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Abstract

To assess the effects of microbes on the exchange of Cu, Zn, and P between seafloor

massive sulfide (SMS) deposits and seawater, we monitored the variation of the

concentrations of Cu, Zn, and P in the artificial seawater of reaction systems that did or

did not also include slabs and microbes originating from an SMS sample at 4 �C for

71 days. Dissolution of Cu and Zn from the slabs was observed when microbes were present

or absent. Zinc from the slabs dissolved 1.4–2.3 fold more rapidly when microbes were

present. In the presence of slabs and microbes, the rate of removal of P from the artificial

seawater was the sum of the individual removal rates associated with the slabs and

microbes. Six bacterial phylotypes including Halomonas and Marinobacter were present

at the end of the experiment as shown by PCR-based analysis targeting 16S rRNA genes.

These bacteria probably contribute to the release of Zn from the SMS slab and removal of P

from the artificial seawater. Our results provide further insights into the role(s) of microbes

on the geochemical interactions between SMS deposits and seawater.
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9.1 Introduction

Seafloor massive sulfide (SMS) deposits occur at and

around the plate boundaries, e.g., mid-ocean ridges, back-

arc basins and volcanic arcs (Hannington et al. 2011).

These SMS deposits consist of relatively insoluble sulfide

minerals, e.g., pyrite (FeS2), chalcopyrite (CuFeS2), sphal-

erite (ZnS), and galena (PbS), and also contain trace

elements such as Au, Ag, Co and in some cases, Ni (Herzig

and Hannington 1995). The hydrothermally active and

inactive vents of chimney- and mound-shaped SMS

deposits are microbe-rich environments, with microbial

densities of up to 1010 cells (g sulfide)�1 (Kato et al.

2010; Schrenk et al. 2003; Suzuki et al. 2004; Takai and

Horikoshi 1999), which are densities comparable with

those in soils and animal bowels (Whitman et al. 1998).

Dissolved H2, H2S, CH4 and Fe
2+ supplied from hydrother-

mal fluids in the active sulfide vents serve as energy sources

for the microbial communities. Conversely, microbial

communities in inactive sulfide vents apparently use

metal sulfides as energy sources (Edwards et al. 2003a).

An in situ examination of SMS ores with time suggested

that sulfide minerals on the seafloor are highly weathered

by microbes (Edwards et al. 2003b). However, a quantita-

tive assessment of the elements released from or adsorbed

by SMS deposits mediated by microbes had not been done

prior to this report.

Considering the high levels of heavy metals in the SMS

deposits and the ubiquity of these deposits on the seafloor

(Hannington et al. 2011; Herzig and Hannington 1995), an

experimental study of the change with time of the SMS

components via microbial activity is important to understand

how such events impact the oceanic biogeochemical cycles.

The concentrations of certain heavy metals, e.g., Fe, Zn, Mn,

Cu and Ni, which are essential for oceanic microbial viabil-

ity, are extremely small (<0.1 μM) in the ocean (Morel and

Price 2003; Sohrin and Bruland 2011). The exchange of

these heavy metals between seawater and SMS deposits is

potentially needed for the maintenance of important oceanic

microbial ecosystems.

Here, we report the effects of microbes on the exchanges

of elements between SMS samples and seawater by

simulating the environmental conditions of deep seafloor

(i.e., low temperature, weakly alkaline pH and a small

amount of organic carbon). The goals of this study were (i)

to measure the kinetics of the dissolution of certain metals

and P from a recovered SMS sample and (ii) to assess if and

how microbial communities affect the kinetics.

9.2 Materials and Methods

9.2.1 Sample Collection

A portion of massive sulfide ore (sample ID, D903-R1) was

collected from a hydrothermal vent field, called the

Archaean site (12�56.350N, 143�38.00E; depth, 3,076 m),

in the Southern Mariana Trough during the YK05-09 cruise

(July to August 2005) by the manned submersible Shinkai
6500 (JAMSTEC, Japan) of the R/V Yokosuka (JAMSTEC,

Japan). A bathymetric map of the vent field is shown in a

previous report (Kato et al. 2010) and also in Seama et al.

(Chap. 17). The SMS sample (Suppl. 9.1a) was washed with

filter-sterilized seawater and crushed into fist-sized, sub-

surface, non-oxidized samples, using an autoclave-sterilized

hammer and chisel in a clean box on board. Some of the

samples were stored at �80 �C in DNA/RNA-free plastic

tubes for DNA extraction and the others were stored at 4 �C
for inoculation and mineralogical studies.

9.2.2 Experimental Medium

The artificial seawater (ASW) was a modification of that

described in the previous report (Jannasch et al. 1996) and

contained 20.0 g NaCl; 3.0 g MgCl2�6H2O; 6.0 g

MgSO4�7H2O; 1.0 g (NH4)2SO4; 0.2 g NaHCO3; 0.3 g

CaCl2�2H2O; 0.5 g KCl; 0.015 g KH2PO4, 1 mL of vitamin

solution (DSMZmedium 141; http://www.dsmz.de) and 1mL

of marine trace element solution (DSMZ medium 511), in

1 L of distilled water. The pH value of the ASW was 7.3

before autoclaving and 8.1 afterwards. To simulate the low

concentrations of organic compounds found in deep seawater,

Bacto yeast extract (BD Difco, NJ, USA) was added from an

autoclaved stock solution to render the concentration to be

10 mg (corresponding to 3.3 mg of carbon) L�1 in the final

medium as described previously (Jannasch et al. 1996).

9.2.3 Batch Experiments

A sample of the interior of the SMS was cut into small slabs

(10 � 10 � 1 mm; Suppl. 9.1b) using a low speed diamond

saw (Struers Minitor, Westlake, OH, USA). Each slab

weighed 0.35 � 0.05 g. The relative surface area of each

slab was 5.72 � 0.01 m2 g�1, as determined by the BET-N2

method (Seishin Enterprise Co., Ltd., Tokyo, Japan). The

slabs were cleaned and sterilized by soaking them in ethanol
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and acetone for 2 h each according to Edwards et al. (2000)

and then dried by flushing with N2 gas at room temperature.

Sterile 250-mL glass culture flasks, each containing

100 mL of ASW and capped with sponge plugs, were used

to contain the incubations. Each flask contained one of

the following systems: ASW with slabs and an inoculum;

ASW with only slabs; ASW with only an inoculum; only

ASW. The contents of all systems were prepared in dupli-

cate, except for the system of only ASW. The inoculum was

prepared from a slurry of the mostly oxidized surface of

the SMS sample. The cell density of the slurry was

3.62 � 0.65 � 107 cells mL�1 (corresponding to

2.22 � 0.38 � 106 cells (g sulfide)�1) determined by fluo-

rescence microscopy (Kato et al. 2009a). The systems

containing slabs and an inoculum are denoted as MC1 and

MC2; those with only slabs as C1 and C2; those with only an

inoculum as M1 and M2; and the negative control, without

slabs and an inoculum as N (i.e., blank test), respectively.

MC1, MC2, C1 and C2 each contained 10 slabs. One milli-

liter of the slurry was added into each of MC1, MC2, M1

and M2. These reaction systems were incubated in a cold

room at 4 �C.
An aliquot of 3 mL (1 mL for direct cell counting and

2 mL for chemical analyses) was removed from each culture

with a sterile disposable syringe at 4, 42, 140, 332, 782, and

1698 h after the start of the experiment. Before sampling,

each medium was gently withdrawn and returned by action

of a sterile disposable syringe three times. To determine the

number of cells, each sample was filtered through a black

polycarbonate filter (pore size, 0.2 μm; diameter, 13 mm;

Advantec, Tokyo, Japan). Each filter was washed twice with

ultra-pure water, and then was dried in a sterilized Petri dish

and stored at �20 �C. For the chemical analyses, each

sample was filtered through a polycarbonate filter (pore

size, 0.2 μm; diameter, 25 mm; Advantec, Tokyo, Japan),

and the filtrates were individually stored in an acid-cleaned

2-mL polypropylene tube. Approximately 300 μL of each

filtrate was used for the pH measurement.

At the end of the incubations, a 60 mL aliquots of each

solution was filtered through a polycarbonate filter (pore

size, 0.2 μm; diameter, 13 mm; Advantec, Tokyo, Japan).

The filters were stored at �80 �C prior to DNA analysis. To

remove the microbes that were loosely attached to the slabs,

the slabs were gently swished in sterilized Petri dishes

containing 30 mL of ultra-pure water with tweezers. The

water was replaced three times. Five slabs from each

experiment were stored at �80 �C for DNA analysis, and

the other five slabs were fixed with 3.7 % (w/v) formalin at

4 �C over night and then stored in a 1:1 ethanol/phosphate-

buffered saline mixture at �20 �C until microscopy was

performed.

9.2.4 Chemical Analysis

To determine the chemical composition of the retrieved

SMS sample, 0.1 g of the slabs was pulverized and

decomposed in HNO3-HF-HClO4 solution at 90 �C. The
solution was evaporated at 90 �C. The residue was dried at

140 �C and then dissolved in 1.25 mL HCl-HNO3 solution at

90 �C. The concentration of each element was determined by

multi-channel inductively coupled plasma-optical emission

spectrometry (ICP-OES) (SPS5500; SII NanoTechnology,

Chiba, Japan). The chemical composition of the sample

was 42.9 wt% Fe (weight per total weight); 694 ppm Zn;

594 ppm Al; 114 ppm Co; 106 ppm Cu; 97.4 ppm Mg;

72.9 ppm Ba; 46.0 ppm Ca; 32.4 ppm Cd; 30.0 ppm Ni;

23 ppm Na; 9.3 ppm V; 6.90 ppm Rb; 6.80 ppm Sr; 4.0 ppm

Mn. We assumed that the remaining solid, which could not

be quantified, was sulfur. The uncertainties for the ICP-OES

analysis were within �5 % for Al, Ba, Ca, Cd, Cu, Fe, Mg,

Rb, Sr and Zn, and approximately�10 % for Co, Mn, Na, Ni

and V. The detection limit for the aforementioned elements

was <10 ppb. Ikehata et al. (Chap. 22) characterized the

mineral content of a bulk sample of this SMS of D903-R1,

and showed that it was primarily composed of cryptocrystal-

line pyrite and marcasite with lesser amounts of sphalerite,

chalcopyrite, and barite.

The pH of each system was measured with a TWIN pH

meter (HORIBA, Kyoto, Japan). Concentrations of Cu, Zn

and P in the ASW samples with time were measured using

the ICP-OES system as described above. The detection limits

were 2.25 nmol L�1 for Cu, 239 nmol L�1 for P, and

5.54 nmol L�1 for Zn. The uncertainty for the P measurement

was �5 % and that for the Cu and Zn measurement was

approximately �10 %. We also assessed the concentrations

of the other elements that had been detected in the SMS

sample; however, no clear temporal trends were observed

because of their low concentrations (data not shown).

The concentration of each element was corrected for the

decrease in the sample volume and the loss of element

mass during the sampling using the following equation

(Eq. 4 in Wu et al. 2007):

C0j, i ¼
Cj, i V0 � j� 1ð ÞVs½ � þ

X j� 1

h ¼ 1
Ch, iVs

V0

ð9:1Þ

where C’j,i is the corrected concentration of element i in the

jth sample (j ¼ 1,2. . .,7), and Cj,i is the measured concentra-

tion. V0 is the initial volume (0.1 L), Vs is the sample volume

(0.003 L), and the term
X j� 1

h ¼ 1
Ch, iVs accounts for the

total mass of element i extracted during the samplings.
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The rate constant (dC0/dt) of dissolution for each element

was calculated for the 332–1,698 h period (Suppl. 9.2), a

time when the pH values of the ASW were between 7.3 and

7.5 (Fig. 9.1a and Suppl. 9.3). The release or removal rate

(R) of each element to or from the ASW, respectively, was

calculated using the corresponding rate constant (dC0/dt), the
initial fluid volume (V0, 0.1 L), the relative surface area

(A, 5.72 m2 g�1), the total mass of the slabs in each system

(m, 3.11–3.33 g), and Eq. 5 in Wu et al. (2007):

R ¼ dC0i
dt

V0

Am
, ð9:2Þ

The values for R are listed in Table 9.1.

9.2.5 16S rRNA Gene Clone Library
Construction and Phylogenetic Analysis

The 16S rRNA gene analysis was performed as described

(Kato et al. 2009a, b). Partial 16S rRNA genes in extracted

genomic DNA were amplified by PCR with the prokaryote-

universal primer set, Uni515F and Uni1406R (Kato et al.

2009a). The PCR products were cloned and the nucleotide

sequences of randomly selected clones were determined.

Nucleotide sequences were aligned using ClustalW 2.0.12

(Larkin et al. 2007). Sequences with at least 97 % similarity

according to DOTUR (Schloss and Handelsman 2005) were

treated as the same phylotype. Maximum-likelihood (ML)

trees were constructed using PHYML (Guindon and Gascuel

2003). Bootstrap values were calculated using 100 replicates.
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Fig. 9.1 Changes in cell density,

pH, the concentrations of Cu, P

and Zn during the course of the

experiments. (a) pH values.
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and (d) Zn. (e) Cell density.
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9.2.6 Fluorescence Microscopy

Microbes on the filters and slabs were stained with SYBR

Green I. Microscope images were recorded using a fluores-

cence microscope BX60 (Olympus, Tokyo, Japan) and a

cooled CCD camera (Penguin 600CL, Pixera, San Jose,

CA, USA). At least 30 fields of the images of each filter

and slab were used for cell counting.

9.2.7 Accession Numbers

Sequence data were submitted to the DDBJ database under

the accession numbers AB600466 to AB600509 for the 16S

rRNA genes recovered from the inoculum, and AB600510 to

AB600530 for the 16S rRNA genes recovered at the end of

the experiment.

9.3 Results and Discussion

9.3.1 Concentrations and Release/Removal
Rates of Elements to/from the ASW
Samples

The initial pH values of the incubations were between 8.2

and 8.0. They decreased to 7.6–7.4 by 332 h and finally to

7.3 (Fig. 9.1a) after 1,698 h. The pH drop may have resulted

from dissolution of CO2 from the air because the drop was

observed in all samples including N. The change in the

concentrations of each element differed during the 4–332-

h and 332–1,698-h periods; Fig. 9.1b–d, see also Suppl. 9.3).

A dC0/dt value for each element was calculated for the

332–1,698-h period when the pH of the systems remained

between 7.3 and 7.5 (Fig. 9.1a). Results of the calculation

are shown in Suppl. 9.2.

Leaching of Cu and Zn, which were relatively abundant

in the slabs (see above), was observed in the presence and

absence of the microbes (Fig. 9.1b, d). In particular, R for Zn

dissolution was greater (1.4–2.3 folds) when microbes were

present (Table 9.1). The dC0/dt values for Zn were similar for

each pair of duplicated samples, i.e., MC1 and MC2, and C1

and C2 (Fig. 9.1d and Suppl. 9.2). In contrast, no differences

for the R values of Cu associated with the MC1 and MC2,

and C1 and C2 samples were observed.

When SMS slabs were present in a reaction system, P was

removed even if microbes were not (Fig. 9.1c). P was also

removed in the presence of microbes when slabs were absent

(Fig. 9.1c). The dC0/dt absolute values for P were greater

when only slabs were present (C1 and C2) than when only

microbes were present (M1 and M2; Fig. 9.1c, Suppl. 9.2),

indicating that the rate of precipitation or adsorption of P

onto the sulfide slabs was faster than the rate of uptake by the

microbes. dC0/dt for P in the systems that included slabs and

microbes (MC1 and MC2) were corresponding to the sums

of the values for M1 or M2 and C1 or C2 (Suppl. 9.2).

9.3.2 Microbial Communities

The temporal changes in cell densities are shown in Fig. 9.1e,

with decreases seen in theMC1,MC2,M1 andM2 systems to

104–105 cells mL�1 at 140 h and increases up to 106–107 cells

mL�1 by 1,698 h. The cell densities in the C1, C2 and N

systems could not be reliably counted by microscopy (<103

cells mL�1). Cell colonies were observed on the MC1 and

MC2 slabs at the end of the experiment (6.92 � 4.55 and

5.76 � 3.28 � 105 cells cm�2, respectively; Suppl. 9.4).

16S rRNA gene clone libraries were constructed from the

genomic DNA extracted from the ASW samples and SMS

slabs at the end of the experiment. The Inoc library is that

frommicrobes in the original inoculum. TheMC1lq, MC2lq,

M1lq and M2lq libraries are from microbes in the MC1,

MC2, M1 and M2 ASW samples, respectively. The MC1cp

and MC2cp libraries are from microbes on the MC1 and

MC2 slabs, respectively. The total numbers of the analyzed

clones are 91, 45, 46, 47, 48, 20 and 20 for Inoc, MC1lq,

MC1cp, MC2cp, MC2lq, M1lq and M2lq, respectively. 16S

rRNA genes were not detected by PCR from the ASW

samples and slabs from the C1 and C2 systems or from the

ASW of the N system.

The clones in the Inoc library were affiliated with the

following taxonomic groups (Fig. 9.2 and Suppl. 9.5):

Actinobacteria (5.4 % of the total number of clones),

Bacteroidetes (2.2 %), Chloroflexi (1.1 %), Planctomycetes

(6.5 %), Alphaproteobacteria (16.3 %), Deltaproteobacteria
(2.2 %), Gammaproteobacteria (63.0 %), Zetaproteobacteria

(1.1 %), Verrucomicrobia (1.1 %) and Euryarchaeota (1.1 %).

Many of the phylotypes in the Inoc library are similar to

uncultured environmental clones recovered from the sulfide

chimneys of the inactive vents (Kato et al. 2010), from the

oceanic basaltic rocks (Santelli et al. 2008) and marine

sediments but are distantly related to known species with

<95 % of 16S rRNA gene similarity. Phylotypes (the

Table 9.1 Rates of dissolution of Cu and Z from the SMS slabs and of

removal of P from the ASW of the samples containing both microbes

and slabs (MC1, 2) microbes, and only slabs (C1, 2)

Sample ID

Dissolution rate (mol m�2 s�1)

Cu P Zn

MC1 2.4.E-16 �2.0.E-14 1.9.E-16

MC2 1.7.E-16 �2.2.E-14 2.3.E-16

C1 2.5.E-16 �1.3.E-14 1.3.E-16

C2 1.9.E-16 �1.3.E-14 1.0.E-16
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representative clones: inoc38 and 51) related toMariprofundus
ferrooxydans (95 % similarity) of Zetaproteobacteria

and Ferrimicrobium acidiphilum (89 % similarity) of

Actinobacteria, which are iron-oxidizing bacteria, were also

detected in the Inoc library. In contrast to the great diversity

of the microbial community in the original inoculum, only

six phylotypes were detected at the end of the experiment

(Table 9.2). These phylotypes were completely different from

those in the Inoc library (Fig. 9.2 and Suppl. 9.5), probably

because the original phylotypes had been out-competed during

the incubation periods.

9.3.3 Microbial Effects on Chemical Interaction
on Sulfide Deposits

The bacterial species, e.g., Halomonas and Marinobacter,

found at the end of the experiment should be minor

constituents of the microbial community of the in situ SMS

deposits because they were not detected in the original inocu-

lum. The species present at the end of the experiment were

probably selected by the experimental conditions. These spe-

cies may have influenced the release of Zn and removal of P.

Remarkably, these species have been detected in SMS

samples in various deep-sea fields (Edwards et al. 2003b;

Kaye et al. 2010; Rogers et al. 2003), suggesting that they

may play a role in the release of Zn and removal of P in situ.

Our results suggest that microbial action accelerated Zn

dissolution from the SMS slabs. Iron-oxidizing bacteria con-

vert Fe2+ to Fe3+, such that Fe3+ can then react with sphaler-

ite (ZnS) as oxidants to release Zn2+ (Fowler and Crundwell

1999) as follows:

4Fe2þ þ O2 þ 4Hþ ! 4Fe3þ þ 2H2O ð9:3Þ

ZnS þ 2Fe3þ ! Zn2þ þ 2Fe2þ þ S ð9:4Þ

In fact, the SMS samples contain sphalerite (Ikehata et al.

Chap. 22). The genus Marinobacter includes an iron-

oxidizing bacterium that has been isolated from an SMS

sample (Edwards et al. 2003c). In addition, local acidifica-

tion on the sulfide slabs by microbes might also have

accelerated the dissolution of Zn in our systems, similar to

that of silicate dissolution by Arthrobacter sp. (Liermann

et al. 2000). The genus Halomonas includes acid-producing

bacteria (Sanchez-Porro et al. 2010). Our 16S rRNA gene

analysis indicates that the Marinobacter sp. and Halomonas

sp. were attached to the slabs. Thus, the activity of these

species likely contributed to the acceleration of the Zn dis-

solution from the sulfide slabs. In contrast to the dissolution

of Zn, we did not observe a significantly accelerated Cu

dissolution from the slabs.

P was removed from the ASW when microbes and/or

slabs were present. Microbes use P as a nutrient. An increase

in cell numbers with time was observed in the systems to

which the inoculum had been added (Fig. 9.1e). Other

reports have suggested that P is removed from seawater by

adsorption onto the solid surfaces of sediments and rocks

(Berner 1973; Wheat et al. 1996), which is consistent with

our observation that P is removed from the systems

containing only slabs (Fig. 9.1c). Notably, P was removed

from the ASW more rapidly when only slabs were present,

than when only microbes were present (Fig. 9.1c); however,

rate of P removal from seawater on actual environments by

SMS deposits and by microbes in situ should fluctuate

according to the in situ physicochemical conditions and the

degree of microbial activity.

9.3.4 Conclusion and Perspective

In the present study, we conducted batch experiments with

and without the SMS samples and microbes at 4 �C and

monitored certain chemical and microbial changes in the

Table 9.2 Number of PCR clones detected in the ASW samples and slabs at the end of the experiments

Sample ID

MC1cp MC1lq MC2cp MC2lq M1lq M2lq

Bacteroidetes

Sphingobacteria

Algoriphagus 1 (2.2) 3 (6.5) 5 (10.6) 9 (18.8) 1 (5.0) 1 (5.0)

Proteobacteria

Alphaproteobacteria

Thalassospira 2 (4.3) 3 (6.3)

Gammaproteobacteria

Halomonas 40 (88.9) 36 (78.3) 34 (72.3) 34 (70.8) 18 (90.0) 17 (85.0)

Marinobacter 2 (4.4) 2 (4.3) 3 (6.4) 1 (2.1)

Methylophaga 1 (2.2) 2 (4.3) 4 (8.5) 2 (10.0)

Pseudomonas 1 (2.2) 1 (2.2) 1 (2.1) 1 (2.1) 1 (5.0)

Total 45 (100) 46 (100) 47 (100) 48 (100) 20 (100) 20 (100)

Numbers in parentheses are the percentage of the clones in each taxon
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reaction systems for 71 days. The dissolution rate of Zn from

the SMS slabs was faster when microbes were present than

in the absence of microbes, suggesting that the microbes

accelerated Zn dissolution. Removal of P from the ASW

was observed when microbes were present or absent and

slabs were present. Our results should lead to a better under-

standing of the roles played by SMS deposits with microbes

in the oceanic biogeochemical cycles.

Between 1 and 90 million-tons of the SMS deposits are

estimated to be present in each hydrothermal field (Herzig

and Hannington 1995). Given that the total amount of SMS

deposits on the seafloor and their relative surface areas are

approximately 100 million-tons and 6 m2 g�1, respectively,

the flux of P adsorbed onto SMS deposits can be calculated

as 4 � 108 mol year�1 with the use of the averaged R value

from Table 9.1 for the MC systems. This value is approxi-

mately one-hundredth of the input of P yearly into the

oceans from rivers (3 � 1010 mol year�1) (Elderfield and

Schultz 1996), which suggests that adsorption of P by SMS

deposits with microbes helps control the levels of oceanic

P. Similar calculations suggest that the yearly release of Zn

from the SMS deposits (approx. ~2 � 106 mol year�1)

should be much smaller than that from rivers (approx.

~1010 mol year�1) (Elderfield and Schultz 1996). Our

estimates are rough approximations because the total

amount of SMS deposits are probably underestimated and

the necessary in situ microbial and physicochemical infor-

mation has not been adequately delineated. Additional

investigations are needed to more accurately calculate the

fluxes of elements associated with SMS deposits.
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