
Study on the Use of Evolutionary Techniques

for Inference in Gene Regulatory Networks

Leon Palafox1, Nasimul Noman2, and Hitoshi Iba2

1 Department of Electric Engineering, University of Tokyo
2 Department of Information, Science and Technology, University of Tokyo

{leon,noman,iba}@iba.t.u-tokyo.ac.jp

Abstract. Inference in Gene Regulatory Networks remains an impor-
tant problem in Molecular Biology. Many models have been proposed
to model the relationships within genes in a DNA chain. Many of these
models use Evolutionary Techniques to find the best parameters of spe-
cific DNA motifs.

In this work, we compare the popular S-System using a powerful evo-
lutionary technique, DPSO, and the novel Recursive Neural Network
model, using clustered Population Based Incremental Learning (PBIL).
We will use the SOS network for E.coli to do the comparison to finally
show how they fare against other techniques in the area of Gene Regu-
latory Network (GRN) inference.

1 Introduction

Finding the correct interactions within genes’ motifs is an important problem in
Molecular Biology. There aremany techniques to find the different interactions be-
tween genes in a Gene Regulatory Network (GRN). Most of these techniques have
different strengths andweaknesses as we try to find interactions in larger networks.

In this work, we present a comparison between two techniques used to find
the best parameters of a GRN. On one side, we use the S-System, an ODE
modeling framework to find the correct interactions, which has been used by
many groups in the area [1,2]. On the other hand, we use the novel Recursive
Neural Network (RNN) architecture, recently proposed as a surrogate to model
the interactions in a GRN [3].

To find the best parameters in both the S-System and the RNN, we use two
different evolutionary techniques, we compare the effectives of random jumps
of the Dissipative Particle Swarm Optimization (PSO)[4] against clustering the
candidate solutions to enrich the search space in Clustered Population Based
Incremental Learning (PBIL), which we call K-Means PBIL (KPBIL). We use
PSO to solve the S-System and KPBIL to solve the RNN.

The paper is organized as follows; first, we present a brief introduction to
both techniques, we show how to use the S-System and RNN to do reverse
engineering of GRN. Then, we introduce the two evolutionary techniques we
used, Dissipative PSO and KPBIL. Then, we describe how to do inference for
the parameters over small sets and finally use both algorithms to do inference
in the real SOS network for E.coli.

Y. Suzuki and T. Nakagaki (Eds.): WSH 2011 and IWNC 2012, PICT 6, pp. 82–92, 2013.
c© The Author(s) 2013



Study on the Use of Evolutionary Techniques for Inference in GRN 83

1.1 Related Work

Different researchers have attacked the problem of gene network inference using
different techniques. These techniques have strengths and weaknesses, of which
we will describe some.

One of the most intuitive approaches is the use of graphical models to repre-
sent the genes and its connections, Akutsu [5] used a boolean network to rep-
resent the connections between genes as logical connections. This model, albeit
powerful is limited in its capability of representing the true state of genes over
time, and was restricted to tree-like structures. Murphy [6], however, showed that
these models could be best represented as dynamic Bayesian networks, which
allow for structures other than trees to represent data along time. Bayesian Net-
works, however, have difficulties to deal with the data when it is represented in
loops, like in real GRN.

Other family of widely used models are the differential equations based mod-
els (ODE), these models use non linear differential equations to represent dy-
namic data. The S-System, an ODE modeling framework, is extensively used by
many researchers in the area of evolutionary computation [2,7,8]. ODE modeling
frameworks have many advantages compared to graphical representations, since
they allow for a richer representation of the data, however, solving a set of differ-
ential equations is computationally more expensive than inferring probabilistic
graphical models, making them unfeasible to work with larger networks.

Vohradský[9], proposed using RNNs to model gene networks. Furthermore,
Xu et al [3] successfully applied Particle Swarm Optimization (PSO) to find the
parameters of the RNN. Different works [10,11] have used evolutionary compu-
tation techniques to solve Neural Network’s architectures with good results. This
model has some of the advantages of the graphical models, like the scalability,
and the advantage of richness of expression that the ODE modeling frameworks
offer.

2 GRN Modeling

To model the GRN, we use training data in the form of microarray data, this data
is the expression of different genes over a period of time. We use two different
models and compare them, the S-System and the RNN model.

2.1 S-System as a Model for Biological Networks

The S-System, first proposed by Savageau [12], provides a mathematical frame-
work to represent and analyze biological systems. It represents a network as a
set of differential equations having the form:

dXi

dt
= αi

N∏

j=1

X
gij
j − βi

N∏

j=1

X
hij

j (1)



84 L. Palafox, N. Noman, and H. Iba

Fig. 1. Left: RNN’s graphical model with the observed data, Right:RNN scheme wit
the addition of delay terms and the output for a single gene

where Xi is the expression level of the ith gene of the network, N is the number
of genes in the network, αi, βi ∈ R

N
+ are rate constants and gij , hij ∈ R

N are
kinetic orders. It is worth mentioning that the kinetic orders gij and hij affect
the synthesis and degradation of Xi due to Xj .

2.2 RNN as a Model for GRN

Since the inputs for a classic Neural Network are taken iid from the training
set, NNs are not suited to model temporal data. The RNN model, however, is a
closed loop NN with a delay variable suitable to model dynamic systems (Fig. 1).

The model connects the output of each neuron in the output layer of the
RNN to each of the neurons in the input layer via a delay parameter in Fig 1.
Vohradský [9] modeled the gene’s regulations with this architecture, assuming
that each of the neurons in the output unit (ei(t+Δt)) is a gene, and the neurons
in the input units(ei,...,N(t)) are the same genes, thus every gene interacts with
one another.

The mathematical model of an RNN resembles a standard NN with additional
variables for the feedback loop. The discretized version has the following form:

ei(t+Δt) =
Δt

τi
× f

(
N∑

j=1

wijej(t) + βi

)
+

(
1− Δt

τi

)
ei(t) (2)

where, f() is a nonlinear function that acts as a classification function, we use
the sigmoid function f(z) = 1/(1 + e−z). The values wij are the connecting
weights of the network, which represent the connections between gene i and j.
The variable ej represents the expression level for the gene, which is the data we
receive from the microarray experiments. And finally, β is the bias parameter of
the network.

Forward evaluation evaluates an initial input using the set of weights Wl =
{wij} in Eq. 2 and obtains a new time series ei(t).

Xu et al [3] used PSO to find the weights of an RNN focused on the problem
of GRN inference. Here, we used an improved version of PBIL to find the weights
of the RNN.



Study on the Use of Evolutionary Techniques for Inference in GRN 85

2.3 Estimation Criteria and Regularization

To find the best parameters for the network Tominaga [13] standardized the use
of the Mean Squared Error (MSE) evaluation to measure a candidate’s fitness
in the S-System. They defined the fitness function as:

f =
T∑

t=1

N∑

i=1

(
Xi,cal(t)−Xi,exp(t)

Xi,exp(t)

)2

(3)

where T represents the number of time samples in the experimental data, N
is the number of genes, and cal, exp refer to the calculated and experimental
values of the gene expression’s data, respectively. In the case of the S-System,
Xcal represents the solution of Eq. 1 and for the RNN, it is the output of Eq. 2.

3 Optimization Methods

To find the values that best fit equation and minimize equation 3 using the RNN
and S-System models, we use 2 different optimization algorithms from the area
of evolutionary computation, which are Dissipative PSO and Population Based
Incremental Learning (PBIL). These two methods are described in the following
sections and it has to be noted that the described equations are for the general
case of its implementation.

3.1 Dissipative PSO

Particle Swarm Optimization (PSO) is an algorithm widely used in different
applications. It has been used to analyze human activities [14], optimize power
networks [15] and for scheduling problems [16].

In PSO a swarm is composed of particles, each of which can record its best
position, and the swarm’s best position. Each particle also has a velocity, which
updates to grow closer to the best positioned particle in the swarm at each
iteration. We define each particle pi at time t ∈ (0, IT − 1) as pi(t) ∈ R

N , where
IT is the maximum number of iterations and N is the feature space’s dimension.
The variables that control each particle at time t are its position pi(t), and its
velocity vi(t). Each particle’s velocity and position will change according to:

vi(t+ 1) = w · vi(t) + C1 · ϕ1 · (Pli − pi(t)) (4)

+C2 · ϕ2 · (PG − pi(t))

pi(t+ 1) = pi(t) + vi(t+ 1) (5)

where Pli is the best position for particle i, PG is the best position the swarm
has obtained and w is the inertia factor, which controls the speed at which the
particles adapt. C1 and C2 are random variables that control the dependence on
the global closeness and the ϕ1, ϕ2 factors are manually set variables to control
the swarm’s convergence.



86 L. Palafox, N. Noman, and H. Iba

Classic PSO, however, often reaches a local minimum as its final solution. Xiao
et al. [4] proposed a variation to the classic PSO, adding a dissipative property
to the particles. They defined dissipation parameters that restart the system at
random iterations. The dissipative equations, evaluated at each iteration, are:

IF (rand() < cv) => vi = rand() ∗ vmax (6)

IF (rand() < cl) => xid = Random(ld, ud) (7)

where cv and cl are numbers between 0 and 1. Setting small numbers to these
variables result in few restarts, allowing each new iteration to reach a new op-
timum. Variables vmax, ld, ud are the particle’s velocity limit, and the lower and
upper bound for the search space respectively. The random variables rand() and
Random(Id, vd) correspond to an uniform random sample and to a sample from
the interval given by the lower and the upper bound.

For the S-System, we will define each particle of the swarm with a variable
vector pi, composed of the parameters θi ∈ {gij , hij , αi, βi|i, j ∈ 1 . . .N}.

3.2 PBIL and Clustering

Population Based Incremental Learning (PBIL)[17] is an optimization technique
that finds the best candidates of a function by inferring a probability distribu-
tion from each of the dimensions in the feature set. This creates N probability
distributions, where N is the problem’s dimension.

The algorithm chooses the best candidates using the fitness function 3, and
then sets a threshold that selects only the best candidates to infer a new proba-
bility distribution. New samples will be in turn be taken from this distribution,
and a new fitness process will be done. This sampling-fitting process is done
recursively until the variations are so low that we will have reached a minimum
for the fitness function.

Since the search space is non-convex, if the problem is modeled using stan-
dard Gaussians distributions, we are modeling a multimodal problem with an
unimodal distribution. Thus conveying local minimum instead of global min-
imum. In his work, Emmendorfer[18] showed that a mixture of Gaussians, as
a multimodal distribution, is a good alternative to model non-convex search
spaces.

There are different ways to create a mixture of Gaussians, like doing expec-
tation maximization (EM), or a more naive clustering technique like K-means.
K-means are a relaxation of a mixture of Gaussian distributions with symmet-
ric variances, and is a faster procedure than EM for estimation of a mixture of
Gaussians.

Using K-means we model the candidates’ search space as a mixture of K
Gaussian distributions, to have at a set of N × K clusters modeling the best
candidates of the problem for each of the N dimensions.



Study on the Use of Evolutionary Techniques for Inference in GRN 87

4 Algorithm to Infer the GRN

The inference algorithm does the following steps:

1. Generate N candidate solutions Xi ∈ RN from an uniform distribution
Xi ∼ U(Xmin, Xmax).

2. Using the candidates, do the forward evaluation of the RNN or solve the
S-System given in equation 2 and 1, respectively, and obtain a set of time
series TS per each candidate.

3. Using the cost function (Eq. 3), rank the candidates and choose the best M
ones.

4. Update the candidate solutions:
– (PSO) Using all the candidates, update their values using Eq. 4
– (PBIL)Using the M candidates, generate N ×K Gaussian distributions

using K-means and variance equal to 1.
– (PBIL)Generate N new candidates from the inferred Gaussian distribu-

tions.
5. Go to step 2.

This recursive process is repeated until convergence conditions, which are set by
us, are met.

5 Experiments

We tested both models, the S-System with PSO and the RNN with KPBIL,
with the popular SOS network for E.coli [19]. We ran both of them, and counted
the total number of true positives and true negatives to calculate measurement
variables like Recall, Precision and F-Score.

To test the effect of the variables in the PBIL, we changed the population
size, from 100 to 500 candidates, as well as the cluster number in the K-means,
from 1 to 5, to test whether multiple clusters do better than a single probability
density. For the PBIL implementation, we did 2000 iterations per run, with each
iteration lasting at most 5 minutes for the architectures with 500 candidates.

In PSO, we evaluated the effect of the population as well, and variated it
from 20 to 320. We did 5000 iterations per run, with each of them evolving 20
particles. Each of the iterations took 3.2 hours to reach a steady state.

To evaluate the variables, we used the Recall, Precision, True Negative Rate
(1-Specificity(Sp)) and F-Score using the following equations:

Recall = TP
TP+FN

Precision =
TP

TP + FP

Sp = TN
TN+FP

F − Score = 2
Precision ∗Recall

P recision+Recall

where TP, FP, TN and FN stand for True and False positive and negative,
respectively. In our approach, a true positive is assigned when a connection
between 2 genes is truth and a true negative, when the absence of the connection
is true.



88 L. Palafox, N. Noman, and H. Iba

5.1 Real SOS Network

The SOS network[19] for E.coli, published by the Uri Alon group (Fig. 2), is a
benchmark for testing genetic regulation inference.

Fig. 2. Graphical Representation of the SOS Net, where the lexA represses every gene

In their experiments, 8 genes are expressed (uvrD, lexA, umuD, recA, uvrA,
uvrY, ruvA and polB). They irradiate the DNA with UV light, which affects
some genes, after that, the network will repair itself. They did four experiments
for different light intensities. Each experiment had 50 time steps spaced by 6
minutes. Many researchers, however, usually choose to infer only 6 of the 8
genes, since two of them have marginal activity in comparison with the rest
of the genes in the network. For the sake of comparison, we have worked also
exclusively with 6 genes.

5.2 Comparative Analysis on the Population Size and Number of
Clusters

We plotted the Recall for different population sizes and number of clusters in
Figs. 3a and 3b.

Fig. 3a shows that for few clusters, the recall is good, and generally, large
populations present marginally better results than small populations. This is
because the K-means method does not require many particles to create reli-
able clusters, furthermore, clustered approaches have better results than non-
clustered approaches. For this problem, then, using more than 3 clusters seems
to dampen the search, and a few clusters —2 or 3— is the best alternative. We
can see as well that the unclustered option —1 cluster— has worst results than
its alternatives,

Fig. 3b shows that for large populations the recall of the DPSO is reduced
by a small factor, this is because we let them run for the same time. Intuitively,
large populations will spend more resources than small populations, so it takes
longer to converge to a good solution. The results, however, show that the DSPO
algorithm is capable of obtaining good results for a small number of particles.



Study on the Use of Evolutionary Techniques for Inference in GRN 89

(a) Recall for Different Clusters and Population for the
KPBIL. Evaluation for 100 to 500 possible candidates.

(b) Recall values for different population sizes using
DPSO

Fig. 3. Recall mean and standard deviation for the SOS Network

In Fig. 4 we show a qualitative solution to the problem of finding the right
connections in the SOS Network. Fig. 3b shows the result of using DPSO, which
has many false positives, related with the low recall that we presented before.

In Fig. 4b we see the inferred network using a traditional PBIL, without any
clustering to infer multiple probabilities distributions. While the performance
was better than the DPSO, it still finds many false positives, specially on self
regulations.

Finally, Fig. 4c presents the results using the KPBIL approach, which has
the most promising results of them three. The network however becomes sparse,
losing some important connections.

To compare our results, we compiled results from other papers working with
the SOS Net. Table 1 shows this compilation, here as well we have a quantitative
comparison of our approach.

Table 1 shows that KPBIL does inference better than other approaches that
use both evolutionary and non-evolutionary techniques. KPBIL is much faster
than similar approaches, specially comparing with the state of the art, which is
the S-Tree, which takes 35 hours to do the whole inference. DPSO presents one
of the best sensitivities of the group, this is because the S-System iw one of the
most precise models for these kind of problems, while the RNN model is just an
approximation that is used for the sake of speed but at the expense of precision.



90 L. Palafox, N. Noman, and H. Iba

(a) DPSO & S-System (b) PBIL & RNN with one
cluster

(c) KPBIL & RNN with 3
clusters

Fig. 4. Solutions for different combinations of PBIL and DPSO, the straight lines are
True connections while the red dotted lines are spurious connections

Table 1. Specificity, Sensitivity and F-Score for different models of the E.coli SOS
Network

#Regs #TP #FP #TN #FN Sensitivity Specificity F-Score Time[h]

Bayesian Network[20] 6 4 2 18 3 0.571 0.900 0.615 0.01

S-Tree[21] 7 6 1 19 1 0.857 0.950 0.857 35

LTV[22] 13 7 6 14 0 1.000 0.700 0.7 0.1

DE[1] 8 5 3 17 2 0.714 0.850 0.667 0.3

KPBIL 11 7 4 13 3 0.7 0.765 0.67 0.05

DPSO 10 7 3 17 0 1 0.68 0.60 3.5

6 Conclusions

We have presented a comparison between two methods to do inference in Gene
Regulatory Networks, a Recursive Neural Network with PBIL and the S-System
using DPSO. We have done comparison and analysis of both methods using the
SOS network for E.coli, which is a benchmark for small network inference. We
presented in the results that both RNN and PBIL present promising results for
the inference problems, it had both better results and faster inference rate, which
are two of the most important desiderata in molecular biology.

For future work, we will attempt the use of our model for larger networks,
modeling larger networks remains a challenge for this kind of approaches, since
the complexity increases vastly with each new gene we add to the system.

Open Access. This chapter is distributed under the terms of the Creative Commons

Attribution Noncommercial License, which permits any noncommercial use, distribu-

tion, and reproduction in any medium, provided the original author(s) and source are

credited.



Study on the Use of Evolutionary Techniques for Inference in GRN 91

References

1. Noman, N., Iba, H.: Inferring gene regulatory networks using differential evolution
with local search heuristics. IEEE/ACM Transactions on Computational Biology
and Bioinformatics 4(4), 634–647 (2007)

2. Kikuchi, S., Tominaga, D., Arita, M., Takahashi, K., Tomita, M.: Dynamic model-
ing of genetic networks using genetic algorithm and S-system. Bioinformatics 19(5),
643 (2003)

3. Xu, R., Donald Wunsch, I.I., Frank, R.: Inference of genetic regulatory net-
works with recurrent neural network models using particle swarm optimization.
IEEE/ACM Transactions on Computational Biology and Bioinformatics, 681–692
(2007)

4. Xie, X.F., Zhang, W.J., Yang, Z.L.: Dissipative particle swarm optimization. In:
Proceedings of the 2002 Congress on Evolutionary Computation, CEC 2002, vol. 2,
pp. 1456–1461. IEEE (2002)

5. Akutsu, T., Miyano, S., Kuhara, S.: Identification of genetic networks from a small
number of gene expression patterns under the Boolean network model. In: Pacific
Symposium on Biocomputing, vol. 4, pp. 17–28. Citeseer (1999)

6. Murphy, K., Mian, S.: Modelling gene expression data using dynamic Bayesian
networks. Graphical Models, 12 (1999)

7. Noman, N., Iba, H.: Inference of gene regulatory networks using s-system and
differential evolution. In: Proceedings of the 2005 Conference on Genetic and Evo-
lutionary Computation, Washington, DC, p. 439. Citeseer (2005)

8. Kimura, S., Ide, K., Kashihara, A., Kano, M., Hatakeyama, M., Masui, R., Naka-
gawa, N., Yokoyama, S., Kuramitsu, S., Konagaya, A.: Inference of S-system models
of genetic networks using a cooperative coevolutionary algorithm. Bioinformat-
ics 21(7), 1154 (2005)

9. Vohradský, J.: Neural network model of gene expression. The FASEB Journal:
official publication of the Federation of American Societies for Experimental Biol-
ogy 15(3), 846–854 (2001)

10. Pettersson, F., Biswas, A., Sen, P.K., Saxén, H., Chakraborti, N.: Analyzing Leach-
ing Data for Low-Grade Manganese Ore Using Neural Nets and Multiobjective Ge-
netic Algorithms. Materials and Manufacturing Processes 24(3), 320–330 (2009)

11. Zamparelli, M.: Genetically Trained Cellular Neural Networks. Neural Networks:
The Official Journal of the International Neural Network Society 10(6), 1143–1151
(1997)

12. Savageau, M.A.: Biochemical systems analysis+*:: I. Some mathematical properties
of the rate law for the component enzymatic reactions. Journal of Theoretical
Biology 25(3), 365–369 (1969)

13. Tominaga, D., Koga, N., Okamoto, M.: Efficient numerical optimization algorithm
based on genetic algorithm for inverse problem. In: Proceedings of the Genetic and
Evolutionary Computation Conference, vol. 251, p. 258 (2000)

14. Palafox, L., Hashimoto, H.: 4W1H and Particle Swarm Optimization for Human
Activity Recognition. Journal of Advanced Computational Intelligence and Intel-
ligent Informatics 15(7), 793–799 (2011)

15. AlRashidi, M., El-Hawary, M.: A survey of particle swarm optimization applica-
tions in electric power systems. IEEE Transactions on Evolutionary Computa-
tion 13(4), 913–918 (2009)

16. Liao, C., Luarn, P.: A discrete version of particle swarm optimization for flowshop
scheduling problems. Computers & Operations Research 34(10), 3099–3111 (2007)



92 L. Palafox, N. Noman, and H. Iba

17. Sebag, M., Ducoulombier, A.: Extending population-based incremental learning
to continuous search spaces. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel,
H.-P. (eds.) PPSN 1998. LNCS, vol. 1498, pp. 418–427. Springer, Heidelberg (1998)

18. Emmendorfer, L., Pozo, A.: Effective Linkage Learning Using Low-Order Statistics
and Clustering. IEEE Transactions on Evolutionary Computation 13(6), 1233–1246
(2009)

19. Ronen, M., Rosenberg, R., Shraiman, B.I., Alon, U.: Assigning numbers to the
arrows: parameterizing a gene regulation network by using accurate expression
kinetics. Proceedings of the National Academy of Sciences 99, 10555 (2002)

20. Perrin, B.E., Ralaivola, L., Mazurie, A., Bottani, S., Mallet, J., D’Alche-Buc,
F.: Gene networks inference using dynamic Bayesian networks. Bioinformat-
ics 19(suppl. 2), ii138–ii148 (2003)

21. Cho, D.Y., Cho, K.H., Zhang, B.T.: Identification of biochemical networks by S-
tree based genetic programming. Bioinformatics 22, 1631–1640 (2006)

22. Kabir, M., Noman, N., Iba, H.: Reverse engineering gene regulatory network from
microarray data using linear time-variant model. BMC Bioinformatics 11(suppl.
1), S56 (2010)


	Study on the Use of Evolutionary Techniques for Inference in Gene Regulatory Networks
	Introduction
	Related Work

	GRN Modeling
	S-System as a Model for Biological Networks
	RNN as a Model for GRN
	Estimation Criteria and Regularization

	Optimization Methods
	Dissipative PSO
	PBIL and Clustering

	Algorithm to Infer the GRN
	Experiments
	Real SOS Network
	Comparative Analysis on the Population Size and Number of Clusters

	Conclusions
	References




