
Arduino based Framework for Rapid Application
Development of a Generic IO-Link interface

Victor Chavez, Jörg Wollert

Department of Mechatronics and Embedded systems

FH Aachen University of Applied Sciences

Goethestraße 1, 52064 Aachen

chavez-bermudez@fh-aachen.de
wollert@fh-aachen.de

Abstract. The implementation of IO-Link in the automation industry has in-

creased over the years. Its main advantage is it offers a digital point-to-point plug-

and-play interface for any type of device or application. This simplifies the com-

munication between devices and increases productivity with its different features

like self-parametrization and maintenance. However, its complete potential is not

always used.

The aim of this paper is to create an Arduino based framework for the devel-

opment of generic IO-Link devices and increase its implementation for rapid pro-

totyping. By generating the IO device description file (IODD) from a graphical

user interface, and further customizable options for the device application, the

end-user can intuitively develop generic IO-Link devices. The peculiarity of this

framework relies on its simplicity and abstraction which allows to implement any

sensor functionality and virtually connect any type of device to an IO-Link mas-

ter. This work consists of the general overview of the framework, the technical

background of its development and a proof of concept which demonstrates the

workflow for its implementation.

1 Introduction

The IO-Link specification has expanded the features that sensors and actuators can

have. Its features include self-parametrization, maintenance and generic data structures.

Its implementation has increased the available options for developers and manufactur-

ers in the automation industry.

However, the development of these devices does not follow a unique workflow and

can depend on the manufacturer. This paper proposes a solution to simplify its devel-

opment and allow rapid-prototyping development. With the creation of an Arduino

based framework, all the available features of an IO-Link device are accessible to any

developer through an abstraction layer that simplifies its use.

© Der/die Herausgeber bzw. der/die Autor(en) 2020

J. Jasperneite, V. Lohweg Kommunikation und Bildverarbeitung in der Automation, (Hrsg.),

Technologien für die intelligente Automation 12, https://doi.org/10.1007/978-3-662-59895-5_

21

2

https://doi.org/10.1007/978-3-662-59895-5_2
mailto:wollert@fh-aachen.de
mailto:chavez-bermudez@fh-aachen.de
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-59895-5_2&domain=pdf

22

2 Framework overview

The design of the framework was intended to have an easy-to-use approach, such that

the end-user didn’t need to understand in a detailed manner the IO-Link specification.

Its main objective was to create a tool that enabled a rapid prototyping approach and

focused more time on to the development of device applications.

To simplify the workflow a graphical user interface (GUI) was developed. It allows

the end-user to set up the device parameters and generate the IODD file. Furthermore,

it creates a header file to setup options for the firmware application. Another essential

part was the hardware interface that communicates with the IO-Link master. The gen-

eral overview of the interaction between all the described components is shown in Fig-

ure 1.

IO-Link framework

IO-Link device
firmware

GUI

IODD file
generator

IO-Link device
configuration

IO-Link
Master

Arduino
Framework

IO-Link
transceiver

shield

Engineering
tool

IODD File
Header File

API

24V – 5V
IO-Link

protocol

Device
parameterization

Fig. 1. General overview of framework

3 Firmware

The backbone of the system is the firmware, which runs in the background of the end-

user’s device application. For the selection of the embedded processor the Arduino

Framework was used since it’s a well-known low-cost and open-source platform that

meets the requirements for its use as an IO-Link device.

The arduino framework consists of different development boards, for this particular

case the Arduino Nano (atmega328p) was used due to its small factor size and enough

peripherals (i.e. ADC, GPIO’s, I2C/SPI). The microcontroller’s peripherals used for

the firmware’s operation were the UART and two I/O pins to synchronize the data

exchange according to the IO-Link specification.

23

Nevertheless, using this board brought certain limitations. The first one is the maxi-

mum baud rate supported for IO-Link. This meant that the COM2 mode transmission

was used (38,4 kbit/s). In addition, the EEPROM is used to save non-volatile parame-

ters of the device. Since the writing speed is rated to 3,3 ms per byte [1], this limits the

maximum amount of writeable parameters without blocking the device application.

Fig. 2. Microcontroller pinout functions

The firmware is based on the current IO-Link specification described in [2]. It contains

the most important features that developers would need to use the main features of the

IO-Link technology, which consist of:

 Parameter Manager (PM)

 Data Storage (DS)

 Event Dispatcher (ED)

 Process Data Exchange unit (PDE)

The firmware operates by executing the respective state machines that manage the IO-

Link device’s features in the background. Each time a new process cycle occurs, the

user’s device application is called, which, can update its process data and execute any

other defined instructions. The initialization of the firmware is done by passing as

arguments the user’s subroutine and process input data (if available), afterwards, in the

main loop, the IO-Link state machines are executed (see Figure 3).

24

Fig. 3. Firmware implementation in a sketch file

As aforementioned, to reduce development time, the customizable parameters of the

firmware are written to a header file by means of a GUI. This header file contains the

identification parameters of the devices as well indicates which IO-Link features the

device will have. This implies that the final size of the firmware at compilation time

will depend to a great extent on the selected features by the end-user. Table 1 shows a

rough estimation of the firmware’s size depending on some of these features.

Table 1. Firmware's size estimation at compile time

Firmware Configuration Flash Memory
(KB)

SRAM
(KB)

x PM x DS

 ED PDE
9.39 0.78

 PM DS

 ED PDE
13.30 0.98

25

4 GUI

The main interaction with the framework is done through the GUI. Its main functions

are to generate the IODD file and the header file for the firmware. The input parameters

are separated by four tabs (i.e. identification parameters, process data, custom parame-

ters and events).

The “Identification Parameters” tab includes the obligatory parameters that an IO-

Link device must have described in [2] and [3]. Furthermore, an interactive display

shows the maximum allowed sampling time for the user´s device application taking in

to account the number of custom parameters due to the EEPROM´s limitation and the

time it takes to complete an M-Sequence message considering the on-request data size

in operation mode and transmission mode (COM2).

Fig. 4. GUI for the framework

The “Process Data” tab manages the structure of the data that is going to be sent

from the IO-Link master to the IO-Link device and vice versa. In addition, since some

applications may have common functionalities, it is possible to implement some of the

smart sensor profiles described in [4]. The “Custom Parameters” tab enables the user

to have extra parameters, which are written and read from the EEPROM of the device.

Finally, the “Events” tab is used to indicate if the device has any of the standard events

described in [2] or add custom events by the user.

26

Fig. 5. GUI Process data tab

Fig. 6. GUI Custom Parameters tab

Fig. 7. GUI Events tab

27

The generation of the files is done by clicking a button. Considering that the files need

to comply with the IO-Link specification, restrictions were implemented to avoid errors

from the user. The GUI notifies the user if the files cannot be created through a notifi-

cation window that describes any specific error (see Figure 8).

Fig. 8. Example of error notifications from GUI

5 Hardware interface

The hardware components of the framework consist of the Arduino Nano develop-

ment board and the development of an Arduino IO-Link shield. This shield includes the

IO-Link transceiver for the communication between the microcontroller and the IO-

Link master. Table 2 shows a comparison of different transcievers in the market. The

selection of the transceiver was based on a chip that could offer a minimal design setup

and at least 200 mA of output current to power up the microcontroller and the sensor

application. The MAX14827 falls short on simplicity and the L6362A does not provide

enough output current. Therefore, the TIOL11-5 was the best option for this case since

it has the lowest number of pins, enough output current and in addition integrated pro-

tection. The electric schematic of the IO-Link shield is shown in Figure 9.

Table 2. IO-Link transceivers comparison

Vendor Maxim Integrated STMicroelectronics Texas Instruments

Transceiver MAX14827 L6362A TIOL111-5

Control In-
terface

SPI (serial program-
ming interface)/ Digi-

tal Pin
Digital Pin Digital Pin

28

Pins 24 12 10
Size 4 x 4 mm 3mm x 3mm 2.5 x 3.0 mm

Output volt-
age

5V and 3.3V @50mA
to 250mA 5V or 3.3V @10mA 5V @50mA to

350mA

Protection
functions

 Reverse polarity

 Thermal protec-

tion

 Reverse polarity

 Overload with cut-off

function.

 Thermal protection

 Surge protection

 GND and VCC open

wire

 Reverse Polarity

 EMC Protection

 Surge protection

 Thermal Protec-

tion

Fig. 9. IO-Link shield electric schematic

Fig. 10. IO-Link shield prototype mounted to an Arduino Nano

29

6 Proof of concept

Different features were tested to demonstrate the functionalities of the framework. The

general workflow of the framework is shown in Figure 11. These tests were done with

the following hardware:

 IO-Link shield PCB described in section 5

 WAGO 4-Channel IO-Link Master 750-657

 WAGO PLC 750-8206

 Arduino NANO development board

Description of the
device application

Implementation of GUI

Input parameteres
according to device

application

Generate IODD File
Generate Firmware Header File

Arduino Framework

Add Firmware
Header File to

program
application

Develop device
application with

the firmware

Connect IO-Link Shield
to Arduino

development board

Connect IO-Link
shield with IO-Link

Master

Use of IODD File for
sensor

parametrization

Fig. 11. General workflow of IO-Link device creation

6.1 IO-Link distance sensor

For this example, a distance sensor from Sharp model GP2Y0A21YK0F was imple-

mented. This sensor has an analog output, which corresponds proportionally to the dis-

tance measured. Table 3 gives a full description of this device.

Fig. 12. Data flow of distance sensor application

30

Table 3. Device description

Characteristics Description
Process input data
(4 bytes)

Vendor-specific

byte (1 byte)

8-bit Value for the specific vendor

application.

Scale (1 byte) Scale of the measurement value.

i.e. Value*10^(scale)

Measurement value

(2 bytes)

16 bit value from sensor

The parameters were set to match the required sensor as seen in Figure 13. In addi-

tion, diagnostic events were set as seen in Figure 14. The main routine for the Arduino

Nano consisted of reading the analog value of the sensor and converting it to the meas-

ured distance in centimeters. Due to a low range and far range limitation from the sen-

sor, standard events from the IO-Link specification were implemented so each time a

certain threshold was reached the IO-Link master is notified (see Figure 15).

Fig. 13. Process data parameters for the device

Fig. 14. Standard event settings for the device

31

Fig. 15. IO-Link master detecting events from device

Through the IO-Link master the parameters from the IO-Link device were read (see

Figure 16). Afterward, the distance values from the sensor are acquired through the

PLC as seen in Figure 17. From the main program of the PLC, it can be seen that the

size of the received data in the function block (i.e. “udiRecievedbytes”) is the same as

the one set in the GUI.

Fig. 16. Reading IO-Link parameters of the distance sensor

32

Fig. 17. WAGO PLC program for the distance sensor

33

7 Conclusions

The results provided by the framework demonstrate a methodology for the creation of

rapid prototyping IO-Link devices. The end-user only requires a general overview of

the IO-Link specification and the description of its device application. Its advantage is

that with just a few steps through a GUI any type of application can be created, modified

or retrofitted to IO-Link. Thus, it offers a versatile approach for the development of

low-cost IO-Link devices on the fly.

Furthermore, with its high-level abstraction layer it reduces the required develop-

ment time. At the same time, this opens up the possibilities for developing new inter-

faces and applications with IO-Link. The aforementioned advantages can contribute to

increase the implementation of IO-Link and its key features.

References

[1] Atmel, “ATmega328 / P,” AVR Microcontrollers, p. 43, 2016.

[2] IO-link Community, “IO-Link Interface and System Specification v1.1.2.” IO Link

Community, Karlsruhe, 2013.

[3] IO-Link Consortium, “IO-Link Device Description v1.1.” Karlsruhe, 2011.

[4] IO-Link Smart sensor profile group, “IO-Link Smart Sensor profile 2nd Edition.” IO

Link Community, Karlsruhe, 2017.

Open Access Dieses Kapitel wird unter der Creative Commons Namensnennung 4.0 International Lizenz

(http://creativecommons.org/licenses/by/4.0/deed.de) veröffentlicht, welche die Nutzung, Vervielfältigung,

Bearbeitung, Verbreitung und Wiedergabe in jeglichem Medium und Format erlaubt, sofern Sie den/die

ursprünglichen Autor(en) und die Quelle ordnungsgemäß nennen, einen Link zur Creative Commons Lizenz

beifügen und angeben, ob Änderungen vorgenommen wurden.

Die in diesem Kapitel enthaltenen Bilder und sonstiges Drittmaterial unterliegen ebenfalls der genannten

Creative Commons Lizenz, sofern sich aus der Abbildungslegende nichts anderes ergibt. Sofern das

betreffende Material nicht unter der genannten Creative Commons Lizenz steht und die betreffende Handlung

nicht nach gesetzlichen Vorschriften erlaubt ist, ist für die oben aufgeführten Weiterverwendungen des

Materials die Einwilligung des jeweiligen Rechteinhabers einzuholen.

http://creativecommons.org/licenses/by/4.0/deed.de

	Arduino based Framework for Rapid Application Development of a Generic IO-Link interface
	1 Introduction
	2 Framework overview
	3 Firmware
	4 GUI
	5 Hardware interface
	6 Proof of concept
	6.1 IO-Link distance sensor

	7 Conclusions
	References

