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Abstract. It is essential to deal with the interference of the environment
between programs in concurrent program verification. This has led to the
development of concurrent program reasoning techniques such as rely-
guarantee. However, the source code of the programs to be verified often
involves language features such as exceptions and procedures which are
not supported by the existing mechanizations of those concurrent reason-
ing techniques. Schirmer et al. have solved a similar problem for sequential
programs by developing a verification framework in the Isabelle/HOL the-
orem prover called Simpl, which provides a rich sequential language that
can encode most of the features in real world programming languages.
However Simpl only aims to verify sequential programs, and it does not
support the specification nor the verification of concurrent programs. In
this paper we introduce CSimpl, an extension of Simpl with concurrency-
oriented language features and verification techniques. We prove the com-
positionality of the CSimpl semantics and we provide inference rules for
the language constructors to reason about CSimpl programs using rely-
guarantee, showing that the inference rules are sound w.r.t. the language
semantics. Finally, we run a case study where we use CSimpl to specify
and prove functional correctness of an abstract communication model of
the XtratuM partitioning separation micro-kernel.

1 Introduction

In the past two decades, formal methods have been successfully applied in the
verification of many critical systems. To improve confidence on the reliability of
computer systems, verification of functional correctness and security properties
is applied not only at the specification level [19], but also at the implementa-
tion [9] or even at the machine code level [5]. Verification of the implementation
requires modelling languages that are able to capture the features in program-
ming languages such as exceptions and procedure calls. Verification of sequential
programs at implementation and machine code level has gained much attention
both in academia and in industry [11], and now there is a reasonably strong
tool support in this area [10,15]. However, nowadays critical and high-assurance
systems are often designed for multi-core architectures where multiple processes
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run in parallel, but verification techniques and tools for concurrent programs are
relatively less developed than those for sequential programs.

In order to tackle the verification of concurrent programs, first Owicki and
Gries’s work [14] introduced techniques for the verification of parallel programs.
Later Jones [4] introduced the rely-guarantee method to improve Owicki and
Gries’s method by allowing compositional verification. The Owicki-Gries method
has been mechanized in the Isabelle/HOL theorem prover in [13], and Jones’s
rely-guarantee method has been mechanized in Isabelle/HOL in [12] which fol-
lows the specification in [17]. Also, [1] models in Isabelle/HOL an algebraic
specification of rely-guarantee. Although the languages used in previous mech-
anizations of the above mentioned methods are suitable for verifying system
specifications, many implementations cannot be directly captured in those mech-
anizations. Therefore there is a need to develop a richer modelling language to
accurately capture the behaviour of programs at the implementation level.

Simpl [15] is a while-language that supports most of the features of real world
programming languages. The syntax and semantics of Simpl are modelled in
Isabelle/HOL and Simpl has been used in the verification of seL4 source code [9].
However, its design aims only at reasoning about sequential programs, conse-
quently, this language lacks constructors for parallel composition of programs.
Moreover, its proof system is based on Hoare Logic, also for the verification
of sequential languages, which cannot be used for reasoning about concurrent
programs.

Building on the Simpl framework and the rely-guarantee method, we develop
a formal verification framework in Isabelle/HOL, called CSimpl, for verifying
partial correctness of high-assurance concurrent systems. The main contributions
of this paper are as below:

(1) We extend Simpl using the notion of computation [12,17] to introduce
parallelism in two layers: the bottom layer is the execution of sequential Simpl
programs extended with a synchronization primitive Await over shared vari-
ables; and the top layer is the parallel execution of the bottom layer programs
by means of a parallel composition operator. While existing rely-guarantee meth-
ods are mechanized for reasoning about abstract specification languages [12,13],
our method goes one step further and covers most of the features of system
programming languages such as exceptions, procedures, and pointers, among
others.

(2) We define a compositional semantics of rely-guarantee for CSimpl. We
also provide a set of inference rules for the rely-guarantee proof system and
we prove that they are sound w.r.t. the semantics. The rich expressibility of
CSimpl means that the number of inference rules of the rely-guarantee proof
system is much higher than the work in [12] and their complexity is significantly
increased. The CSimpl semantics, the rely-guarantee proof system specification
and its soundness proof comprise more than 15k lines of proof and specification
in Isabelle/HOL and Isar1.

1 Due to space reasons we only show some excerpts of the semantics and proofs, the
whole model can be found at: http://securify.scse.ntu.edu.sg/MicroVer/CSimpl.

http://securify.scse.ntu.edu.sg/MicroVer/CSimpl


CSimpl: A Rely-Guarantee-Based Framework 483

(3) As a case study, we specify in CSimpl two XtratuM [3] services for queu-
ing inter-partition communication and we prove the correctness of an invariant
on the queuing communication structure. Inter-partition communication is the
mechanism used to implement information flow and is critical in proving event-
based non-interference. XtratuM is a separation micro-kernel for space and time
partitioning of applications. XtratuM supports multi-core architectures, being
able to run several instances of the micro-kernel in parallel in multiple cores.
Using our new rely-guarantee proof system, we prove that the specification of the
inter-partition communication services correctly introduces and removes mes-
sages in the communication channel. The specification and the proofs comprise
3500 lines of formalization. To the best of our knowledge, this is the first attempt
on the verification of separation micro-kernels targeting multi-core architectures.
Other works such as [18–20] verify functional correctness and non-interference
for sequential micro-kernels, and the work in [2] focuses on the verification of
sequential applications using the ARINC standard.

2 CSimpl Language

2.1 Simpl Overview

Schirmer introduces in [15] a verification framework for imperative sequential
programs developed in Isabelle/HOL. The verification framework includes a
generic imperative language, called Simpl, which is composed of the necessary
constructors to capture most of the features present in common sequential lan-
guages, such as conditional branching, loops, abrupt termination and exceptions,
assertions, mutually recursive functions, expressions with side effects, and non-
determinism. Additionally, Simpl can express memory related features like the
memory heap, pointers, and pointers to functions. The Simpl verification frame-
work also includes a Floyd/Hoare-like logic to reason about partial and total
correctness, and on top of it, the framework implements a verification condition
generator (VCG) to ease the verification process.

In order to capture all aspects of abrupt termination, assertions, and func-
tion calls, the program state ’s in Simpl is modelled in Isabelle/HOL as a
datatype xstate (shown in Fig. 1), which is composed of four different con-
structors: Normal ’s, representing a regular execution; Fault ’f, representing a
failed assertion; Abrupt ’s, representing an exceptional state; and Stuck, rep-
resenting a state where a call to a non-defined function is made. Additionally,
the semantics requires an environment Γ containing procedure definitions, i.e.,
a partial function from the set ’p of procedure names to the body of the proce-
dures. Both features regarding the state and procedures definitions are used in
CSimpl.

2.2 CSimpl Syntax

The syntax of CSimpl is shown in Fig. 1. CSimpl extends Simpl by adding two
constructors for concurrency: Await, which takes two parameters cond and body,
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type synonym ’s bexp = "’s set"
datatype (’s, ’p, ’f) com =

Skip | Throw | Basic "’s ⇒ ’s" | Spec "(’s × ’s) set"
| Seq "(’s ,’p, ’f) com" "(’s,’p, ’f) com"
| Cond "’s bexp" "(’s,’p,’f) com" "(’s,’p,’f) com"
| While "’s bexp" "(’s,’p,’f) com" | Call "’p"
| DynCom "’s ⇒ (’s,’p,’f) com"
| Guard "’f" "’s bexp" "(’s,’p,’f) com"
| Catch "(’s,’p,’f) com" "(’s,’p,’f) com"
| Await "’s bexp" "(’s,’p,’f) Simpl.com"

datatype (’s,’f) xstate = Normal ’s | Abrupt ’s | Fault ’f | Stuck
type synonym(’s,’p,’f) config = "(’s,’p,’f)com × (’s,’f) xstate"
type synonym (’s,’p,’f) body = "’p ⇒ (’s,’p,’f) com option"
type synonym(’s,’p,’f) par_Simpl = "(’s,’p,’f) com list"

Fig. 1. Syntax and state definition of the CSimpl language

and Parallel Composition. Await allows synchronization of processes under the
boolean condition cond and then it atomically executes body, which is a pure
sequential Simpl program. This allows us to use Hoare logic for sequential pro-
grams and the original Simpl VCG in the verification of the atomic blocks.
Parallel composition happens at the top layer (root program), and it can not be
nested with other constructors like in the approach followed in [7]. Therefore, a
parallel program launches n sequential programs that are executed concurrently
and that do not create new concurrent threads. A parallel program is defined as
a list of sequential programs. Since we are aiming the verification of programs
without dynamic creation of process, this approach is not a problem for our goal
and simplify the mechanization.

CSimpl’s syntax, following the syntax of Simpl, is defined in terms of states,
of type ’s; a set of fault types, of type ’f; and a set of procedure names of type
’p. The constructor Skip indicates program termination; Seq s1 s2, Cond b
c1 c2, and While b c are respectively the standard constructors for sequential,
conditional, and loop statements. Throw and Throw c1 c2 are the complements
for abrupt termination of programs of Skip and Seq c1 c2, and they allow to
model exceptions. Call p invokes procedure p; Guard f g c represents asser-
tions, where c is executed if the guard g holds in the current state, fault of
type ’f is raised otherwise. Finally, Spec r and DynCom cs respectively intro-
duce a nondeterministic behavior expressed by relation r, and a state dependent
dynamic command transformation which is used to model blocks and functions
with arguments.

2.3 CSimpl Semantics

The small-step operational semantics of CSimpl is a predicate inductively defined
based on an environment for procedures Γ and a pair of component configura-
tions ((P,s), (P’,s’)) where the program P in the state s, transits to the
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program P’ and the state s’. It is represented as Γ�c(P ,s) → (P ′,s′), where c
indicates it is a step transition in CSimpl. A CSimpl component configuration is
defined as a tuple (P,s) where P is a CSimpl program and s is of type xstate.
A component configuration (p,s) is called final if p = Skip or p = Throw and
there exists a state s′ such that s = Normal s′. A final configuration cannot
progress to another configuration.

CSimpl extends Simpl with rules for synchronization on shared variables,
Await, and the parallel computation shown below. For space reason we only
provide the small-step semantics rules Await and AwaitAb for the Await com-
mand (Fig. 2). The rest are similar to those defined in [15].

s ∈ b ¬a c,Normal s t
¬(∃t .t = Abrupt t )

c (Await b p,Normal s) → (Skip, t) AWAIT
c (P,Normal s) →e (P, t) ENV

s ∈ b ¬a c,Normal s t t = Abrupt t

c (Await b p,Normal s) → (Throw,Normal t )
AWAITAB

∀s .s = Normal s
c (P,s) →e (P,s) ENV N

i<length Ps c (Ps!i,s) → (r, t)

p (Ps,s) → (Ps[i := r], t) PAR
p (Ps,Normal s) →e (Ps,Normal t) P ENV

Fig. 2. Small step and environment CSimpl semantic rules

The Await rules leverage Simpl’s big step semantics to atomically transit from
the initial configuration (p,s) to the next state t resulting from the execution of
p from s and it is expressed as Γ�〈p,s〉 ⇒ t. The two rules express the situation
where from a current state s satisfying the synchronization condition. The atomic
program in Simpl ends in a state t that can be an abrupt state as a result of an
exception thrown in the sequential program for the rule AwaitAb, or any other
possible state for the rule Await. This distinction is necessary since a Simpl
program can finish in an Abrupt state, however the small-step semantics does
not use the state Abrupt. Instead, a CSimpl program finishes in an exception
state when the last configuration of a computation is a pair composed of the
program Throw, together with a Normal state. Note that big step transitions use
sequential Simpl programs, therefore the environment in the atomic step has to
be a function from procedure names to Simpl programs, which do not contain
Await instructions (for the same reason the body of Await cannot contain nested
Await neither). Γ¬a translates bodies of procedures in Γ into Simpl programs if
they do not contain any Await instruction, removing from Γ those procedures
containing Await instructions.

A Parallel CSimpl configuration is defined as a tuple (Ps,s) where Ps is
a list of CSimpl programs and s is of type xstate. Parallel CSimpl semantics
is inductively defined by means of rule PAR in Fig. 2. A parallel configuration
(Ps,s) transits to another parallel configuration (Ps[i:=r], s’) when there
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is a program i in Ps such that Γ�c(Ps!i,s) → (r,s′). It is represented with
Γ�p(Ps, s) → (Ps[i:=r], s′). Similarly to component configurations, a parallel
CSimpl configuration (xs, s) is called final if xs is not empty and every compo-
nent configuration (xs!i, s), with i smaller than the length of xs, is final. Ps!i
means accessing the i element in the list Ps, whilst Ps[i := r] means substitute
the i element in Ps for r.

Together with the semantic representing component transitions, it is neces-
sary to define semantics for environment transitions. They are inductively defined
using rules Env and Env n in Fig. 2, where e is to express that it is an environ-
ment transition. CSimpl semantics for components can transit from a Normal
state to a different type. However it is not possible to transit from a non Normal
state to a different type of state, i.e. Γ �p (P, Stuck) → (P′, Normal t). More-
over, the component semantics always transits from a configuration (p,s) with
p = Skip and 
 ∃s′.s = Normal s′ to a final transition (Skip,s). Therefore, the
environment at the sequential layer needs to model this behaviour in the rules
Env and Env n in order to make the semantics at the parallel layer compositional.
Environment transitions at the parallel level are defined in such a way that they
can transit from a Normal state to another Normal state as shown in rule P ENV
in Fig. 2.

3 Rely-Guarantee for CSimpl

The rely-guarantee [7] method extends the specification of a program with two
relations R and G characterizing, respectively, how the environment interferes
with the program (Rely) and how the program modifies the environment (Guar-
antee). Therefore a specification for the verification of parallel systems using
rely-guarantee is composed of four elements: precondition, postcondition, rely,
and guarantee.

In order to take into account CSimpl state specification xstate (which can
take multiple forms to express different execution issues), the semantic for pro-
cedure calls, and the dual postcondition for normal or exception termination,
the rely-guarantee specification and proof rules need to be modified accordingly.
In the proof system itself, a total of 8 new rules have been added to the work
in [12] to deal with all the language constructors present in CSimpl. Finally,
soundness of the axiomatic rules for the proof system w.r.t. the rely-guarantee
specification of validity is proven. The multiple forms of states makes the proof
considerably more complex and larger than the work in [12]. While the work
in [12] consists of around 2300 lines of proofs and specification, the current work
consists of more than 13000 lines of proofs and specification.

3.1 Definition of Computation for CSimpl

The formal validity of a rely-guarantee tuple in this work is based on the defin-
ition of computation, which is the set of all possible sequences of configurations
resulting of transiting the component or the environment, starting from an initial
configuration.
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Definition 1 (Sequential Component Computation). A computation is a
tuple (Γ, confs) where Γ is an environment for procedures and confs is a list of
sequential configurations. The set of possible computations cptn is inductively
defined as follows:

– (Γ , [(P ,s)]) ∈ cptn
– if Γ�c(P ,s) →e (P ,t) and (Γ ,(P , t)#xs) ∈ cptn then (Γ ,(P ,s)#(P ,t)#xs)

∈ cptn
– if Γ�c(P ,s) → (Q,t) and (Γ ,(Q, t)#xs) ∈ cptn then (Γ ,(P ,s)#(Q,t)#xs)

∈ cptn

Definition 2 (cp Γ P s). The set of possible computations of an environment
for procedures Γ starting from an initial configuration (P, s) is the set of tuples
(Γ, l) such that l!0 = (P, s) and (Γ, l) ∈ cptn.

The set of parallel computations par cp is defined similarly to cp using par-
allel configurations and the semantic rules for parallel and environment step
transitions.

Definition 3 (∝). Conjoin [17] represented by ∝, defines an equivalence rela-
tion between a parallel computation p of n CSimpl components and a list clist of
n component computations, where for all i < n. clist!i = (Γi, cptni). (Γ , p) ∝
clist iff:

– for all i < n, length cptni = lenght p and Γi = Γ .
– for all i < n and k < length p, cptni!k = (cki , s

k
i ) and p!k = (cs, s) with

cs!i = cki and s = ski .
– for all k such that k + 1 < length p, if Γ �p p!k →e p!(k + 1), then for all

i < n, Γi � cptni!k →e cptni!(k + 1); if Γ �p p!k → p!(k + 1) then there
exists an i < n where Γi � cptni!k → (cptni)!(k + 1) and ∀j. j 
= i −→
Γj � cptnj !k →e cptnj !(k + 1).

The last condition of conjoin states that for any step k in p, if k is an envi-
ronment step in p, then k is also an environment step in all cptni; and if it is a
component step, then there is some cptni where k is a component step and for
any other cptnj , with j 
= i, k is an environment step.

Lemma 1 (Parallel computation as component computation).

xs �= [] =⇒ par cp Γxs s ={(Γ1, c).Γ1 = Γ ∧ (∃clist.(length clist) = (length xs) ∧
(∀i < lenght clist.(clist!i) ∈ cpΓ (xs!i)s) ∧ (Γ, c)∝clist)}

Lemma 1 states that given a parallel configuration (xs, s) such that xs is
not empty ([]), then for any parallel computation (Γ, c) starting from (xs, s)
there is a list of component computations clist with the same length of xs
and (Γ, c)∝ clist. That is, the execution of a parallel number of components
xs0 . . . xsn can be expressed as the execution of one single component xsi, with
i smaller than n, where the execution of any other component xsj is simulated
by a component environment transition, with j smaller than n and different than
i. The right and left implications of the equality in Lemma 1 are proven first by
induction on the parallel computation and then by cases on the type of parallel
and component events using conjoin.
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3.2 Validity of Formulas for Rely-Guarantee in CSimpl

Based on the rely-guarantee definitions, we define the validity of a rely-guarantee
tuple from the set of all possible computations from an initial configuration.
This uses the notions of assumption of preconditions and the environment, and
commitment of the component and the postcondition.

Definition 4 (assum(pre, rely)). The assumption of a predicate pre and an
environment relation rely for an environment of procedures Γ is the set of com-
ponent computations (Γ, cptn) such that cptn!0 = Normal s and s ∈ pre, and
for any step transition in the computation Γ �c cptn!k →e cptn!(k + 1), where
k + 1 < lenght cptn, cptn!k = (pk, sk), and cptn!(k + 1) = (pk+1, sk+1) then
(sk, sk+1) ∈ rely.

The predicate assum represents the set of component computations (Γ, cptn),
such that the state component of the initial configuration of the computation is
a Normal state satisfying pre. Also, in any transition of the environment Γ �c

cptn!k →e cptn!(k+1), the states of the configurations cptn!k and cptn!(k+1)
belong to the rely relation.

To take advantage of automatic methods such as model checking, and fol-
lowing the original notion of validity for Hoare triples in Simpl, the commitment
assumes that the last configuration in a computation does not end in a Fault
state belonging to the set F, which is a set of non-reachable states previously
calculated using external tools. Then the commitment is the set of computations
such that component transitions belong to the guarantee relation, and that their
last configuration are final (therefore with the program state equal to Skip or
Throw) with the state component belonging to q or a.

Definition 5 (comm(guar, (q, a)) F). The commitment of a relation guar,
a pair of predicates (q, a), and a set of Fault states F, for an environment
of procedures Γ , is the set of component computations (Γ, cptn) such that if
cptn!(length l − 1) = (lp, ls) and there is not a fault f such that ls = Fault f
and f ∈ F , then (1) if for any component transition in the computation Γ �c

cptn!k → cptn!(k + 1) where k < length cptn, cptn!k = (pk, sk), and cptn!(k +
1) = (pk+1, sk+1) then (sk, sk+1) ∈ guar, and (2) if l is final then ls = Normal l′s
and if lp = Skip then l′s ∈ q and if lp = Throw then l′s ∈ a.

Definition 6 (com validity). Validity of a specification of a component P
w.r.t. a precondition p, postcondition (q,a), a rely relation R, a guarantee rela-
tion G, an environment of procedures Γ , and a set F of Faults, is repre-
sented as Γ |=/F P sat[p,R,G, q, a] iff for all s, cp Γ P s ∩ assum(p,R) ⊆
comm(G(q, a)) F .

Following [15], we use a set of procedure specifications Θ that are used dur-
ing the procedure verification. The set of procedure specifications Θ, is a tuple
which elements represent a procedure name and its specification in terms of pre-
condition, rely and guarantee relations, and postcondition. Note that procedures
in specifications belonging to Θ do not need to match the procedures defined in
the environment Γ .
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Definition 7 (com cvalidity). CValidity of a specification of a component
P w.r.t. a precondition p, postcondition (q,a), a rely relation R, a guarantee
relation G, an environment of procedures Γ , a specification of procedures Θ,
and a set F of Faults, represented as Γ,Θ |=/F P sat[p,R,G, q, a] iff for all
tuples (c, p′, R′, G′, q′, a′) ∈ Θ such that Γ |=/F (Call c) sat[p′, R′, G′, q′, a′] then
Γ |=/F P sat[p,R,G, q, a].

Validity and CValidity for parallel computations are respectively represented
by Γ |=/F P SAT [p,R,G, q, a] and Γ,Θ |=/F P SAT [p,R,G, q, a]. They are
defined similarly to the ones for computation of components, using the definitions
of computation, assumption, and commitment for parallel programs. We omit
these definitions due to space reasons. Theorem 1 shows compositionality of
validity of parallel rely-guarantee specifications.

Theorem 1 (validity compositionality).
∀i<length xs.Γ, Θ |=/F C(xs!i)sat [P (xs!i), R(xs!i), G(xs!i), Q(xs!i), A(xs!i)] −→

(1) ∀i < length xs. Rp ∪ (
⋃

j ∈ {j. j < length xs ∧ j �= i}. G(xs!j) ⊆ R(xs!i)) −→
(2)
⋃

j < length xs. G(xs!j) ⊆ Gp −→ (3) p ⊆ (
⋂

i < length xs. P (xs!i)) −→
(4) (

⋂
i < length xs. (Q(xs!i))) ⊆ q −→ (5) (

⋂
i < length xs. (A(xs!i))) ⊆ a −→

Γ, Θ |=/F ParCom xs SAT [p, Rp, Gp, q, a].

Therefore, to show that a parallel rely-guarantee specification is true, it is
only necessary to prove rely-guarantee validity for each one of the single compo-
nents and that (1) the rely of individual components is implied by the parallel
rely and the union of the guarantee relations of the other individual components
of the parallel system, (2) the union of the guarantee relations of the component
specifications implies the guarantee relation for the parallel specification, (3) the
precondition of the parallel specification is included in all the component speci-
fications, (4) the intersection of all the normal postconditions of the component
specifications is included in the normal postcondition of the parallel specification,
(5) the union of the abrupt postcondition of all the component specifications is
included in the abrupt postcondition of the parallel specification. Theorem 1 is
proven using Lemma 1 and the definition of parallel validity of a rely-guarantee
specification.

3.3 Inference Rules of the Proof System

The rely-guarantee proof system for CSimpl extends the previous mechanization
of the logic in [12] with eight more inference rules. There are a total of fifteen
rules, one for each language constructor, plus the consequence rule. Figure 3
shows those rules that are either new or substantially changed w.r.t. the work
in [12]. Rules Skip, and Throw are added to handle program termination for
normal and abrupt termination respectively. Since Skip deals with normal ter-
mination it requires the normal postcondition to be stable w.r.t. the rely relation,
whilst in the case of Throw is the abrupt postcondition which has to be stable
w.r.t. the rely relation. Similarly, Catch is the complement of the sequential rule
for abrupt termination. In CSimpl, composition of programs can finish on an



490 D. Sanán et al.

Sta p R Sta q R p ⊆ {s. f s ∈ q}
∀s t.s ∈ p∧ (t = f s) (Normal s,Normal s) ∈ G

, /F Basic f sat [p,R,G,q,a] BASIC

Sta p R Sta q R
p ⊆ {s.(∀t.(s, t) ∈ r t ∈ q)∧ (∃t.(s, t) ∈ r)}
∀s t.s ∈ p∧ (s, t) ∈ r (Normal s,Normal s) ∈ G

, /F Spec r sat [p,R,G,q,a] SPEC

Sta a R
∀s.(Normal s,Normal s) ∈ G
, /F Throw sat [a,R,G,q,a] THROW

Sta q R
∀s.(Normal s,Normal s) ∈ G
, /F Skip sat [q,R,G,q,a] SKIP

Sta p R Sta q R Sta a R
∀V. ¬a, /F (p∩b∩{V})c

{s.(Normal V,Normal s) ∈ G}∩q,
{s.(Normal V,Normal s) ∈ G}∩a
, /F Await b c sat [p,R,G,q,a] AW

, /F c sat [p∩g,R,G,q,a]
Sta (p∩g)R
∀s.(Normal s,Normal s) ∈ G

, /F Guard f g c sat [p∩g,R,G,q,a] GD

, /F c1 sat [p,R,G,q,r]
, /F c2 sat [r,R,G,q,a]

Sta (p∩g)R Sta (a∩g)R
∀s.(Normal s,Normal s) ∈ G

, /F Catch c1 c2 sat [p,R,G,q,a] CATCH

, /F c1 sat [p,R,G,r,a]
, /F c2 sat [r,R,G,q,a]

Sta (p∩g)R Sta (a∩g)R
∀s.(Normal s,Normal s) ∈ G

, /F Seq c1 c2 sat [p,R,G,q,a]
SEQ

, /F c sat [p∩g,R,G,q,a]
Sta (p∩g)R f ∈ F
∀s.(Normal s,Normal s) ∈ G

, /F Guard f g c sat [p,R,G,q,a] G

, /F the( c) sat [p∩g,R,G,q,a]
Sta (p∩g)R c ∈ dom
∀s.(Normal s,Normal s) ∈ G

, /F Call c sat [p,R,G,q,a] C

∀s ∈ p. , /F c s sat [p∩g,R,G,q,a]
Sta p R ∀s.(Normal s,Normal s) ∈ G

, /F DynCom c sat [p,R,G,q,a] DYNCOM

∀i<xs.R∪ ( j ∈ { j. j<xs∧ j = i}.(Guar(xs! j))) ⊆ Rely(xs!i)
( j<length xs.(Guard(xs! j))) ⊆ G p ⊆ ( i<length xs.Pre(xs!i))
( j<length xs.(Post(xs! j))) ⊆ q ( j<length xs.(Abr(xs! j))) ⊆ a
∀i<xs. , /F Com(xs!i) sat [Pre(xs!i),Rely(xs!i),Guar(xs!i),Post(xs!i),Abr(xs!i)]

, /F xs SAT [p,R,G,q,a] COMP

Fig. 3. Rely-guarantee proof rules for CSimpl
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abrupt state without executing the second program. Hence it is necessary stabil-
ity of the abrupt postcondition w.r.t. the rely relation. Similarly, the Catch rule
requires stability of the normal postcondition with rely. We say that a predicate
p is stable w.r.t. a relation R, Sta p R, if given two states s, s’, such that p s
is true and (s, s′) ∈ R, then s’ is also true in p.

The Await rule requires Hoare satisfiability of the sequential program repre-
senting its body, which is represented following traditional Hoare triplet notation
{p}c{q}. In this case the postcondition is given as a pair to capture normal and
abrupt termination. See [15] for more details on sequential Simpl program verifi-
cation. Since the Hoare program can finish in either a normal state or an abrupt
state, it is necessary that both postconditions are stable. The precondition should
also be stable to remain unchanged under environment transitions. Since every
component transition has to belong to the guarantee relation, we add this con-
straint into the Hoare triple, binding the initial states from the precondition to
the final states of both the normal and abrupt postconditions.

The rest of rules can be deduced intuitively from their semantics adding sta-
bility of the precondition for non-terminal commands, e.g., if for branching and
call for non-recursive procedure calls; and adding also stability of the normal
postcondition for commands modifying the state.

Finally COMP is the rule for parallel composition. To apply compositionality,
the rule is applied over a tuple xs composed of a sequential component Com
and rely-guarantee specification, i.e. Pre,Rely,Guarantee, Post for Com. The
rule follows [12] taking abrupt termination into consideration, since this is an
exception state, and not all the individual computations may be in an exception
state. Therefore, whilst we require that the intersection of all component post-
conditions is included in the postcondition of the parallel program, for abrupt
termination we only require that the union of abrupt postconditions is in the
parallel program.

3.4 Soundness of the Proof System

We prove that the set of inference rules in the proof system is sound w.r.t. the
definition of validity for parallel systems. The proof is carried out in two steps,
first we prove that the inference rules for single components are sound.

Theorem 2 (comp rgsound).
Γ,Θ �/F c sat [p,R,G, q, a] −→ Γ,Θ |=/F c sat [p,R,G, q, a]

This is proved by induction on the inference rules. Axioms, i.e., those rules
without assumptions on the proof system induction, are proven based on the
notion of stability and the fact that any computation starting from them only
has one component step. Therefore we prove that the stability rule preserves the
precondition under any environment step. We then show that the component
step preserves the commitment.

The semantics for computation makes it cumbersome to prove the soundness
for those CSimpl constructors whose semantic is recursively defined, such as Seq,
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Catch, and While. Soundness for these constructors are proven using a modular
notion of computation [17] and the equivalence of both types of computation.
The modular computation serializes the recursive specification of computation
for the CSimpl constructors. This alternative semantics for computation unfolds
the computation of CSimpl constructors. Soundness for these constructors is
proven based on the different cases these rules provide. The modular computation
for CSimpl extends the one provided in [12] with rules for the new language
constructors, and new rules for seq and while, considering that the program
in a final configurations can be Skip or Throw. The constructors If and Call,
for non-recursive function calls, are proven similarly to the axioms based on the
existence of a first component step for non-final configurations. After applying
the component transition, we prove the correctness by the inductive step.

Recursive procedure calls require to consider the maximum number of nested
function calls invoked by an execution and we do not currently provide a rule for
them. cptn serializes the small step semantics removing scopes, which does not
allow to prove soundness of recursive procedure calls. Nevertheless, it is possible
to provide such a rule for recursive procedure calls, by extending the modular
computation, with a parameter n representing the limit of nested procedures
for which the computation is valid. Also, the semantics for validity must be
extended to express that a formula is valid when it invokes at least n nested
function calls by intersecting the assumptions in com validity with the set of
modular computations with limit n. Soundness of recursive procedure calls can
be proven similarly to [15], by monotonicity of the extended computation in n
and equality of the semantics.

Finally we show soundness of the proof system for the parallel composition
of programs using Theorems 1 and 2.

Theorem 3 (par rgsound).
Γ,Θ �/F Ps SAT [p,R,G, q, a] −→ Γ,Θ |=/F (ParCom Ps) SAT [p,R,G, q, a]

4 Case Study

We apply the proof system for the specification and the verification of two
XtratuM services for inter-partition communication. The XtratuM separation
micro-kernel [3] provides spatial and temporal partitioning of applications. In a
separation micro-kernel, different partitions are executed in separated memory
domains, and the only allowed communication among partitions is by means
of static dedicated channels explicitly defined between two or more partitions.
XtratuM provides, among others services to communicate partitions through
channels, partitions health-monitoring, and a static cyclic scheduler. In this
case study we provide a very abstract CSimpl specification of the services to
send and receive messages using queuing channels in a parallel architecture,
where the XtratuM micro-kernel is executed in several cores of a multi-core
processor. Using the rely-guarantee proof system introduced in Sect. 3 we prove:
(1) that the services correctly introduce and remove elements in the queues asso-
ciated with each communication channel and (2) that the number of elements in
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the queues do not exceed the channel maximum capacity. The specification and
proofs are comprised of more than 3500 lines of specification.

4.1 Queuing Inter-Partition Communication Description

Queuing inter-partition communication services allow partitions to escape from
the isolated environment that XtratuM provides, allowing them to send and
receive messages to/from other partitions using communication channels by
means of dedicated ports assigned to partitions. A communication channel is
an entity storing the communication data and the source and destination ports
involved in the communication.

XtratuM implements two types of communication: sampling and queuing
communication. While the former only allows to store one message, and it is
multicasting, i.e., a channel has one source port and a list of destination ports.
The latter allows to store many messages in a bounded buffer implemented as
a queue, and only allows peer to peer communication, i.e., the channel has one
source port and one destination port. Channels and ports are classified according
to the type of communication. Therefore, a channel and a port can be of type
sampling or queuing, and a sampling channel can only allocate sampling ports,
and vice-verse. The services have as input a port to/from which the message
is sent/received, and the message to be sent in the case of the sending service.
Prior to modifying the queue, the services check whether the input values are
consistent, e.g., the port which receives the message belongs to the partition, or
it is a source or destination port depending on the invoked service.

4.2 State and Specification Definition

The state definition provides global and local variables. Global variables repre-
sent those variables shared by multiple instances of the micro-kernel, they hold
the data for inter-partition communication, partitions, and the partition sched-
uler. Since we are targeting only queuing inter-partition communication, the
components for the scheduler and partitions contain the necessary information
for those services. The scheduler is highly abstracted and only contains informa-
tion about the partition that is currently being executed, and therefore invoking
the service; partitions only contain the list of assigned ports to the partition.
The communication datatype includes the specification of channels and ports.
A channel is defined as a datatype with the two possible types of channels,
having as parameters the source and destination ports, and the message shared
between the partitions, for which the queue is abstracted in the model as a mul-
tiset. The queuing channel also has a parameter indicating the maximum size of
the channel buffer. Messages are modelled just as an abstract entity.

record com = ports :: "port_id ⇀ port" channels :: "chan_id ⇀ channel"

record vars = p_’ :: "part_id ⇀ partition" c_’ :: "com"

s_’ :: "scheduler list" l_’ ::"locals list"

In the model, ´l, ´c, ´s, and ´p access the locals, communication, scheduler,
and partition component of the state, respectively. Local variables for each
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process are a structure with the necessary variables for the input and output
parameters of the services. One of the limitations of rely-guarantee is that the
relations lose track of the sequence of executed operations. To solve this, verifi-
cation of the concurrent increment of a variable, or adding/removing elements
from a set like in this example, requires using additional variables to help track-
ing the changes [17]. In our model, we include a variable of type Message option
that is initialized to None, and when a message is correctly sent or received the
model assigns it to the variable. Our state abstracts and maps XtratuM global
structures xmcCommChannelTab, and xmcCommChannelPorts, storing channel and
port data, into the components of ´c and xmcPartition, storing partition data,
into´p respectively.

The parallel execution of services is modelled parametrically on the number
of processes, which is defined as a fixed natural number within a Isabelle/HOL
locale [8]. Each service is modelled as a procedure that is also parametrized
by the process being executed; this allows that each specific procedure only
accesses its local variables. The function Γ is generated by assigning a unique
name for each service using a fold higher order function and assigning to each
parametrized service name the corresponding parametrized body of the service.
The parametrized event receive is shown below.

definition receive_q_message_i where "receive_q_message_i i ≡
(IF (¬ (ex_port_id ´ c ((pt ((´ l)!i))))) ∨

(¬ (port_q (the ((ports ´ c) (pt (´ l!i)))))) ∨
(¬ (port_dest (the ((ports ´ c) (pt (´ l!i)))))) ∨
(¬ port_in_part ´ p ((´ s)!i) (the ((ports ´ c) (pt (´ l!i))))) THEN

´ l :== ´ l[i:=((´ l!i)(|ret_msg := None|))]
ELSE AWAIT True

IFs port_empty (pt ((´ l)!i)) ´ c THEN

´ l :==s ´ l[i:=((´ l!i)(|ret_msg := None|))]
ELSE

´ l :==s ´ l[i:=((´ l!i) (|ret_msg := port_get_msg (pt (´ l!i))´ c |))];;s
´ c :==s port_rem_msg (pt (´ l!i)) (the (ret_msg (´ l!i))) ´ c ;;s
´ l :==s ´ l[i:=((´ l!i) (|aux_msg := (ret_msg (´ l!i)) |))] FI FI)"

The services abstract the low level behaviour of the Xtratum functions.
They first check parameters validity, and then carries out the insertion/ex-
traction of the message to/from the queue. Atomic blocks abstract XtratuM’s
mutexes for mutual exclusion. Validation of correctness of the model w.r.t. the
implementation is carried out at this stage by inspecting the code. For the
ReceiveQueuingPort model, the event first checks that the accessed port exists
in the current communication state, that it is a queuing and destination port,
and that the partition that it belongs to the partition being executed. If any
parameter is not valid then the service finishes returning None, otherwise it per-
forms the operations over the channel queue after checking whether the queue is
not empty for event receive, or not full for event send. The statements in the
body of the Await statement are IFs and :==s. This is because the body of the
Await is a sequential Simpl program and when embedded into a CSimpl program
needs to modify the syntax. Event SendQueuingPort is modeled similarly.
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4.3 Verification

For the parallel verification, we specify the rely and guarantee relations for the
receive and send services. This relations are parameterized by a variable i, which
refers to the ith process. We show the rely relation, the guarantee relation is
similar to this, only differing in that local variables for any process j different
than i will not be modified.
definition Rely where "Rely B i≡
{(x,y). (∃ x1 y1. x=Normal x1 ∧ y=Normal y1 ∧ s_’ x1 = s_’ y1 ∧

(l_’ x1)!i = (l_’ y1)!i ∧ ports (c_’ x1) = ports (c_’ y1) ∧
p_’ x1 = p_’ y1 ∧ (x1 ∈ Invariant B −→ y1 ∈ Invariant B)) } "

Since parallel programs do not change others programs’ local variables, the
i element in the list of local variables is not changed by the rely. Also, ports,
partitions, and the scheduler are not changed by any service, therefore the rely
relation does not change them. Finally, if the initial state of the relation preserves
the invariant, it also preserves the shape of the channel’s queues, then so does
the final state of the relation.

The invariant establishes consistency of the port and channel structures that
must be preserved by the services. Its most important specification is channel
spec which preserves the specification of the queue for every defined channel in
the state.
definition channel_spec where "channel_spec B ≡

{| ∀ c_id c. (channels ´ c) c_id = Some c −→
chan_get_msgs c = (B c_id + chan_sent_msgs c_id ´ c ´ l) -

chan_rec_msgs c_id ´ c ´ l ∧
(size (chan_get_msgs c) ≤ chan_get_max_bufs c) ∧
chan_rec_mes c_id ´ c ´ l) ⊆# B c_id + chan_sent_msgs c_id ´ c ´ l |}"
channel spec checks that the multiset modelling the queue for each defined

c id is equal to its initial value, which is given by B c_id; those messages cor-
rectly sent are pushed into the queue by the service; and that the received
messages are popped out of the queue. chan sent\rec msgs gets for each c
id the multiset with the auxiliary variables different than None, meaning that
the service has modified the queue for that channel. Also, for consistency of the
multiset, the invariant needs to ensure that removed messages are a subset of
the added messages.

Lemma 2 (Send Rec Correct).
n>0 =⇒ Γ,{} �/{} (COBEGIN SCHEME [0 ≤ i < n]

(ex_service i, pre_i B i, Rely B i, Guar B i, Post_Arinc B, {|True|})
COEND) SAT [Pre_Arinc B, {(x,y). x = y}, {|True|}, Post_Arinc B, {|True|}]

Lemma 2 proves the property on the parallel execution of the services. ex
service is a sequence of nested ifs controlling the call to the services, each
if guarded by a local variable that indicates which service is invoked in each
parallel process. In the parallel program, the identity relation indicates that the
parallel environment does not change the state, being therefore a closed system,
i.e., there is not any environment at the parallel level. The guarantee relation
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is the universal set in which everything can be modified. The precondition Pre
Arinc B defines the invariant and auxiliary variables initialization to None. The
precondition for each process pre i B i sets the initial value for the auxiliary
variable, the initial values of the channel queues, and it defines the invariant
that is preserved by the postcondition for the normal termination Post Arinc B.
The abrupt postcondition is the universal set since we do not have any abrupt
termination in this specification.

The proof obligations for the parallel rule are proven immediately after
unfolding the definitions of the precondition, postcondition, and rely and guar-
antee relations. After applying the parallel rule on the parallel execution of the
n components, it is necessary to prove that the parametrized execute service
satisfies the postcondition using the rely-guarantee rules for components. Once
the conditional and call rules have been applied on execute service, only
the proof of the verification of each service body is left. Both send and receive
services are similarly proven.

To prove the body of the services, it is necessary to apply the conditional
rule to generate the proof obligations for the execution of two branches of the
if. The first corresponds to the case in which the service is not invoked with
the appropriate parameters and is immediately proven after apply the Basic
rule since it does not modify any channel or auxiliary variable. For the sec-
ond branch, after invoking Await, the sequential Simpl program representing
its body is automatically unfolded using Simpl’s VCG. The resulting goal, now
without any embedded Simpl specification, is solved by proving that the state
after removing or inserting a message from/to the channel associated to the input
port, and after assigning the removed/inserted message to the auxiliary variable,
satisfies channel spec. We use some auxiliary lemmas to prove it: first, that the
modification of the auxiliary variable in a component does not modify the sets
chan sent msgs and chan rec msgs for any channel other than the one associ-
ated to the port the service access; second, that the modification of a variable
only modifies one of these sets. Using these auxiliary lemmas the postcondition
is proven immediately by applying the properties over multisets.

5 Conclusions and Future Work

In this work we have presented CSimpl, a framework for specifying concur-
rent programs and verifying their partial correctness using rely-guarantee. This
framework allows us to specify programs written in a large subset of the C lan-
guage. Currently we are working also on axiomatic separation rules for the proof
system following works on separation logic and rely-guarantee [6,16]. This will
help to cope with local variables and to hide global variables, thus improving
scalability of the approach. There are, however, some aspects where this frame-
work can be improved. First, we can introduce deadlock freedom and weak total
correctness, which enable us to reason about termination of programs. Second,
we can provide VCG tactics to achieve a higher level of automation. Currently,
the language supports annotation to provide loop invariant, but the soundness
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of annotated rules is yet to be proven. Third, it is also desirable to have com-
pleteness of the proof system to introduce properties proven at the language and
semantics levels. The complexity of proving completeness make us to consider
this as future work. Finally, the current proof system do not include a rule for
recursive procedure calls, but our framework can be easily extended to support
it, with minimal modifications on the rules already proven.
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