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    Chapter 27   
 Gene Expression Profi les Involved 
in Development of Freezing Tolerance 
in Common Wheat                     

       Hirokazu     Yokota    ,     Julio     C.  M.     Iehisa    ,     Etsuo     Shimosaka    , and     Shigeo     Takumi    

           Wheat Cold Acclimation and Freezing Tolerance 

 Exposure of plants to low, nonfreezing temperatures leads to an increase in freezing 
tolerance, and this adaptive process, called cold acclimation, involves drastic physi-
ological, biochemical and metabolic changes. Most of these alterations are regu-
lated through changes in gene expression. One of the mechanisms behind 
development of freezing tolerance is induction of the  Cor  (cold-responsive)/ Lea  
(late-embryogenesis-abundant) gene family (Thomashow  1999 ). In common wheat, 
major loci controlling freezing tolerance ( Fr-1  and  Fr-2 ) have been assigned to the 
long arm of group fi ve chromosomes (Galiba et al.  1995 ; Snape et al.  1997 ).  Fr-2  is 
coincident with a cluster of genes encoding C-repeat binding factors (CBFs) in 
wheat and barley (Miller et al.  2006 ; Francia et al.  2007 ), which directly induce the 
downstream  Cor / Lea  gene expression during cold acclimation (Takumi et al.  2008 ). 
In expression quantitative trait locus (eQTL) analysis of  Cor / Lea  and  CBF  genes, 
four eQTLs controlling cold-responsive genes were found, and the major eQTL 
with the greatest effect was located on the long arm of chromosome 5A (Motomura 
et al.  2013 ). The 5AL eQTL region, which plays important roles in development of 
freezing tolerance in common wheat (Motomura et al.  2013 ), coincides with a 
region homoeologous to a frost-tolerance locus ( Fr-A   m   2 ) reported as a  CBF  cluster 
region in einkorn wheat (Vágújfalvi et al.  2003 ; Miller et al.  2006 ). Allelic differ-
ences at  Fr-A2  might be a major cause of cultivar differences in extent of freezing 
tolerance in common wheat (Motomura et al.  2013 ). It was recently reported that 
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large deletions in the  CBF  cluster at  Fr-B2  signifi cantly reduced frost tolerance in 
tetraploid and hexaploid wheat (Pearce et al.  2013 ). In barley, two QTLs for low- 
temperature (LT) tolerance,  Fr-H1  and  Fr-H2 , are found on the long arm of chromo-
some 5H (Francia et al.  2004 ), and the  Vrn-H1 / Fr-H1  genotype affects both the 
expression of  CBF  genes at  Fr-H2  and LT tolerance (Stockinger et al.  2007 ; Chen 
et al.  2009 ). Thus, the barley  Vrn-H1 / Fr-H1  and  Fr-H2  regions function to develop 
freezing tolerance through  Cor / Lea  gene expression during cold acclimation. In 
contrast to barley, the functions of  Vrn-A1 / Fr-A1  and  Vrn-D1 / Fr-D1  in regulation of 
cold-responsive gene expression in common wheat remain unclear. 

 A lot of other genes, including  Wlip19  and  Wabi5  bZIP transcription factor genes 
(Kobayashi et al.  2008a ,  b ), contribute to cold acclimation and freezing tolerance in 
common wheat. These transcription factors, which act in abscisic acid (ABA) sig-
naling, bind to ABA-responsive elements in the promoters of  Cor / Lea  genes. Thus, 
ABA induces expression of a variety of genes that function in the regulation of gene 
expression, signal transduction and abiotic stress tolerance in common wheat. In 
fact, ABA sensitivity strongly affects the basal levels of freezing tolerance 
(Kobayashi et al.  2006 ,  2008c ), and some QTLs on wheat chromosomes controlling 
ABA sensitivity at the seedling stage are also related to  Cor / Lea  gene expression 
and putatively associated with freezing tolerance (Kobayashi et al.  2010 ). Recent 
reports showed that QTLs for ABA sensitivity at the seedling stage could be also 
associated with dehydration tolerance, seed dormancy and preharvest sprouting tol-
erance (Iehisa et al.  2014a ,  b ). The QTLs for ABA sensitivity do not correspond to 
 Fr-1  and  Fr-2 , and the two  Fr  loci act independently of ABA signal transduction 
pathways (Fig.  27.1 ).

       Transcriptome Analysis During Cold Acclimation 

 Wheat  CBF  gene expression is temporal and upregulated at least two-fold by LT 
(Kume et al.  2005 ). The fi rst upregulation occurs within 1–4 h, which might corre-
spond to the rapid response to LT, while the second upregulation occurs between 2 
and 3 weeks after the start of cold acclimation. Maintenance of a high  CBF  tran-
script level in freezing tolerant cultivars might represent a long-term effect of cold 
acclimation (Kume et al.  2005 ). Effects of long-term LT treatment on gene expres-
sion profi les could be distinct from rapid changes in response to cold stress. A 
comprehensive image of transcriptome alteration in cells and tissues of common 
wheat during cold acclimation and subsequent freezing stress conditions is not yet 
available. The above-ground tissues of wheat plants become wilted and wither 
under freezing conditions. However, cold-acclimated seedlings of freezing tolerant 
wheat cultivars rapidly recover from freezing stress and develop new shoots from 
surviving meristems of the crown tissues (Ohno et al.  2001 ). Therefore, biologically 
important events in the development of freezing tolerance should occur in the crown 
tissues. 
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 Freezing stress treatment signifi cantly alters gene expression profi les of more 
than 400 genes in the crown tissues of cold-acclimated wheat plants (Skinner  2009 ). 
This transcriptome analysis revealed that 68 genes, including CBF, WRKY and zinc 
fi nger transcription factor genes, were more than fi vefold upregulated by freezing 
stress. The upregulated genes also encoded kinases, phosphatases, calcium 
traffi cking- related proteins and glycosyltransferases. This observation implied the 
presence of genetic variation among wheat cultivars in the ability to alleviate the 
damage to crowns exposed to freezing stress (Skinner  2009 ). Thus, many genes 
besides the  CBF  and  Cor / Lea  genes presumably participate in each step to develop 
freezing tolerance in the crown tissues of wheat. 

 To identify other LT-responsive genes related with cold acclimation in hexaploid 
wheat, we compared comprehensive gene expression patterns of a synthetic hexa-
ploid line under normal and LT conditions using a wheat 38k DNA microarray 
(Yokota et al.  2015 ). For hybridization, total RNA samples were extracted from 
3-week-old seedling leaves exposed to LT for 12 weeks, and from crown tissues 
exposed to LT for 6 weeks. The microarray analyses showed that  TaWRKY45 , 
 TaWRKY72 , and  TaMYB73  transcription factor genes and two fructan synthesis- 
related genes,  Ta1FFT  and  Ta6SFT , were highly upregulated by long-term LT treat-
ment, in addition to a number of  Cor / Lea  genes (Yokota et al.  2015 ). The transcript 
accumulation levels of these upregulated genes refl ected the freezing tolerance 

  Fig. 27.1    Cold stress signaling pathways in common wheat. Low temperature leads to accumula-
tion of transcription factors (indicated by  ovals ) through ABA-dependent and -independent path-
ways. Specifi c binding of each transcription factor to  cis -acting elements (indicated by  boxes ) 
activates  Cor / Lea  gene expression.  TaMYB13  activates fructan biosynthesis-related genes       
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 levels of two distinct lines of synthetic hexaploid wheat. Our observations suggest 
that, in addition to COR/LEA proteins, the WRKY and MYB transcription factors 
and fructan biosynthesis play important roles in development of freezing 
tolerance.  

    Fructan Biosynthesis Pathway and Freezing Tolerance 

 Severe abiotic stresses induce detrimental changes in cellular compounds, and sug-
ars are regarded as one of the metabolites preventing detrimental changes (Valluru 
and Van den Ende  2008 ). In particular, long-term stress conditions lead to higher 
soluble sugar concentrations and lower amounts of starch (Silva and Arrabaca 
 2004 ). Fructans, soluble fructosyl polysaccharides, are storage carbohydrates in a 
large number of higher plants. Fructans accumulating in perennial grasses can be 
considered as longer-term reserve carbohydrates to survive the winter period 
(Yoshida et al.  1998 ). Transgenic perennial ryegrass plants with an increased amount 
of fructans showed signifi cantly increased levels of freezing tolerance (Hisano et al. 
 2004 ). Genetic transformation of two wheat fructan-synthesizing enzymes con-
ferred fructan accumulation and enhanced chilling tolerance in rice (Kawakami 
et al.  2008 ). Therefore, fructans play important roles as anti-stress agents in over-
wintering plants (Kawakami and Yoshida  2005 ), and are considered to function in 
membrane stabilization through formation of a fructan-lipid interaction under water 
stresses such as cold and drought (Valluru and Van den Ende  2008 ). 

 In wheat and barley, three enzyme families, sucrose:sucrose 1- fructosyltransferrase 
(1-SST), sucrose:fructan 6-fructosyltransferase (6-SFT) and fructan:fructan 
1- fructosyltransferase (1-FFT), synthesize graminian-type fructans consisting of 
β-2,6 linked fructosyl units with β-2,1 branches (Ritsema and Smeekens  2003 ). The 
TaMYB13 transcription factor binds to the promoters of wheat  1-SST  and  6-SFT  
genes and activates fructosyltransferase gene expression (Xue et al.  2011 ). 
Overexpression of  TaMYB13  results in upregulation of  1-SST ,  6-SFT  and  1-FFT  and 
enhances fructan accumulation and yield-related traits under water-limited condi-
tions in transgenic wheat plants (Kooiker et al.  2013 ). Snow mold resistant cultivars 
accumulate and maintain higher fructan levels in the crown tissues from autumn to 
the end of winter (Yoshida et al.  1998 ). Yoshida et al. ( 1998 ) also reported that fruc-
tan may increase freezing tolerance, although its effi ciency is lower than mono- and 
disaccharides in common wheat. Livingston ( 1996 ) suggested that fructan is indi-
rectly involved in freezing tolerance of oat and barley. Therefore, fructans surely 
play important roles in development of water stress tolerance. 

 As mentioned above, our transcriptome analysis showed that fructan biosynthesis- 
related genes were signifi cantly upregulated during long-term LT treatment in 
crown tissues of wheat synthetics (Yokota et al.  2015 ). In fact, fructan accumulation 
levels also refl ected the distinct freezing tolerance levels of two synthetic wheat 
lines (Yokota et al.  2015 ). These observations support a signifi cant association of 
fructan biosynthesis with development of freezing tolerance in common wheat 
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(Fig.  27.1 ). The relationship between carbohydrate accumulation in crown tissues 
and wheat freezing tolerance and winter hardiness should be elucidated in more 
detail in future studies.     
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