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Abstract. We present our new preprocessor HQSpre, a state-of-the-
art tool for simplifying quantified Boolean formulas (QBFs) and the
first available preprocessor for dependency quantified Boolean formu-
las (DQBFs). The latter are a generalization of QBFs, resulting from
adding so-called Henkin-quantifiers to QBFs. HQSpre applies most of
the preprocessing techniques that have been proposed in the literature.
It can be used both as a standalone tool and as a library. It is possible
to tailor it towards different solver back-ends, e. g., to preserve the cir-
cuit structure of the formula when a non-CNF solver back-end is used.
Extensive experiments show that HQSpre allows QBF solvers to solve
more benchmark instances and is able to decide more instances on its
own than state-of-the-art tools. The same impact can be observed in the
DQBF domain as well.

1 Introduction

Solvers for Boolean formulas have proven to be powerful tools for many appli-
cations, ranging from CAD, e. g., for formal verification [4] and circuit test [11],
to artificial intelligence [33]. They are not only of academic interest, but have
also gained acceptance in industry. While solvers for deciding satisfiability
of quantifier-free propositional formulas (the famous SAT-problem [5]) have
reached a certain level of maturity during the last years, solving quantified and
dependency quantified Boolean formulas (QBFs and DQBFs [27], resp.) is still
a hot topic in research. In particular, the last two decades have brought enor-
mous progress in solving QBFs [16,19,25,29] and the last five years also in
solving DQBFs [12,13,15]. With increasing improvements of solver technology
also new applications have arisen which could not be handled (or only handled
approximately) before, such as verification of partial designs [14,35], controller
synthesis [7], and games with incomplete information [27].

One part of this success is due to improved solution methods not only based
on depth-first search (the QDPLL algorithm) as implemented in solvers like

This work was supported by the German Research Council (DFG) as part of
the project “Solving Dependency Quantified Boolean Formulas” and by the Sino-
German Center for Research Promotion (CDZ) as part of the project CAP (GZ
1023).

c© Springer-Verlag GmbH Germany 2017
A. Legay and T. Margaria (Eds.): TACAS 2017, Part I, LNCS 10205, pp. 373–390, 2017.
DOI: 10.1007/978-3-662-54577-5 21



374 R. Wimmer et al.

DepQBF [25], QuBE [16], and AQuA (see [32]), but also using quantifier
elimination as applied by AIGSolve [29] and Quantor [2], counterexample-
guided abstraction refinement, which is the principle underlying the solvers
GhostQ [22], RAReQS [19], and Qesto [20], and further algorithms. Another
protagonist are sophisticated preprocessing techniques. Their goal is to simplify
the formula using algorithms of lower complexity (mostly polynomial) than the
actual decision problem before the solver is called. This can reduce the overall
computation time by orders of magnitude and, most interestingly, it can even
make solving instances feasible which cannot be solved without preprocessing.

Many techniques have been proposed for preprocessing and implemented
in different tools. One can distinguish between four main types of preprocessor
routines: clause elimination, clause strengthening, variable elimination, and other
formula modifications. We will discuss these categories and the corresponding
techniques in Sect. 2.2. All of them yield an equisatisfiable formula, which is
typically easier to solve than the original one.

Contribution. In this paper, we present the new tool HQSpre, which supports
most preprocessing techniques for QBFs and extends them to DQBFs. It is
the first available tool for preprocessing DQBFs. The available QBF tools like
sQueezeBF and Bloqqer only have a subset of these techniques available.
HQSpre can be used both as a standalone tool and as a library. It is designed
to be easily extensible and adaptable to different solver back-ends. For instance,
if the back-end solver is not CNF-based, but rather works on a circuit represen-
tation of the formula, the preprocessor takes care not to destroy this structure,
e. g., by forbidding the application of clause elimination routines to clauses that
encode circuit gates.

We provide an extensive experimental evaluation where we show that
HQSpre is state of the art: (1) it enables state-of-the-art QBF solvers
(AIGSolve [29], AQuA [32], Caqe [38], DepQBF [25], Qesto [20], and
RAReQS [19]) to solve more instances in less time than using the alternative
preprocessors sQueezeBF [17] and Bloqqer [6], and it is robust over different
kinds of solvers; (2) HQSpre is very effective on DQBFs as well, as it is able to
solve directly or to simplify into QBFs many formulas, and lets DQBF solvers
decide several more problems.

HQSpre is available as an open source tool. The most recent version can be
downloaded from:

https://projects.informatik.uni-freiburg.de/projects/dqbf/files.

Structure of this Paper. In the following section, we introduce the necessary
foundations and describe the different preprocessing techniques and how they
are implemented in HQSpre. Section 3 contains the results of our experiments.
Finally, in Sect. 4, we conclude this paper with an outlook on future work.

https://projects.informatik.uni-freiburg.de/projects/dqbf/files
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2 Preprocessing Techniques in HQSPRE

2.1 Foundations

Let V be a set of Boolean variables. We consider (dependency) quantified
Boolean formulas in prenex conjunctive normal form (PCNF): a quantifier-free
Boolean formula is in CNF if it is a conjunction of clauses. A clause is a disjunc-
tion of literals, and a literal is either a variable v ∈ V or its negation ¬v. We
write clauses in the form {v1, . . . , vn} with literals vi. A clause is called unit if it
contains only one literal, and called binary if it contains two literals. We denote
the size of a formula as the number of all literals in all clauses. A formula is in
PCNF if it can be split into a quantifier prefix and a Boolean formula in CNF,
the matrix of the formula.

Definition 1. Let V = {v1, . . . , vn} be a set of Boolean variables and ϕ a
quantifier-free Boolean formula over V . A quantified Boolean formula (QBF) ψ
has the form ψ = Q1v1 . . . Qnvn : ϕ with Qi ∈ {∀,∃} and vi ∈ V for i = 1, . . . , n.
Q1v1 . . . Qnvn is called the quantifier prefix and ϕ the matrix of ψ.

We denote universal variables with x, and existential ones with y. If the
quantifier does not matter, we use v. Accordingly, � is an arbitrary literal, �∃ a
literal with an existential variable, and �∀ a universal literal. For a literal �, we
define var(�) as the corresponding variable, i. e., var(v) = var(¬v) = v.

The quantifier prefix imposes a linear order on the variables. One can think
of a QBF as a two-player game: one player assigns the existential variables, the
other player the universal ones. The game proceeds turn-based according to the
prefix from left to right: When it is the existential player’s turn, he assigns the
corresponding existential variable, and similarly for the universal player. The
goal of the existential player is to satisfy the formula, the universal player wants
to falsify it. The formula is satisfiable if the existential player has a winning
strategy, i. e., if he can satisfy the formula no matter how the universal player
assigns his variables.

Dependency quantified Boolean formulas are a generalization of QBFs. They
are obtained syntactically by relaxing the requirement of a linearly ordered pre-
fix and making the dependencies explicit, and semantically by restricting the
knowledge of the players.

Definition 2. Let V = {x1, . . . , xn, y1, . . . , ym} be a set of Boolean variables
and ϕ a quantifier-free Boolean formula over V in CNF. A dependency quantified
Boolean formula (DQBF) Ψ has the form ∀x1 . . . ∀xn∃y1(Dy1) . . . ∃ym(Dym

) : ϕ,
where Dyi

⊆ {x1, . . . , xn} for i = 1, . . . ,m is the dependency set of yi.

In contrast to QBF, a DQBF can be considered as a game with partial informa-
tion: The universal player assigns all universal variables in the beginning. The
existential player assigns a value to each existential variable y based only on the
assignment of the universal variables in the corresponding dependency set Dy.

A DQBF is equivalent to a QBF iff for all existential variables y, y′ the
condition Dy ⊆ Dy′ or Dy′ ⊆ Dy holds.
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Algorithm 1. Outline of the main preprocessing routine. Note that after each
routine, a fast formula simplification procedure is called. Universal reduction
and subsumption checks are performed for each added or modified clause.

Preprocess((D)QBF ψ = Q : ϕ)
begin

simplify(ψ) (1)
repeat (2)

if iteration ≤ gateConvLoops then (3)
gates ← gateDetection(ψ) (4)
gateSubstitutionAndRewriting(ψ, gates); simplify(ψ) (5)

end if (6)
eliminateClauses(ψ); simplify(ψ) � Hidden/covered TE/SE/BCE (7)
selfsubsumingResolution(ψ); simplify(ψ) (8)
variableEliminationByResolution(ψ); simplify(ψ) (9)
syntacticConstants(ψ); simplify(ψ) (10)
if first iteration then (11)

semanticConstants(ψ); simplify(ψ) (12)
trivialMatrixChecks(ψ) (13)

end if (14)
universalExpansion(ψ); simplify(ψ) (15)

until ψ has not been changed anymore or ψ is decided (16)
return ψ (17)

end

DQBFs are strictly more expressive than QBFs. While deciding satisfiabil-
ity of QBFs is PSPACE complete [26], deciding DQBFs is NEXPTIME com-
plete [27].

2.2 Preprocessing Techniques

The goal of preprocessing the formula before the actual solution process is to
simplify the formula. Experience suggests that benefits of preprocessing increase
with the difficulty of the decision problem. As mentioned already in the intro-
duction, the techniques that we apply in our preprocessor HQSpre can be
grouped into four different classes: (1) variable elimination, (2) clause elimi-
nation, (3) clause strengthening, and (4) other formula modification routines.
Due to space restrictions, we cannot provide all details of the techniques. For
more information we refer the reader to the cited literature. We present more
details for routines which (a) are not described or applied in the literature so far
or (b) have interesting implementation details.

Algorithm 1 gives an overview of the main preprocessing routine which calls
the different techniques in a loop until the formula does not change anymore.

Variable Elimination Routines. We define variable elimination routines as
methods which are able to remove a variable v from the formula ϕ. The first kind
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of such techniques can eliminate v whenever we can fix the truth value of v and
propagate it through ϕ using Boolean constraint propagation (BCP) [5]. Com-
mon techniques are the detection of constant and pure literals [5]. For efficiency
reasons both kinds are usually only checked syntactically: a literal � is constant
if there exists a unit clause {�} in ϕ, and a literal � is pure if ϕ does not contain
¬� in any clause. Both conditions can be easily generalized to (D)QBF [40].

We also apply a check for constants using another syntactic criterion over
binary clauses. For this, we first determine the transitive implication closure,
i. e., binary clauses of the form: {¬�1, �2}, {¬�2, �3}, {¬�3, �4}, . . . , {¬�n−1, �n},
and {¬�n,¬�1}. These clauses represent a chain of implications: if �1 is assigned
the truth value �, we can deduce that also �2, �3, �4, . . . , �n get the truth value
� in the example above, and this in turn implies that �1 has to get the truth
value ⊥, i. e., �1 implies ¬�1, which is a contradiction. So the matrix will be
unsatisfied, if we set �1 to �. Hence, we can deduce ¬�1 to be a constant literal.

Additionally, we use a SAT-based constant check as described in [30], which
is able to detect constants semantically. For this the matrix ϕ is passed to an
incremental SAT solver and it is determined whether ϕ ∧ � is unsatisfiable. In
this case, ¬� is constant. This method reasons only over the matrix without
consideration of the dependencies and can therefore be applied without any
restrictions for (D)QBF. However, ignoring the quantifiers makes this method
incomplete for (D)QBF.

Another well known variable elimination technique is the detection of equiv-
alences, i. e., determining whether a literal �1 is logically equivalent to another
literal �2. In this case, one of the variables can be eliminated by replacing all
occurrences with the other one. In the (D)QBF case one has to take into account
the quantifiers and the dependencies of the affected variables. A very efficient
syntactic check to detect equivalent literals is to represent all binary clauses as
a directed graph and to determine the strongly connected components (SCCs)
within this graph. Every literal which is contained in such an SCC is equivalent
to all other literals in the same component [9]. We refer to [40] for details.

The basic (syntactic) detection and propagation of constant and pure literals
as well as equivalent literals can be (and were) implemented very efficiently
and turned out to be a necessary feature to let preprocessing scale. Hence,
in our implementation we apply these three methods1 after each and every
more complex technique until a fixed-point is reached. This is referred to as
the simplify() method in Algorithm1.

After eliminating unit, pure, and equivalent literals, we start the main pre-
processing loop by applying gate substitution [10]. To do so, we first identify def-
initions of logical gates within the formula, which can, e. g., result from applying
Tseitin transformation [39] to a circuit (see Algorithm 1, line 4). In particular,
we seek for AND gates with an arbitrary number of inputs and 2-input XOR
gates [29]. For both we allow arbitrary negations on both inputs and output.2

As many (D)QBF instances result from applications with circuits, the number

1 The syntactic constant detection using transitive implication chains is not included.
2 Note, this covers also OR gates with arbitrarily negated inputs and output.
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of detectable gates can be very large. Once a gate definition is found, the vari-
able yout, defining the gate output, is no longer needed. Instead yout is replaced
in each and every clause by its definition. The defining clauses can be deleted
afterwards. This direct substitution often produces smaller formulas than elim-
inating yout by resolution (see next paragraphs), but can nevertheless produce
very large formulas in some cases. Hence, it is only performed if the formula
does not grow above a user-given bound. It is important that this technique is
applied early, since many other methods, in particular the clause elimination
methods (see next section), might eliminate gate defining clauses. To overcome
this issue we optionally apply the concept of frozen variables and clauses [23] for
gate definitions, i. e., these variables and clauses are excluded from elimination
methods (with the exception of unit, pure, and equivalent literal detection).

Lastly, there are techniques for the elimination of existential and universal
variables applying resolution and universal expansion, respectively. For both,
the QBF generalization can be found in [5], and the DQBF version in [40].
Generally speaking, both methods eliminate a variable at the cost of expanding
the formula.

Variable elimination by resolution can be applied for any existential variable y
depending on all universal variables. In this case, we obtain an equisatisfiable
formula by adding all possible resolvents with the pivot y and removing all
clauses containing y or ¬y. The resolution of a variable is performed if the
estimated size of the formula does not grow beyond a threshold (which is usually
set to zero, i. e., resolution is only performed if the formula does not grow).

We observed a special case of resolution which is efficiently identified and
always leads to a smaller formula. Therefore, we perform these resolutions more
frequently – namely during BCP and blocked clause elimination (see clause elim-
ination routines). If an existential literal �∃ only occurs in exactly one binary
clause {�∃, �} (¬�∃ can occur arbitrarily often), then resolution of the pivot lit-
eral �∃ yields resolvents in which ¬�∃ is replaced by � w. r. t. the original clauses.
In our implementation we simply remove the clause {�∃, �} and replace ¬�∃ with �
in every clause. This procedure is sound as long as var(�) is also existential and
Dvar(�) ⊆ Dvar(�∃) or var(�) is universal and var(�∃) depends on it.

Universal expansion [8,40] of a universal variable x allows to remove x by
introducing a copy y′ for every existential variable y depending on x, which
has to depend on the same variables as y. Therefore every clause in which y
occurs has to be copied, too, such that y is replaced by y′ in the copy. Every
occurrence of x in the original part of the formula is now replaced by �, and
every occurrence in the copied part is replaced by ⊥ (or vice versa) resulting in an
equisatisfiable formula. In our DQBF benchmark set, the number of depending
existential variables is often very large and therefore we obtain a huge blow-
up of the formula. Hence, in our implementation we do not apply universal
expansion for DQBF. In contrast, in QBF many benchmark classes have quite
small universal quantifier blocks. In this case, it turns out that the elimination of
a complete universal block is often very beneficial, whereas expansion of single
variables in large blocks does have a rather small impact. Therefore, we try
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to expand blocks with small sizes (< 20). We always try to expand the whole
block as long as the blow-up of the formula is at most 50% per variable. After
each expansion step we also apply variable elimination by resolution in order to
reduce the potential number of copied existential variables in the next steps as
suggested in [8].

Clause Elimination Routines. As clause elimination routines [18] we under-
stand techniques which eliminate a clause c such that deleting c yields an equi-
satisfiable formula.

The simplest form of clause elimination is tautology elimination (TE): A
clause c ∈ ϕ is a tautology iff c contains both the literals � and ¬�. Tautological
clauses can be eliminated from ϕ. This condition is independent from the quan-
tifier and hence can be applied for QBF and DQBF without any restrictions.

Another well-known technique is subsumption elimination (SE) [5]. A clause
c ∈ ϕ is subsumed if there exists another clause c′ ∈ ϕ such that the set of
occurring literals in c′ are a subset of those in c, i. e., if ∃c′ ∈ ϕ : c′ ⊆ c. In
this case, c can be removed from ϕ. This technique is applied whenever new
clauses are added to the formula and for each clause which was strengthened
(see next section). Subsumption can be applied without any restrictions in the
same manner for QBF as for DQBF as it yields a logically equivalent matrix.

Recently, blocked clause elimination (BCE) [21] has been intensively inves-
tigated. It was generalized to QBF in [6] and to DQBF in [40]. A clause c ∈ ϕ
is blocked if there is an existential literal �∃ ∈ c such that every resolvent with
the pivot literal �∃ and the clause c is a tautology and the variable v which is
responsible for the resolvent being a tautology is either universal and var(�∃)
depends on v or v is existential and v’s dependencies are a subset of var(�∃)’s
dependencies (in the QBF context this means that v is left of var(�∃) in the quan-
tifier prefix). Such a blocked clause can be removed from ϕ without changing
satisfiability. See the given literature for further details.

Furthermore, all clause elimination routines can be extended by adding so-
called hidden and covered literals [18]. Simply speaking, these methods identify
literals which can be added to c without changing satisfiability. These literals
are added temporarily to c, obtaining a clause c′. TE, SE and BCE can be
applied to c′, resulting in hidden/covered tautology/subsumption/blocked clause
elimination [18]. In case the checks were unsuccessful, the additional literals are
removed. The intuition behind this literal addition is the following: The more
literals a clause c contains, the more likely c is either a tautology, subsumed,
or blocked. These methods are generalized to (D)QBF in [6,40], except for TE
and SE with hidden/covered literals to DQBF. It is rather easy to see that these
methods are sound, too; therefore we do not state an explicit proof here.

In our implementation we perform all clause elimination routines in a loop
until a fixed-point is reached, i. e., until no further changes to the formula can be
made (see Algorithm 1, line 7). To do so, we keep a queue of clause candidates,
which are updated after removing a clause from the formula. Whenever a clause
c = {�1, . . . , �n} has been removed, every clause in which at least one of the



380 R. Wimmer et al.

literals �1,¬�1, . . . , �n,¬�n occurs becomes a new candidate to be removed by
one of the above methods.

Clause Strengthening Routines. Clause strengthening routines try to elim-
inate literals from a clause while preserving the truth value of the formula. We
identify two main ways to do so.

Universal reduction (QBF [5], DQBF [1]) removes a universal literal �∀ from
a clause c ∈ ϕ if there are no existential literals �∃ in c that depend on �∀. In
our implementation universal reduction is applied for every added clause as well
as for every clause that was strengthened by self-subsuming resolution.

Self-subsuming resolution [10] identifies two clauses c1 and c2 with � ∈ c1,
¬� ∈ c2 and c2\{¬�} ⊆ c1\{�}, i. e., c2 “almost subsumes” c1 with the exception
of exactly one literal �, which is contained in the opposite polarity. Resolution
of c1 and c2 with the pivot literal � leads to cr = c1 \ {�}. By adding cr to
the formula, c1 is “self-subsumed” by cr; therefore c1 can be removed after this
addition. Our implementation simply removes � from c1, which has the same
effect. This technique leads to a logically equivalent matrix and is therefore
independent of the quantification type and the dependencies of the variables;
hence it can be applied to QBF and DQBF without any restrictions.

In our implementation, we iterate over all clauses in order to identify such
self-subsumptions until a fixed-point is reached. To do so efficiently, we keep a
queue of candidates that is updated after deleting a literal. Whenever a literal
�i is removed from a clause c = {�1, . . . , �n}, each clause containing at least one
of ¬�1, . . . ,¬�i−1,¬�i+1, . . . ,¬�n is potentially self-subsuming with c.

Other Formula Modifications. As formula modifications we consider tech-
niques which do not eliminate variables, literals or clauses, but which are able
to identify properties that are helpful to decide the formula.

Whenever substituting a gate’s output variable yout with its definition is too
costly, we apply gate rewriting [17] instead. It adds a new existential variable y′

out

to the same quantifier block as yout. For one implication direction of the Tseitin
encoding of the gate, yout is replaced by y′

out, thus delivering a double Plaisted
encoding [31], and the occurrences of ¬yout in the (D)QBF are replaced by ¬y′

out.
The purpose of this transformation is to favor detection of pure literals when the
clauses including yout evaluate to true and to increase the chance that clauses
are blocked [6].

Dependency schemes [34] allow to identify dependencies of existential vari-
ables y on universal ones x as pseudo-dependencies. The dependencies are syn-
tactically given by the order of the variables in prefix for QBFs and by the
dependency sets for DQBFs. A dependency (x, y) is a pseudo-dependency, if it
can be added or removed without altering the truth value of the formula. Since
deciding whether a dependency is a pseudo-dependency is as hard as solving the
formula itself [34,41], different sufficient criteria have been proposed, which are
called dependency schemes.
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During universal expansion (see variable elimination routines), we utilize
the reflexive quadrangle resolution path dependency scheme [37,41], which is
currently the most effective dependency scheme that is sound for both QBF
and DQBF. Before expanding a universal variable x, we identify its pseudo-
dependencies. All pseudo-dependencies of x do not have to be copied and neither
have the clauses to be doubled in which only pseudo-dependencies and variables
independent of x occur. This often leads to significantly smaller formulas after
the expansion.

Lastly, we also apply SAT checks over the matrix in order to find trivially
(un)satisfied formulas. A (D)QBF is trivially unsatisfied if the matrix ϕ is already
unsatisfied for an arbitrary assignment of the universal variables. For this check,
we use an assignment of the universal variables which satisfies the fewest clauses,
i. e., we assign x to � if x occurs in fewer clauses than ¬x. A (D)QBF is triv-
ially satisfied if, after removing each occurrence of a universal literal within the
matrix ϕ, the resulting matrix ϕ′ is satisfiable. Finally, if a formula does not con-
tain any universal variables after universal expansion, we immediately employ a
SAT solver for deciding the resulting formula.

2.3 Implementation Details

Our tool was implemented in C++ on a 64 bits Linux machine. We can handle
the standard qdimacs and dqdimacs file formats and also provide a clause inter-
face. We are able to convert each QBF into a DQBF and vice-versa in case the
dependencies of the DQBF can be linearized into a QBF prefix.

We apply all described techniques in our preprocessor within a main loop
until a fixed-point is reached, i. e., no further changes in the formula arise dur-
ing the latest iteration. Some (costly) techniques, like trivialMatrixChecks(),
which use a SAT solver, are applied only once. For all SAT-based techniques
we use the SAT solver Antom [36]. Whenever a routine was able to decide the
(D)QBF, we immediately exit the loop and return the result.

For an efficient access to all clauses in which a literal � occurs, we keep
complete occurrence lists for each literal. Furthermore, we redundantly hold
for each literal � a list of all binary clauses in which � occurs, since many of
our syntactic methods, such as gate and equivalence detection, employ binary
clauses.

We re-use unused variable IDs, i. e., whenever a variable was removed, we
mark the index as “open” and such that it can be re-used. This avoids very large
variable IDs and gaps in the data structure, which is crucial during universal
expansion where many existential variables are newly introduced as a copy.

We tested different data structures for clauses. Structures based on std::set
have the advantage of sorted ranges, which is beneficial for, e. g., subsumption
and hidden/covered literal addition, but comes with the downside of more expen-
sive access and insertion costs. On the other hand, a std::vector has con-
stant access time, but checking the occurence of a literal in a clause gets more
expensive. To overcome this issue we implemented a data structure which marks
already occuring literals in the current clause. This “seen” data structure is also
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implemented as a std::vector with the length of the maximal literal ID. By
doing so, we have efficient access on clause data, and checking whether a lit-
eral occurs in the clause becomes very cheap. By using this structure, we have
measured a speed-up compared to std::set-based clauses of up to a factor of 4.

3 Experimental Evaluation

3.1 QBF Instances

Setting. We evaluated the effectiveness of HQSpre by comparing it against
Bloqqer (Version 037) [6] and sQueezeBF [17] (we used QuBE 7.2, which
includes sQueezeBF) regarding both the reduction of the input formula and
the impact on several back-end solvers. Our new tool was run in two settings,
its default one (HQSpre) and HQSpreg, which preserves gate information. In
Bloqqer and sQueezeBF two subsets of the techniques available in HQSpre
are implemented, for more details the interested reader is referred to [6] and [17],
respectively.

We used the testset selected for the latest QBF Evaluation (QBFEval
2016 [32]), consisting of 825 formulas. We selected several state-of-the-art QBF
solvers (AIGSolve [29], AQuA-F2V [32] Caqe v2 [38], DepQBF v5.01 [25],
GhostQ [19], Qesto v1.0 [20], and RAReQS v1.1 [19]) and observed the effects
of HQSpre and the other preprocessors on the solvers, which are based on dif-
ferent solving techniques. AIGSolve was also run in a modified version named
AIG-HQS, where the built-in preprocessor was replaced with HQSpre. This
way, we can better evaluate how the preprocessors affect circuit-based solvers.
The experiments were run on DALCO computing nodes, each having 2× 8 Intel
E5-2650v2 cores running at 2.6 GHz and providing 64 GB RAM. Each job3 was
run on a single core and limited to 600 s CPU time and 4 GB RAM. An overall
consistency check reported no deviation in the results of different tools.

Comparing Pure Preprocessors. In Table 1 we evaluate the ability of the pre-
processors to act as incomplete solvers and their efficiency. For each preprocessor
under analysis, the number of formulas evaluated to true, to false, and of those
on which the preprocessor fails are given; additionally, we specify the accumu-
lated computation time needed to handle the testset. Whenever HQSpre failed,
the reason was the time limit; memory consumption was not an issue for our
preprocessor. HQSpre is the tool that solves the largest number of formulas and
takes the least time on average to perform its transformations. HQSpreg is the
fastest tool as it applies clause elimination techniques only to those clauses that
do not encode gate information. Additionally, it restricts variable elimination by
resolution to variables that are not gate outputs.

3 A job consists of preprocessing and, where applicable, solving one formula. To guar-
antee repeatability, the sub-job of preprocessing a formula was performed once for
all the solvers.
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Table 1. Number of QBF instances decided by different preprocessors.

#sat #unsat #fails Time (s)

sQueezeBF 73 64 53 47548.7

Bloqqer 177 171 44 41872.0

HQSpreg 162 209 29 25660.6

HQSpre 236 242 31 32127.0

Formula Reduction. In Table 2, we show the main features of the formulas in
the testset we used, and their counterparts after the transformation with the
preprocessors under analysis. The average number of existential variables, uni-
versal variables, overall variables, clauses, and quantifier alternations are given in
columns 2 to 6. The testsets obtained by using the tools under analysis are split
into three sub-rows (“r”, “s”, and “f ”, resp.) to distinguish between reduced,
solved, and failed instances, respectively. For the reduced instances we report

Table 2. Formula changes by preprocessing QBF: For each preprocessor, data is shown
as “before → after” for just reduced formulas (“r”); for solved (“s”) and failed (“f ”)
instances we show their original size. At the bottom, the averages concern the subset
made of the 233 instances all the preprocessors strictly reduced.

∃-Vars ∀-Vars Vars Clauses Q-alt

Original 23769 570 24339 85984 17.0

sQueezeBF r 8748→3674 303→261 9051→3935 40907→25782 17.2→10.2

s 77096 259 77355 167100 20.7

f 65893 4573 70466 416385 4.6

Bloqqer r 8729→3256 608→548 9336→3805 50015→28933 13.4→6.6

s 25938 142 26080 55860 19.9

f 154630 3584 158214 678207 28.9

HQSpreg r 9194→12027 943→889 10137→12916 37949→68601 12.9→8.8

s 28303 104 28407 91853 22.4

f 179367 1066 180433 714867 6.7

HQSpre r 12775→13232 1317→1232 14092→14463 54693→99763 11.1→7.1

s 25797 109 25905 81852 21.4

f 104575 77 104652 468670 8.1

Original 7037 661 7698 29498 11.3

sQueezeBF 3695 566 4226 13889 7.4

Bloqqer 2389 584 2973 13628 6.7

HQSpreg 15354 634 15988 89002 7.1

HQSpre 10572 619 11191 77491 7.0
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the averages of the quantity shown in the header before and after preprocessing,
whereas for the others we report the averages of the original formulas.

The number of remaining clauses and variables for HQSpre are larger on
average than for the competing preprocessors. This is mainly due to more aggres-
sive universal expansion in HQSpre leading to many copied existential variables
and clauses. On the other hand, many instances can be decided only due to this
aggressive expansion. This can also be seen from the average number of uni-
versal variables: for the solved formulas, the number of universal variables is
significantly smaller for HQSpre than for the other preprocessors.

At the bottom of Table 2, we also compare the numbers for all 233 instances
which are neither solved nor failed for all applied preprocessors. Since the set
of instances which are neither solved nor failed is different for each solver, this
allows a better comparison of the size of the remaining formula. Also from this
point of view, Bloqqer leads on average to the smallest formulas, but the
difference to our preprocessor is not as large since many huge formulas for which
Bloqqer fails but HQSpre does not are excluded from this presentation. As
our next experiments show, the remaining larger average size does not worsen
the results when applying a QBF solver to the preprocessed formula.

Combination with QBF Solvers. In Table 3, we show the overall performance
of the solvers when considering our testset in its original form and when trans-
formed by the preprocessors under analysis. For each testset, we list the number
of formulas to be solved, which excludes those already solved by the preprocessor
and those where the preprocessor failed. For each solver and testset, the number
of solved instances includes those already solved by the preprocessor.

At first glance, we notice that HQSpre improves the state-of-the-art: for
each solver, the number of solved instances is strictly higher compared to
sQueezeBF and Bloqqer. CEGAR-based solvers (Caqe, RAReQS, and
Qesto) take the greatest advantage from using HQSpre compared to Blo-
qqer, whereas search-based ones (AQuA and DepQBF) improve by a rather

Table 3. Overall results using the original QBF instances, preprocessed by Bloqqer,
sQueezeBF, and HQSpre. We give the number of solved instances together with the
accumulated computation times in seconds. Best results for each tool are highlighted.

Solver Original sQueezeBF Bloqqer HQSpreg HQSpre

# Time (s) # Time (s) # Time (s) # Time (s) # Time (s)

AQuA 330 306288 496 208396 574 163106 463 222542 592 149602

DepQBF 434 243677 520 196531 585 157570 509 196605 600 148303

AIGSolve 532 188046 480 212830 518 194297 559 171348 544 175234

AIG-HQS 507 203696 440 239303 499 206756 560 172549 536 180341

Caqe 358 290370 534 195257 576 169814 485 213024 637 132017

RAReQS 337 300562 517 204385 615 144281 458 227326 638 127443

Qesto 360 291301 550 184821 606 148490 477 217943 652 122782
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small number of solved instances. AIGSolve is the only solver which does not
always take advantage from preprocessing: in most cases, its performance gets
even degraded. This is mainly due to the underlying data structure of AIG-
Solve: it uses AND-Inverter graphs (AIGs), which are basically a circuit rep-
resentation. Since AIGSolve applies syntactic gate detection on the clauses,
any preprocessing step destroying this structure is harmful to the solver. AIG-
HQSbenefits most from our HQSpreg variant, where gate defining clauses and
variables are untouched, and both variants of AIGSolve simply work worse if
coupled with general purpose CNF preprocessors. AIGSolve contains an inte-
grated preprocessor, which is well optimized to the AIG-based back-end solver.
Still, by using HQSpre as additional front-end preprocessor, the number of
solved instances increases. For the other preprocessors, results get worse because
they destroy the gate information that AIGSolve can exploit. Note, that even
though our preprocessor runs until a fixed-point is reached, a second indepen-
dent run can change the results, since some methods are only applied at the very
beginning and not in every pass through the main preprocessing loop.

Impact on QBF Solvers. In Table 4, we show the impact of the preprocessors
on the solvers regarding their robustness. For each pair, we report as a nega-
tive number (left) the amount of formulas a solver is able to solve only without
preprocessing, and as a positive number (right) the amount of those instances
where the preprocessor is necessary for the solver to solve them. Large positive
numbers show complementarity, negative numbers close to zero demonstrate
good robustness. As a solver based on a circuit representation of the formula,
AIGSolve shows the highest complementarity, whereas our gate-preserving pre-
processor version HQSpreg is the most robust one for this solver. For most
solvers, HQSpre is the most robust preprocessor; exceptions are DepQBF,
Caqe, and RAReQS whose techniques are less impaired by sQueezeBF.

Table 4. Positive and negative effect of preprocessing on QBF solvers. Best results for
each QBF solver are highlighted.

sQueezeBF Bloqqer HQSpreg HQSpre

AQuA −8 +174 −11 +255 −7 +140 −6 +268

DepQBF −9 +95 −15 +166 −21 +96 −19 +185

AIGSolve −86 +34 −75 +61 −36 +63 −64 +76

AIG-HQS −103 +36 −70 +62 −32 +85 −68 +97

Caqe −8 +184 −13 +231 −11 +138 −10 +289

RAReQS −9 +189 −16 +294 −12 +133 −12 +313

Qesto −6 +196 −14 +260 −5 +122 −3 +295
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3.2 DQBF Instances

Setting. We apply our preprocessor to DQBF benchmarks and use it as a
front-end for the only two currently available solvers: HQS [15] and iDQ [13].
HQS is – like AIGSolve – an elimination-based solver using AIGs; iDQ is an
instantiation-based approach using a SAT solver as back-end. Since HQSpre is
the first available preprocessor for DQBF, there are no competitors to com-
pare with. We also apply the gate preserving version HQSpreg for this test
set. Since there is no standard benchmark set for DQBF we randomly selected
499 benchmarks of different size and difficulty from currently available bench-
mark sets: They encompass equivalence checking problems for incomplete cir-
cuits [12,13,15], and formulas resulting from the synthesis of safe controllers [7].
We used the DALCO computing nodes with the same limitations as in our QBF
experiments.

Comparing Pure Preprocessors. Table 5 shows the ability of HQSpre to act as
an incomplete solver. Since no universal expansion is applied, on the one hand
HQSpre solved fewer instances compared to the QBF benchmarks set. On the
other hand, HQSpre could preprocess all instances within the given limits.

Table 5. Decided instances of different preprocessors for DQBF.

#sat #unsat #fails Time (s)

HQSpreg 7 60 0 29441.2

HQSpre 5 71 0 162615.8

Formula Reduction. Table 6 shows the effect on the formula size for the DQBF
instances in the same manner as in Table 2. Note, there are no quantifier blocks
for DQBF, hence we cannot give the number of quantifier alternations. Instead,
we state the number of dependencies (“deps”), which is the sum of the cardinal-
ities of the dependency sets of the existential variables. The given number is the
average over all concerned benchmarks. In the last rows, we state the numbers
for the 407 commonly reduced, but not solved benchmarks.

Especially, the number of dependencies is significantly reduced for both vari-
ations. Since we do not apply any universal expansion the number of universal
variables is almost unchanged – the small decrease is mainly caused by pure
literal detection of universal variables. On the other hand, this strictly leads to
smaller formulas in terms of variables, clauses, and dependencies. Notably, there
are 18 instances with HQSpreg and 20 instances with HQSpre, respectively,
for which the DQBF dependencies were linearized, i. e., the tools were able to
convert the formula into an easier to solve QBF problem.
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Table 6. Formula shrinking after preprocessing DQBF: For each preprocessing setting,
data is shown as “before → after” for just reduced (“r”) formulas, and for solved (“s”)
formulas we show their original size. At the bottom, the averages concern the subset
made of the 407 instances all the preprocessors successfully reduce but not solve.

∃-Vars ∀-Vars Vars Clauses Deps

Original 367.7 70.5 438.3 1165.1 8425.8

HQSpreg r 390.3→243.3 78.3→77.2 468.6→320.5 1187.9→883.7 9038.3→37.7

s 222.3 20.4 242.7 1018.2 4476.7

HQSpre r 402.4→96.1 79.6→78.2 482.1→174.3 1229.9→540.7 9540.8→589.8

s 174.5 19.9 194.4 804.1 2219.8

Original 407.1 81.9 489.0 1240.0 9544.8

HQSpreg 257.4 81.0 338.4 933.8 39.8

HQSpre 97.2 80.6 177.8 543.6 612.4

Impact on DQBF Solvers. Finally, we passed the preprocessed formulas to the
two DQBF solvers and compare them with the results for the original formula.
For HQS we use two versions: the usual one (HQS) and a version where we have
integrated HQSpreg into the solver (HQSI). This means that in the combina-
tion of HQSpre and HQSpreg with HQSI the formula is actually preprocessed
twice. The results are given in Table 7. As it can be seen, iDQ and HQS both sig-
nificantly benefit from preprocessing. However, preprocessing the formula and
feeding it into HQS in CNF form does not yield an optimal behavior of the
solver compared to a tight integration as in HQSI . The reason for this is that
HQS does not apply gate detection on its own, which leads to much larger AIGs
with more variables. Still, we can see that HQSpre is effective: without pre-
processing, only 223 instances are solved, with gate-preserving preprocessing, but
without exploiting the gate information 326 instances, and with full preprocess-
ing 351 instances are solved. However, the best results are obtained if we inte-
grate the preprocessor into the solver such that the gate information extracted
from the CNF is exploited when creating the AIG data structures of the solver.
In this case, 456 instances get solved. Preprocessing the formula twice as in

Table 7. Overall results using the original DQBF instances and preprocessed by
HQSpre and HQSpreg. The accumulated computation times are given in seconds.
Best results for each DQBF solver are highlighted.

Solver Original HQSpreg HQSpre

# Time (s) # Time (s) # Time (s)

iDQ 151 214404 170 201165 214 171676

HQS 223 176222 326 108788 351 93912

HQSI 456 30946 450 34621 228 164299
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HQSpre + HQSI or HQSpreg + HQSI , causes an additional overhead and
modifies the formula: Since some of the more expensive techniques like SAT-
based constant detection are applied only once, preprocessing the formula twice
leads not only to additional overhead, but also to a different formula.

We can conclude that HQSpre is effective also for preprocessing DQBFs.
For HQS as the back-end solver, it is of highest importance not only to preserve
gate information, but also to integrate the preprocessor into the solver such that
this information is exploited optimally.

4 Conclusion

We presented a new state-of-the-art tool HQSpre for preprocessing QBF out-
performing every tested competing tool by the number of solved instances as
well as increasing the number of solved instances for each state-of-the-art QBF-
solver using HQSpre as front-end. Moreover our tool is able to preprocess DQBF
formulas effectively and efficiently, being the first available DQBF preprocessor.
An integrated version of the DQBF preprocessor clearly outperforms every other
competing solver and preprocessor combination.

As future work we want to improve and enhance our gate detection methods.
Namely, we want to support the Plaisted-Greenbaum encoding [31] and semantic
gate detection. We like to develop an explicit gate and/or AIGER [3] interface,
which also closes the gap between solver and applications in general. We also
plan to expand our methodology portfolio by other well-known techniques like
unit propagation look-ahead [24] (also sometimes referred to as failed literal
detection) and vivification [28]. Moreover, we would like to extend our tool with
Skolem and Herbrand functions in order to provide and preserve certificates.
Lastly, our experimental results indicate that deciding DQBF is very efficient if
we are able to transform the formula into a QBF. In order to decide whether
a DQBF can be transformed into an equivalent QBF and which operations are
needed to do so, a more intense utilization of dependency schemes is needed.
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