurol 35:104–107

    Article  CAS  PubMed  Google Scholar 

  13. Nakamori M, Sobczak K, Moxley RT 3rd, Thornton CA (2009) Scaled-down genetic analysis of myotonic dystrophy type 1 and type 2. Neuromuscul Disord 19(11):759–762. doi:10.1016/j.nmd.2009.07.012

    Article  PubMed Central  PubMed  Google Scholar 

  14. Nakamori M, Pearson CE, Thornton CA (2011) Bidirectional transcription stimulates expansion and contraction of expanded (CTG)•(CAG) repeats. Hum Mol Genet 20(3):580–588. doi:10.1093/hmg/ddq501

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Nakamori M, Gourdon G, Thornton CA (2011) Stabilization of expanded (CTG)*(CAG) repeats by antisense oligonucleotides. Mol Ther 19(12):2222–2227. doi:10.1038/mt.2011.191

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Nakamori M, Sobczak K, Puwanant A, Welle S, Eichinger K, Pandya S, Dekdebrun J, Heatwole CR, McDermott MP, Chen T, Cline M, Tawil R, Osborne RJ, Wheeler TM, Swanson MS, Moxley RT 3rd, Thornton CA (2013) Splicing biomarkers of disease severity in myotonic dystrophy. Ann Neurol 74(6):862–872. doi:10.1002/ana.23992

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Zatz M, Passos-Bueno MR, Cerqueira A, Marie SK, Vainzof M, Pavanello R (1995) Analysis of the CTG repeat in skeletal muscle of young and adult myotonic dystrophy patients: when does the expansion occur? Hum Mol Genet 4(3):401–406

    Article  CAS  PubMed  Google Scholar 

  18. Verkerk AJ, Pieretti M, Sutcliffe JS, Fu YH, Kuhl DP, Pizzuti A, Reiner O, Richards S, Victoria MF, Zhang FP et al (1991) Identification of a gene (FMR-1) containing a CGG repeat coincident with a breakpoint cluster region exhibiting length variation in fragile X syndrome. Cell 65(5):905–914. doi:10.1016/0092-8674(91)90397-H

    Article  CAS  PubMed  Google Scholar 

  19. Campuzano V, Montermini L, Molto MD, Pianese L, Cossee M, Cavalcanti F, Monros E, Rodius F, Duclos F, Monticelli A, Zara F, Canizares J, Koutnikova H, Bidichandani SI, Gellera C, Brice A, Trouillas P, De Michele G, Filla A, De Frutos R, Palau F, Patel PI, Di Donato S, Mandel JL, Cocozza S, Koenig M, Pandolfo M (1996) Friedreich’s ataxia: autosomal recessive disease caused by an intronic GAA triplet repeat expansion. Science 271(5254):1423–1427

    Article  CAS  PubMed  Google Scholar 

  20. Miller JW, Urbinati CR, Teng-Umnuay P, Stenberg MG, Byrne BJ, Thornton CA, Swanson MS (2000) Recruitment of human muscleblind proteins to (CUG)(n) expansions associated with myotonic dystrophy. EMBO J 19(17):4439–4448. doi:10.1093/emboj/19.17.4439

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Jansen G, Groenen PJ, Bachner D, Jap PH, Coerwinkel M, Oerlemans F, van den Broek W, Gohlsch B, Pette D, Plomp JJ, Molenaar PC, Nederhoff MG, van Echteld CJ, Dekker M, Berns A, Hameister H, Wieringa B (1996) Abnormal myotonic dystrophy protein kinase levels produce only mild myopathy in mice. Nat Genet 13(3):316–324. doi:10.1038/ng0796-316

    Article  CAS  PubMed  Google Scholar 

  22. Reddy S, Smith DBJ, Rich MM, Leferovich JM, Reilly P, Davis BM, Tran K, Rayburn H, Bronson R, Cros D, Balice-Gordon RJ, Housman D (1996) Mice lacking the myotonic dystrophy protein kinase develop a late onset progressive myopathy. Nat Genet 13:325–334

    Article  CAS  PubMed  Google Scholar 

  23. Mankodi A, Logigian E, Callahan L, McClain C, White R, Henderson D, Krym M, Thornton CA (2000) Myotonic dystrophy in transgenic mice expressing an expanded CUG repeat. Science 289(5485):1769–1773

    Article  CAS  PubMed  Google Scholar 

  24. Margolis JM, Schoser BG, Moseley ML, Day JW, Ranum LP (2006) DM2 intronic expansions: evidence for CCUG accumulation without flanking sequence or effects on ZNF9 mRNA processing or protein expression. Hum Mol Genet 15(11):1808–1815

    Article  CAS  PubMed  Google Scholar 

  25. Kino Y, Mori D, Oma Y, Takeshita Y, Sasagawa N, Ishiura S (2004) Muscleblind protein, MBNL1/EXP, binds specifically to CHHG repeats. Hum Mol Genet 13(5):495–507

    Article  CAS  PubMed  Google Scholar 

  26. Jiang H, Mankodi A, Swanson MS, Moxley RT, Thornton CA (2004) Myotonic dystrophy type 1 is associated with nuclear foci of mutant RNA, sequestration of muscleblind proteins and deregulated alternative splicing in neurons. Hum Mol Genet 13(24):3079–3088. doi:10.1093/hmg/ddh327

    Article  CAS  PubMed  Google Scholar 

  27. Lin X, Miller JW, Mankodi A, Kanadia RN, Yuan Y, Moxley RT, Swanson MS, Thornton CA (2006) Failure of MBNL1-dependent postnatal splicing transitions in myotonic dystrophy. Hum Mol Genet 15(13):2087–2097

    Google Scholar 

  28. Ho TH, Charlet B, Poulos MG, Singh G, Swanson MS, Cooper TA (2004) Muscleblind proteins regulate alternative splicing. EMBO J 23(15):3103–3112

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Mankodi A, Takahashi MP, Jiang H, Beck CL, Bowers WJ, Moxley RT, Cannon SC, Thornton CA (2002) Expanded CUG repeats trigger aberrant splicing of ClC-1 chloride channel pre-mRNA and hyperexcitability of skeletal muscle in myotonic dystrophy. Mol Cell 10(1):35–44

    Google Scholar 

  30. Charlet-B N, Savkur RS, Singh G, Philips AV, Grice EA, Cooper TA (2002) Loss of the muscle-specific chloride channel in type 1 myotonic dystrophy due to misregulated alternative splicing. Mol Cell 10(1):45–53

    Article  CAS  PubMed  Google Scholar 

  31. Osborne RJ, Lin X, Welle S, Sobczak K, O’Rourke JR, Swanson MS, Thornton CA (2009) Transcriptional and post-transcriptional impact of toxic RNA in myotonic dystrophy. Hum Mol Genet 18(8):1471–1481. doi:10.1093/hmg/ddp058

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Wang ET, Cody NA, Jog S, Biancolella M, Wang TT, Treacy DJ, Luo S, Schroth GP, Housman DE, Reddy S, Lecuyer E, Burge CB (2012) Transcriptome-wide regulation of pre-mRNA splicing and mRNA localization by muscleblind proteins. Cell 150(4):710–724. doi:10.1016/j.cell.2012.06.041

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Rau F, Freyermuth F, Fugier C, Villemin JP, Fischer MC, Jost B, Dembele D, Gourdon G, Nicole A, Duboc D, Wahbi K, Day JW, Fujimura H, Takahashi MP, Auboeuf D, Dreumont N, Furling D, Charlet-Berguerand N (2011) Misregulation of miR-1 processing is associated with heart defects in myotonic dystrophy. Nat Struct Mol Biol 18(7):840–845. doi:10.1038/nsmb.2067

    Article  CAS  PubMed  Google Scholar 

  34. Kanadia RN, Johnstone KA, Mankodi A, Lungu C, Thornton CA, Esson D, Timmers AM, Hauswirth WW, Swanson MS (2003) A muscleblind knockout model for myotonic dystrophy. Science 302(5652):1978–1980

    Article  CAS  PubMed  Google Scholar 

  35. Fardaei M, Rogers MT, Thorpe HM, Larkin K, Hamshere MG, Harper PS, Brook JD (2002) Three proteins, MBNL, MBLL and MBXL, co-localize in vivo with nuclear foci of expanded-repeat transcripts in DM1 and DM2 cells. Hum Mol Genet 11(7):805–814

    Article  CAS  PubMed  Google Scholar 

  36. Lee KY, Li M, Manchanda M, Batra R, Charizanis K, Mohan A, Warren SA, Chamberlain CM, Finn D, Hong H, Ashraf H, Kasahara H, Ranum LP, Swanson MS (2013) Compound loss of muscleblind-like function in myotonic dystrophy. EMBO Mol Med 5(12):1887–1900. doi:10.1002/emmm.201303275

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Kuyumcu-Martinez NM, Wang GS, Cooper TA (2007) Increased steady-state levels of CUGBP1 in myotonic dystrophy 1 are due to PKC-mediated hyperphosphorylation. Mol Cell 28(1):68–78. doi:10.1016/j.molcel.2007.07.027

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Salisbury E, Sakai K, Schoser B, Huichalaf C, Schneider-Gold C, Nguyen H, Wang GL, Albrecht JH, Timchenko LT (2008) Ectopic expression of cyclin D3 corrects differentiation of DM1 myoblasts through activation of RNA CUG-binding protein, CUGBP1. Exp Cell Res 314(11–12):2266–2278. doi:10.1016/j.yexcr.2008.04.018

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Jones K, Wei C, Iakova P, Bugiardini E, Schneider-Gold C, Meola G, Woodgett J, Killian J, Timchenko NA, Timchenko LT (2012) GSK3beta mediates muscle pathology in myotonic dystrophy. J Clin Invest 122(12):4461–4472. doi:10.1172/JCI64081

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Charlet BN, Logan P, Singh G, Cooper TA (2002) Dynamic antagonism between ETR-3 and PTB regulates cell type-specific alternative splicing. Mol Cell 9(3):649–658, doi: S1097276502004793 [pii]

    Article  Google Scholar 

  41. Savkur RS, Philips AV, Cooper TA (2001) Aberrant regulation of insulin receptor alternative splicing is associated with insulin resistance in myotonic dystrophy. Nat Genet 29(1):40–47

    Article  CAS  PubMed  Google Scholar 

  42. Timchenko NA, Cai ZJ, Welm AL, Reddy S, Ashizawa T, Timchenko LT (2001) RNA CUG repeats sequester CUGBP1 and alter protein levels and activity of CUGBP1. J Biol Chem 276(11):7820–7826

    Article  CAS  PubMed  Google Scholar 

  43. Vlasova IA, Tahoe NM, Fan D, Larsson O, Rattenbacher B, Sternjohn JR, Vasdewani J, Karypis G, Reilly CS, Bitterman PB, Bohjanen PR (2008) Conserved GU-rich elements mediate mRNA decay by binding to CUG-binding protein 1. Mol Cell 29(2):263–270. doi:10.1016/j.molcel.2007.11.024

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Koshelev M, Sarma S, Price RE, Wehrens XH, Cooper TA (2010) Heart-specific overexpression of CUGBP1 reproduces functional and molecular abnormalities of myotonic dystrophy type 1. Hum Mol Genet 19(6):1066–1075. doi:10.1093/hmg/ddp570

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Cardani R, Bugiardini E, Renna LV, Rossi G, Colombo G, Valaperta R, Novelli G, Botta A, Meola G (2013) Overexpression of CUGBP1 in skeletal muscle from adult classic myotonic dystrophy type 1 but not from myotonic dystrophy type 2. PLoS One 8(12):e83777. doi:10.1371/journal.pone.0083777

    Article  PubMed Central  PubMed  Google Scholar 

  46. Kornblihtt AR, Schor IE, Allo M, Dujardin G, Petrillo E, Munoz MJ (2013) Alternative splicing: a pivotal step between eukaryotic transcription and translation. Nat Rev Mol Cell Biol 14(3):153–165. doi:10.1038/nrm3525

    Article  CAS  PubMed  Google Scholar 

  47. Kimura T, Nakamori M, Lueck JD, Pouliquin P, Aoike F, Fujimura H, Dirksen RT, Takahashi MP, Dulhunty AF, Sakoda S (2005) Altered mRNA splicing of the skeletal muscle ryanodine receptor and sarcoplasmic/endoplasmic reticulum Ca2 + −ATPase in myotonic dystrophy type 1. Hum Mol Genet 14(15):2189–2200

    Article  CAS  PubMed  Google Scholar 

  48. Tang ZZ, Yarotskyy V, Wei L, Sobczak K, Nakamori M, Eichinger K, Moxley RT, Dirksen RT, Thornton CA (2012) Muscle weakness in myotonic dystrophy associated with misregulated splicing and altered gating of CaV1.1 calcium channel. Hum Mol Genet 21(6):1312–1324. doi:10.1093/hmg/ddr568

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Fugier C, Klein AF, Hammer C, Vassilopoulos S, Ivarsson Y, Toussaint A, Tosch V, Vignaud A, Ferry A, Messaddeq N, Kokunai Y, Tsuburaya R, de la Grange P, Dembele D, Francois V, Precigout G, Boulade-Ladame C, Hummel MC, Lopez de Munain A, Sergeant N, Laquerriere A, Thibault C, Deryckere F, Auboeuf D, Garcia L, Zimmermann P, Udd B, Schoser B, Takahashi MP, Nishino I, Bassez G, Laporte J, Furling D, Charlet-Berguerand N (2011) Misregulated alternative splicing of BIN1 is associated with T tubule alterations and muscle weakness in myotonic dystrophy. Nat Med 17(6):720–725. doi:10.1038/nm.2374

    Article  CAS  PubMed  Google Scholar 

  50. Jacobs AE, Benders AA, Oosterhof A, Veerkamp JH, van Mier P, Wevers RA, Joosten EM (1990) The calcium homeostasis and the membrane potential of cultured muscle cells from patients with myotonic dystrophy. Biochim Biophys Acta 1096(1):14–19, doi: 0925-4439(90)90006-B [pii]

    Article  CAS  PubMed  Google Scholar 

  51. Nakamori M, Kimura T, Fujimura H, Takahashi MP, Sakoda S (2007) Altered mRNA splicing of dystrophin in type 1 myotonic dystrophy. Muscle Nerve 36(2):251–257. doi:10.1002/mus.20809

    Article  CAS  PubMed  Google Scholar 

  52. Nakamori M, Kimura T, Kubota T, Matsumura T, Sumi H, Fujimura H, Takahashi MP, Sakoda S (2008) Aberrantly spliced alpha-dystrobrevin alters alpha-syntrophin binding in myotonic dystrophy type 1. Neurology 70(9):677–685. doi:10.1212/01.wnl.0000302174.08951.cf

    Article  CAS  PubMed  Google Scholar 

  53. Philips AV, Timchenko LT, Cooper TA (1998) Disruption of splicing regulated by a CUG-binding protein in myotonic dystrophy. Science 280(5364):737–741

    Article  CAS  PubMed  Google Scholar 

  54. Mankodi A, Lin X, Blaxall BC, Swanson MS, Thornton CA (2005) Nuclear RNA foci in the heart in myotonic dystrophy. Circ Res 97(11):1152–1155

    Article  CAS  PubMed  Google Scholar 

  55. Suenaga K, Lee KY, Nakamori M, Tatsumi Y, Takahashi MP, Fujimura H, Jinnai K, Yoshikawa H, Du H, Ares M Jr, Swanson MS, Kimura T (2012) Muscleblind-like 1 knockout mice reveal novel splicing defects in the myotonic dystrophy brain. PLoS One 7(3):e33218. doi:10.1371/journal.pone.0033218

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Paul S, Dansithong W, Kim D, Rossi J, Webster NJ, Comai L, Reddy S (2006) Interaction of muscleblind, CUG-BP1 and hnRNP H proteins in DM1-associated aberrant IR splicing. EMBO J 25(18):4271–4283

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Ravel-Chapuis A, Belanger G, Yadava RS, Mahadevan MS, DesGroseillers L, Cote J, Jasmin BJ (2012) The RNA-binding protein Staufen1 is increased in DM1 skeletal muscle and promotes alternative pre-mRNA splicing. J Cell Biol 196(6):699–712. doi:10.1083/jcb.201108113

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Kalsotra A, Singh RK, Gurha P, Ward AJ, Creighton CJ, Cooper TA (2014) The Mef2 transcription network is disrupted in myotonic dystrophy heart tissue, dramatically altering miRNA and mRNA expression. Cell Rep 6(2):336–345. doi:10.1016/j.celrep.2013.12.025

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Zu T, Gibbens B, Doty NS, Gomes-Pereira M, Huguet A, Stone MD, Margolis J, Peterson M, Markowski TW, Ingram MA, Nan Z, Forster C, Low WC, Schoser B, Somia NV, Clark HB, Schmechel S, Bitterman PB, Gourdon G, Swanson MS, Moseley M, Ranum LP (2011) Non-ATG-initiated translation directed by microsatellite expansions. Proc Natl Acad Sci U S A 108(1):260–265. doi:10.1073/pnas.1013343108

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Southwell AL, Skotte NH, Bennett CF, Hayden MR (2012) Antisense oligonucleotide therapeutics for inherited neurodegenerative diseases. Trends Mol Med 18(11):634–643. doi:10.1016/j.molmed.2012.09.001

    Article  CAS  PubMed  Google Scholar 

  61. Koo T, Wood MJ (2013) Clinical trials using antisense oligonucleotides in Duchenne muscular dystrophy. Hum Gene Ther 24(5):479–488. doi:10.1089/hum.2012.234

    Article  CAS  PubMed  Google Scholar 

  62. Wheeler TM, Lueck JD, Swanson MS, Dirksen RT, Thornton CA (2007) Correction of ClC-1 splicing eliminates chloride channelopathy and myotonia in mouse models of myotonic dystrophy. J Clin Invest 117(12):3952–3957. doi:10.1172/JCI33355

    PubMed Central  CAS  PubMed  Google Scholar 

  63. Kanadia RN, Shin J, Yuan Y, Beattie SG, Wheeler TM, Thornton CA, Swanson MS (2006) Reversal of RNA missplicing and myotonia after muscleblind overexpression in a mouse poly(CUG) model for myotonic dystrophy. Proc Natl Acad Sci U S A 103(31):11748–11753

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Roberts R, Timchenko NA, Miller JW, Reddy S, Caskey CT, Swanson MS, Timchenko LT (1997) Altered phosphorylation and intracellular distribution of a (CUG)n triplet repeat RNA-binding protein in patients with myotonic dystrophy and in myotonin protein kinase knockout mice. Proc Natl Acad Sci U S A 94(24):13221–13226

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  65. Ho TH, Bundman D, Armstrong DL, Cooper TA (2005) Transgenic mice expressing CUG-BP1 reproduce splicing mis-regulation observed in myotonic dystrophy. Hum Mol Genet 14(11):1539–1547

    Article  CAS  PubMed  Google Scholar 

  66. Ward AJ, Rimer M, Killian JM, Dowling JJ, Cooper TA (2010) CUGBP1 overexpression in mouse skeletal muscle reproduces features of myotonic dystrophy type 1. Hum Mol Genet 19(18):3614–3622. doi:10.1093/hmg/ddq277

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  67. Wang GS, Kuyumcu-Martinez MN, Sarma S, Mathur N, Wehrens XH, Cooper TA (2009) PKC inhibition ameliorates the cardiac phenotype in a mouse model of myotonic dystrophy type 1. J Clin Invest 119(12):3797–3806. doi:10.1172/JCI37976

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  68. Furling D, Doucet G, Langlois MA, Timchenko L, Belanger E, Cossette L, Puymirat J (2003) Viral vector producing antisense RNA restores myotonic dystrophy myoblast functions. Gene Ther 10(9):795–802. doi:10.1038/sj.gt.3301955

    Article  CAS  PubMed  Google Scholar 

  69. Langlois MA, Boniface C, Wang G, Alluin J, Salvaterra PM, Puymirat J, Rossi JJ, Lee NS (2005) Cytoplasmic and nuclear retained DMPK mRNAs are targets for RNA interference in myotonic dystrophy cells. J Biol Chem 280(17):16949–16954. doi:10.1074/jbc.M501591200

    Article  CAS  PubMed  Google Scholar 

  70. Langlois MA, Lee NS, Rossi JJ, Puymirat J (2003) Hammerhead ribozyme-mediated destruction of nuclear foci in myotonic dystrophy myoblasts. Mol Ther 7(5 Pt 1):670–680, doi: S1525001603000686 [pii]

    Article  CAS  PubMed  Google Scholar 

  71. Mulders SA, van den Broek WJ, Wheeler TM, Croes HJ, van Kuik-Romeijn P, de Kimpe SJ, Furling D, Platenburg GJ, Gourdon G, Thornton CA, Wieringa B, Wansink DG (2009) Triplet-repeat oligonucleotide-mediated reversal of RNA toxicity in myotonic dystrophy. Proc Natl Acad Sci U S A 106(33):13915–13920. doi:10.1073/pnas.0905780106

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  72. Wheeler TM, Sobczak K, Lueck JD, Osborne RJ, Lin X, Dirksen RT, Thornton CA (2009) Reversal of RNA dominance by displacement of protein sequestered on triplet repeat RNA. Science 325(5938):336–339. doi:10.1126/science.1173110

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  73. Leger AJ, Mosquea LM, Clayton NP, Wu IH, Weeden T, Nelson CA, Phillips L, Roberts E, Piepenhagen PA, Cheng SH, Wentworth BM (2013) Systemic delivery of a Peptide-linked morpholino oligonucleotide neutralizes mutant RNA toxicity in a mouse model of myotonic dystrophy. Nucleic Acid Ther 23(2):109–117. doi:10.1089/nat.2012.0404

    Article  CAS  PubMed  Google Scholar 

  74. Wheeler TM, Leger AJ, Pandey SK, MacLeod AR, Nakamori M, Cheng SH, Wentworth BM, Bennett CF, Thornton CA (2012) Targeting nuclear RNA for in vivo correction of myotonic dystrophy. Nature 488(7409):111–115. doi:10.1038/nature11362

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  75. Lee JE, Bennett CF, Cooper TA (2012) RNase H-mediated degradation of toxic RNA in myotonic dystrophy type 1. Proc Natl Acad Sci U S A 109(11):4221–4226. doi:10.1073/pnas.1117019109

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  76. Parkesh R, Childs-Disney JL, Nakamori M, Kumar A, Wang E, Wang T, Hoskins J, Tran T, Housman D, Thornton CA, Disney MD (2012) Design of a bioactive small molecule that targets the myotonic dystrophy type 1 RNA via an RNA motif-ligand database and chemical similarity searching. J Am Chem Soc 134(10):4731–4742. doi:10.1021/ja210088v

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  77. Childs-Disney JL, Parkesh R, Nakamori M, Thornton CA, Disney MD (2012) Rational design of bioactive, modularly assembled aminoglycosides targeting the RNA that causes myotonic dystrophy type 1. ACS Chem Biol 7(12):1984–1993. doi:10.1021/cb3001606

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  78. Ofori LO, Hoskins J, Nakamori M, Thornton CA, Miller BL (2012) From dynamic combinatorial ‘hit’ to lead: in vitro and in vivo activity of compounds targeting the pathogenic RNAs that cause myotonic dystrophy. Nucleic Acids Res 40(13):6380–6390. doi:10.1093/nar/gks298

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  79. Warf MB, Nakamori M, Matthys CM, Thornton CA, Berglund JA (2009) Pentamidine reverses the splicing defects associated with myotonic dystrophy. Proc Natl Acad Sci U S A 106(44):18551–18556. doi:10.1073/pnas.0903234106

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  80. Coonrod LA, Nakamori M, Wang W, Carrell S, Hilton CL, Bodner MJ, Siboni RB, Docter AG, Haley MM, Thornton CA, Berglund JA (2013) Reducing levels of toxic RNA with small molecules. ACS Chem Biol 8(11):2528–2537. doi:10.1021/cb400431f

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  81. Gomes-Pereira M, Monckton DG (2006) Chemical modifiers of unstable expanded simple sequence repeats: what goes up, could come down. Mutat Res 598(1–2):15–34. doi:10.1016/j.mrfmmm.2006.01.011

    Article  CAS  PubMed  Google Scholar 

  82. Nakamori M, Takahashi MP (2011) Myotonic dystrophy: therapeutic approaches to RNA toxicity. Brain Nerve 63(11):1161–1168, doi: 1416101048 [pii]

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masayuki Nakamori .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Nakamori, M., Takahashi, M.P. (2016). Myotonic Dystrophy. In: Takeda, S., Miyagoe-Suzuki, Y., Mori-Yoshimura, M. (eds) Translational Research in Muscular Dystrophy. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55678-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-55678-7_3

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-55677-0

  • Online ISBN: 978-4-431-55678-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics