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Abstract. Many bug predictors have been proposed, and their main tar-
get is object-oriented systems. Although object-orientation is currently
the choice for most of the software applications, the procedural para-
digm is still being used in many—sometimes crucial—applications, such
as operating systems and embedded systems. Consequently, they also
deserve attention. We present a study in which we investigated the effec-
tiveness of existing bug prediction approaches with procedural systems.
Such approaches use as input static code metrics. We evaluated to what
extent they are applicable to our context, and compared their effective-
ness using standard metrics, with adaptations when needed. We assessed
five approaches, using eight procedural software systems, including open-
source and industrial projects. We concluded that lines of code is the
metric that plays the key role in our context, and approaches that use
of a large set of metrics can introduce noise in the prediction model. In
addition, the best results were obtained with open-source systems.

Keywords: Bug prediction · Procedural programming · Static code
metrics

1 Introduction

Software testing is a crucial task to improve software quality, as it identifies
software defects (or bugs) to be fixed. This task can be complemented by
automated approaches that identify fault prone software components, poten-
tially decreasing verification time, and thus improving software maintenance
and reducing costs. By learning which components are fault prone, it is pos-
sible to prioritize system modules or components to be verified, thus allowing
defects to be identified earlier. Given these potential benefits, many bug predic-
tion approaches [7,14,16,18,22,28,34] have been proposed, investigating the use
of different types of information in order to improve precision and recall when
predicting defects.

Examples of inputs used by bug prediction approaches are static code met-
rics, change metrics, and previous defects [6]. Such approaches were individually
evaluated by their authors using different software projects, or compared using
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the same set of projects. These evaluations involved mostly, if not only, object-
oriented (OO) systems. Object orientation is the choice for many software sys-
tems, such as web and mobile applications. However, the procedural paradigm
is still being used in many—sometimes crucial—software systems, such as oper-
ating systems, embedded systems, and scientific computing applications. These
applications deserve attention not only because they must be maintained, but
also because they are often long-lived systems and procedural languages lack
some mechanisms (e.g. inheritance and polymorphism) that improve code qual-
ity. These factors may cause the maintenance and evolution of those systems to
be even harder. A previous study, performed by Khoshgoftaar and Allen [15],
focused specifically on embedded systems. Nevertheless, they used information
collected at runtime, which requires many scenarios of system execution to obtain
data.

Approaches that rely on change metrics, e.g. number of changes, which often
come from version control systems (VCSs), can also be adopted in the context
of procedural systems, because they are paradigm- and language-independent.
However, this is not the case of approaches that use static code metrics. Although
there are metrics that can be measured in procedural systems, such as lines
of code or cyclomatic complexity [21], most of the approaches also use OO-
specific metrics, such as depth of inheritance tree or coupling between object
classes [5]. Consequently, such approaches must be adapted and evaluated to be
used with procedural software systems. There is evidence that change metrics can
outperform static code metrics, but: (i) the former may not always be available,
because of the need for the existence and access to VCSs, and (ii) information
provided by static code metrics and change metrics are complementary [22].

We thus in this paper present a study conducted to evaluate approaches that
rely on static code metrics [28] in the context of procedural software systems.
Approaches were evaluated from two perspectives: (i) degree of applicability, by
measuring the amount of OO-specific information they use; and (ii) effectiveness,
by measuring their precision, recall and F-measure with a set of procedural soft-
ware systems. Effectiveness was evaluated with the subset of metrics applicable
to procedural systems, and with this subset together with metrics adapted to the
procedural paradigm. For building our dataset, we selected a range of procedural
software systems from many application domains, both open-source and propri-
etary, including operating systems and tools, bare-metal environments (software
that does not require the support of a host operating system), and embedded
commercial applications. Static code metrics and defects were extracted from
each target system. Prediction was performed using learning techniques applied
by the evaluated approaches. As result, we concluded that lines of code is the
metric that plays the key role in our context, and approaches that use of a large
set of metrics can introduce noise in the prediction model. In addition, the best
results were obtained with open-source systems.

We next discuss existing bug prediction approaches. Then, we present our
study settings and target systems in Sect. 3. Results and discussions are detailed
in Sects. 4 and 5, respectively. Finally, we conclude in Sect. 6.
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2 Related Work

As said in the introduction, bug prediction approaches make predictions based on
different kinds of information. We classify such approaches into three groups. The
first group of approaches [4,7,14,18,25,26,34] is based on static code metrics.
They use only a snapshot of the source code, using information such as number
of lines, in order to extract static code metrics. Such approaches are founded
by prior studies, which concluded that there is a correlation between static code
metrics and defects [4]. The second group of approaches [9,10,13,17,19,23,24,31]
requires another type of information, change metrics, which is usually obtained
from VCSs. Such systems allow extraction of metrics associated with changes
made during the software project evolution. Examples of typical metrics of this
type are number of changes and change size. Some approaches use the frequency
and recency of file change [10,24], using caching concepts to indicate the most
fault prone components. In addition to change metrics, Li et al. [19] used informa-
tion collected from e-mails to predict a release quality. Approaches [6,16,22,33]
in the last group mixed different types of metrics, and some evaluated different
proposed approaches.

Given that change metrics do not depend on the language or paradigm of the
analyzed project, they can be used both for OO and procedural systems. In fact,
some approaches included in their evaluation procedural systems [9] or used mul-
tiple versions of a single procedural system [19]. Nevertheless, approaches based
on static code metrics typically rely on a metric set that includes OO-specific
metrics. Koru and Liu [18], in particular, included two procedural systems in
their evaluation, ignoring the OO-specific metrics for these systems. However,
none of the approaches focused solely on procedural systems or contrasted results
obtained with OO and procedural systems.

In Table 1, we detail a set of recent approaches that proposed bug predictors
based on static code metrics—approaches that simply evaluated the correlation
between metrics and defects rather than proposed predictors were excluded.
They vary mainly in two aspects: (i) used metrics (this table overviews used
metric suites); and (ii) investigated learning techniques. These approaches are
those evaluated in this paper, and hereafter they are referred to as the acronyms
introduced in Table 1. We included in the study approaches that also use change
metrics [16], but only static metrics were taken into account. Moser et al. [22]’s
approach extended that proposed by Zimmermann et al. [34], by including
change metrics and exploring other learning techniques. In our evaluation, we
use the static code metrics as well as learning techniques used by Moser et al.
They used a subset of metrics from Zimmermann et al.’s dataset because all code
metrics would “involve overly complex models and not yield better performance
as most of the measures are highly correlated with each other.”

3 Study Settings

Given the lack of provision of bug predictors dedicated to procedural software
systems, we performed a study to fulfill this gap. We used existing bug prediction
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Table 1. Summary of investigated approaches.

Approach Acronym Metric suites Learning techniques

Gyimothy et al. [7] GY CK [5] Decision Trees
Linear Regression
Neural Networks

Jureczko and
Madeyski [14]

JU CK [5], QMOOD [2],
Tang et al. [29],
Martin [20],
Henderson-Sellers [11]

Linear Regression

Kim et al. [16] KI Metrics provided by
the Understand [1] tool

SVM

Koru and Liu [18] KO Halstead [8],
McCabe [21]

Decision Tree
K-Star
Random Forests

Moser et al. [22] MO CK [5], traditional OO
metrics

Decision Trees
Logistic Regression
Naive Bayes

approaches with procedural software systems, also making required adaptations
in this process, and evaluated and compared the obtained performance. We next
provide details of our study.

3.1 Goal and Research Questions

In order to design our study, we followed the GQM (goal-question-metric) par-
adigm proposed by Basili et al. [3]. According to it, the first step is to specify
the goal of the study, which is the following according to the GQM template:
to assess the effectiveness of existing bug prediction approaches in the context
of procedural software systems, evaluate existing bug prediction approaches based
on static code metrics from the perspective of the researcher in the context of 8
open source and proprietary software projects. Based on our goal, we derived two
research questions presented as follows.

RQ-1: How bug prediction approaches based on static code metrics can be applied
to procedural software systems? Given that some approaches consider
OO-specific metrics, we investigate the amount of metrics that can be
used with procedural software systems and, from metrics that cannot be
used, which can be adapted to our context.

RQ-2: What is the effectiveness of bug prediction approaches based on static code
metrics, possibly adapted, with procedural software systems? Considering
the investigated approaches and the set of metrics that can be extracted
from procedural software, possibly with adaptations, we measure and
compare the effectiveness of each approach. We evaluate both the set
of metrics that can be extracted as-is, and also a set including adapted
metrics.
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The metrics used to answer these research questions are detailed in the next
section together with our study procedure.

3.2 Procedure

Our study procedure is composed of three main steps. We first analyzed each
investigated approach in order to verify whether their metrics can be used in our
study. In the second step, we prepared our dataset, by performing two activi-
ties: (i) extraction of defects; and (ii) extraction of static code metrics. Last, we
executed all the approaches with our target systems and measured their perfor-
mance. We next provide details regarding our procedure.

Metric Adaptations. In order to answer our RQ1, we identified all metrics used
by each approach, and verified whether they can be extracted from procedural
systems. In the cases that they cannot, we adapted the metric calculation using
the following mapping between OO concepts and procedural structures. In OO
systems, there are classes with attributes and methods, with visibility modifiers.
In procedural systems, there are source files (in C, files *.c), which contain global
variables and functions, and header files (in C, files *.h), which contain function
declarations and possibly global variables. In order to adapt metrics, we map:
(i) classes to a combination of header and source files; (ii) public attributes and
methods to variables and functions, respectively, declared in header files; and (iii)
private attributes and methods to variables and functions, respectively, declared
only in source files. Header files are thus considered similar to public interfaces
of classes. Inheritance is not mapped, given that there is no similar concept in
procedural languages, like C.

For evaluating the applicability of each approach to procedural systems, we
measured the following scores.

Applicability with No Adaptations Ratio (A-scoreNA) is the fraction of
metrics that can be extracted from procedural systems with no adaptations.
It is calculated as follows:

A-ScoreNA =
|MP |
|M |

where MP is the set of metrics that can be extracted from procedural systems
with no adaptations, and M is the set of all metrics used by the approach.

Applicability with Adaptations Ratio (A-scoreWA) is the fraction of met-
rics that can be extracted from procedural systems with or without adapta-
tions. It is calculated as follows:

A-ScoreWA =
|MP ∪ MA|

|M |
where MP is the set of metrics that can be extracted from procedural systems
with no adaptations, MA is the set of metrics that can be extracted from
procedural systems with adaptations, and M is the set of all metrics used by
the approach.
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Defect and Metric Extraction. We used commits indicated as fixes to identify
defects in our target systems, which is an approach typically used in similar
work. When a certain file is modified in a fix, it counts as one defect in that
file. In order to mine commits, we used two approaches, depending on the tools
available (only VCS, or VCS and issue tracker). For projects in which an issue
tracker was available, we searched for commit messages that contained the issue
id of issues that are bugs (and not features). Therefore, the issue category was
used to identify commits that are fixes. For projects in which we had no access
to an issue tracker, we searched for commit messages that matched a regular
expression, which is a method adopted in previous work [14,16,32]. Regular
expressions were selected for each project according to message patterns adopted
by developers, e.g. in Linux, the regular expression includes “fix” and its variants.

Extraction of static source code metrics was performed using the Understand
[1] static code analysis tool. Metrics for pure C not available in the Under-
stand, or those we adapted, were extracted using: (i) implemented and available
scripts1; and (ii) open-source tools, namely Cflow, CTags, and CCCC2. Cflow
provides a call-graph for a C file, which can be parsed and used for extracting
the fan-in and fan-out metrics. Complementary, CTags provides the functions
and variables available both in header and source files, used for computing the
public and private attributes and methods. CCCC, in turn, is a tool for metric
measurement for C and C++.

Prediction and Evaluation. The evaluation of the effectiveness of each approach
was made by building a predictor for our dataset using machine learning algo-
rithms adopted by each investigated approach. Details of how these algorithms
were executed are available elsewhere3, as well as the used dataset. We then mea-
sured results with common machine learning scores, also used by most of the
evaluated approaches (thus being used as a baseline), and used 10-fold cross-
validation. The Scikit-Learn Framework [27] was used for prediction and score
calculation. The following scores were used.

Precision is the fraction of all classified files that are classified as defective. It is
calculated as follows: Precision = TP/(TP +FP ), where TP is the correctly
classified defective files and FP is non-defective files classified as defective.

Recall is the fraction of all files that should be classified as defective that are
classified as defective. It is calculated as follows: Recall = TP/(TP + FN),
where TP is the correctly classified defective files and FN is the defective files
classified as non-defective.

F-measure is a score that combines recall and precision. It is the harmonic
mean between them, calculated as follows: F-measure = (2 · Precision ·
Recall)/(Precision + Recall).

1 https://github.com/dborowiec/commentedCodeDetector.
2 Available at http://www.gnu.org/software/cflow/, http://ctags.sourceforge.net/,

and http://cccc.sourceforge.net/, respectively.
3 http://www.inf.ufrgs.br/prosoft/resources/bug-prediction-procedural/.

https://github.com/dborowiec/commentedCodeDetector
http://www.gnu.org/software/cflow/
http://ctags.sourceforge.net/
http://cccc.sourceforge.net/
http://www.inf.ufrgs.br/prosoft/resources/bug-prediction-procedural/
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All presented scores are in [0, 1], were the closer to one, the better the classi-
fication. Now that we have described our procedure, we proceed to the presen-
tation of the target procedural systems of our study.

3.3 Target Systems

In order to build our dataset, we selected known open-source procedural sys-
tems as well as proprietary systems to which we have access. The latter have
the advantage of having an accessible issue tracker, from which we can extract
reported bugs and associated commits. Some open-source systems have avail-
able issue trackers, but we could not trace bug fixes to the files that changed in
commits. In total, our study involved eight target systems, as listed in Table 2,
from which three are proprietary. In order to be selected, systems had to satisfy
two requirements. The first is that selected systems must be implemented in the
C language. This is mainly due to two reasons: (i) it simplifies the process of
extracting metrics; and (ii) C is the most popular and used procedural language.
The second requirement is that information regarding bug fixes should be avail-
able, either through commit messages or an issue tracker. Selected applications
are from different domains and have multiple sizes, as can be seen in Table 2.

Table 2. Target systems.

System Description LOC #Files #Commits Bugs (%)

Linux Operating system 9,434,808–9,529,552 30,058–30, 252 560,519 16–22%

Commercial

system A

Telecom embedded

application

407,660–509,856 1027–1148 1,027–1148 4–10%

Commercial

system B

Telecom embedded

application

337,203–351,923 939–949 2,211 6–12%

Commercial

system C

Telecom embedded

application

279,325 394 109 5%

BusyBox Operating system

applications

153,448 624 13,891 19%

Git Version control

system

153,855–157,193 500–507 41,356 16–29%

Light weight

IP

Network stack for

microcontrollers

18,510–32579 89–132 3,658 14–49%

CpuMiner Bitcoin mining

application

4,455–6,927 20 339 20%

Our target systems include Linux, which is an established operating system
and a well documented project. Much work has been developed specifically on
bug prediction for Linux [13,31], but all used change metrics. It is the largest
project used in our study. BusyBox, in turn, provides operating system tools
for embedded systems, being associated with Linux. Git is a widely used multi-
platform VCS, with a consolidated development process, while Light Weight IP is
a bare-metal network stack, thus being a low-level microcontroller environment,
with restricted resources. CpuMiner is the smallest investigated system, but with
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a complex domain. It consists of a Bitcoin calculator, performing cryptographic
calculations. Finally, the commercial applications included in our study consist of
logic controllers for network devices containing hardware configuration, network
protocols, configuration management and user interface.

To investigate a larger dataset, we used more than one system version
when possible—some versions were not available and we excluded versions that
diverged from the master branch. For each system, we analyzed bug fixes of a
release i, extracting metrics from the source code of this release and bugs using
commits made before the release i+1. Therefore, if we had N releases available,
we managed to evaluate N − 1 releases. Consequently, for applications with just
one analyzed release, e.g. Commercial System C, we had, in fact, two available
releases. Releases were determined using VCS tags for all systems. We investi-
gated only two Linux versions due to the computational time needed for metric
extraction. Moreover, only one version was investigated from the Commercial
System C, because it was mostly developed by a third-party company, and the
company that gave us access to it is responsible only for evolving it. Therefore,
we had no access to the source code repository used during this initial applica-
tion development. This explains the low number of commits presented in Table 2.
In Table 2, we also present the percentage of files containing bugs for each sys-
tem. In next section, we present how the investigated bug prediction approaches
performed using these introduced systems.

4 Results and Analysis

In this section, we report obtained results, after performing the procedure
described above. Results are presented and discussed according to our research
questions.

RQ1: How bug prediction approaches based on static code metrics can be applied
to procedural software systems? Each of the five investigated approaches was
analyzed, and we assessed how applicable they are to our context. In Table 3, we
list all static code metrics used by the selected approaches. We grouped some
sets of metrics, due to space restrictions. The number in parenthesis indicate the
number of metrics in each group. Based on Table 3, it is possible to observe that
all but one of the approaches use metrics that rely on OO concepts. Therefore, we
adapted such metrics in order to extract them from procedural systems to build
bug predictors—they are described in the last column of Table 3. Adaptations
follow the overall mapping rule described in our study procedure.

Considering this information, we classified metrics used by each approach in
three classes (column Class): (i) those that can be extracted from procedural sys-
tems, labeled with Y; (ii) those that cannot be extracted from procedural sys-
tems, labeled with N; and (iii) those that can be extracted from procedural
systems only with adaptations, labeled with A. Based on this classification, we
verified how much applicable each approach is, using the measurements described
in the previous section. We present results in Table 4, which shows the applicabil-
ity ratios (without and with adaptations) of each approach. Note that, although
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Table 3. Static code metrics used by bug prediction approaches.

Suite Metric GY JU KI KO MO Class Adaptation

Lines of Code (LOC) ✓ ✓ ✓ ✓ ✓ Y

Line count ✓ ✓ Y

Lines of comment ✓ ✓ Y

Lines of code with comments ✓ Y

Blank lines ✓ ✓ Y

Fan-in/fan-out (2) ✓ Y

Branch count ✓ Y

McCabe Cyclomatic complexity (avg) ✓ ✓ Y

McCabe Cyclomatic complexity (max) ✓ ✓ ✓ Y

McCabe Essential complexity ✓ ✓ Y

McCabe Design complexity ✓ ✓ Y

Halstead Standard and derived metrics (12) ✓ Y

Understand metrics (29) ✓ Y

Understand metrics - OO (18) N

OO Number of inherited attributes ✓ N

OO Number of inherited methods ✓ N

OO Number of attributes ✓ A Number of global
variables

OO Number of methods ✓ A Number of
functions

OO Number of private attributes ✓ A Number of global
variables not
declared in the
header file

OO Number of public attributes ✓ A Number of global
variables
declared in the
header file

OO Number of private methods ✓ A Number of
functions not
declared in the
header file

QMOOD Number of public methods (NPM) ✓ ✓ A Number of
functions
declared in the
header file

QMOOD Data Access Metrics (DAM) ✓ Y

QMOOD Measure of Aggregation (MOA) ✓ Y

QMOOD Measure of Functional
Abstraction (MFA)

✓ N

QMOOD Cohesion among Methods of Class
(CAM)

✓ A Use of types of
function
parameters
instead of
method
parameters
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Table 3. (Continued)

Suite Metric GY JU KI KO MO Class Adaptation

CK Depth of Inheritance Tree (DIT) ✓ ✓ ✓ ✓ N

CK Number of Children (NOC) ✓ ✓ ✓ ✓ N

CK Coupling between Object Classes

(CBO)

✓ ✓ ✓ ✓ A Functions or

global variables

from other files

used in a target

file

CK Response for a Class (RFC) ✓ ✓ ✓ ✓ A Number of

distinct functions

from other files

called by a target

file

CK Weighted Methods per Class

(WMC)

✓ ✓ ✓ ✓ A Weighted

functions per file

CK Lack of Cohesion in Methods

(LCOM)

✓ ✓ ✓ ✓ A Global variables

count as

attributes and

functions count
as methods

HS Lack of Cohesion in Methods
(LOCM3)

✓ Y Same as LCOM

Lack of Cohesion on Methods
allowing Negative value
(LCOMN)

✓ Y Same as LCOM

Tang et al. Inheritance Coupling (IC) ✓ Y

Tang et al. Coupling between Methods
(CBM)

✓ N

Tang et al. Average Method Complexity
(AMC)

✓ A Average
complexity of
functions in file

Martin Afferent Couplings (Ca) ✓ A Number of files
that use a pair of
header and
source file

Martin Efferent Couplings (Ce) ✓ A Number of
referenced header
files

Legend: Y-Yes; N-No; A-Adaptations Required.

MO approach, in theory, uses 31 static code metrics from Zimmermann et al.’s [34]
dataset, its provided dataset contains only 17 metrics extractable from source
code. Other metrics in the dataset are target metrics, e.g. TrivialBugs, or rely on
CVS information, e.g. CvsEntropy, which is not our focus.

Results indicate that the GY, JU, and MO approaches largely rely on OO
metrics, while KO uses only metrics that do not rely on OO concepts. With our
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Table 4. Approach applicability to procedural software systems.

GY JU KI KO MO

Extractable metrics 1 5 37 21 3

Metrics extractable with adaptations 5 11 4 0 10

Not extractable metrics 2 4 20 0 4

Total 8 20 61 21 17

A-ScoreNA 0.12 0.25 0.60 1.00 0.17

A-ScoreWA 0.75 0.80 0.67 1.00 0.76

adaptations, it is possible to use at least 67% (KI has the minimum A-ScoreWA)
of proposed metrics of each approach. Given this analysis, we proceed to the
evaluation of the effectiveness of each approach.

RQ2: What is the effectiveness of bug prediction approaches based on static code
metrics, possibly adapted, with procedural software systems? We executed each
investigated approach, considering different learning techniques, with all target
systems (and their different versions). As result, we obtained the precision, recall
and F-measure values presented in Fig. 1 and Table 5. On the left hand side
charts of Fig. 1, we show results using only the metrics that can be extracted
from procedural systems, while those on the right hand side also include adapted
metrics. Table 5 reports the mean and standard deviation of the values obtained
with our different target systems. For a comparison, we show in the baseline row
the results reported by each approach’s authors, if they were provided.

Comparing results obtained with and without adaptations, we observed that
they are similar to each other—all measurements vary ±0.05. The differences are
so small that they could be due to the randomness of the 10-fold cross validation.
This can be seen in the KO approach (A-ScoreNA = 1.00), which uses no OO
metrics, thus both evaluations use the same set of metrics. Consequently, there
is evidence that the OO-inspired metrics bring little information associated with
defect presence in procedural software systems and increase model complexity.
Therefore, they can be discarded. Note that, for some approaches, the number
of adapted metrics is not small, as discussed in the previous research question.

The best results were obtained with KO RF (which is based only on no
OO metrics), considering F-measure, which combines precision and recall. Two
approaches presented the worst results. The first, KI, relies on a large set of
metrics. The second, GY, presented worse results only with NN, but results
obtained with the other algorithms (DT and LR) are much better, providing
evidence of the importance of the selected algorithm. Considering precision and
recall individually, it is possible to observe that two other approaches (GY LR
and MO LR) have higher precision than KO, at the cost of compromising recall.

With respect to the GY approach, the approach that with DT obtained the sec-
ond best results, it is interesting to highlight that it has only one metric used with-
out adaptations: LOC. Other approaches with best results also use this metric.
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Fig. 1. Effectiveness measurements by each approach.

Table 5. Summary of effectiveness evaluation of each approach.

GY

DT

GY

LR

GY

NN

JU KI KO

DT

KO

KS

KO

RF

MO

DT

MO

LR

MO

NB

Precision

Without adaptations 0.52

(0.27)

0.64

(0.21)

0.34

(0.21)

0.62

(0.22)

0.36

(0.30)

0.49

(0.28)

0.39

(0.26)

0.52

(0.26)

0.48

(0.25)

0.64

(0.25)

0.53

(0.30)

With adaptations 0.52

(0.28)

0.66

(0.20)

0.38

(0.27)

0.59

(0.21)

0.38

(0.30)

0.49

(0.28)

0.40

(0.26)

0.53

(0.26)

0.46

(0.25)

0.61

(0.21)

0.53

(0.30)

Baseline 0.68 0.68 0.82 0.72 0.62 0.65

Recall

Without adaptations 0.51

(0.25)

0.37

(0.30)

0.35

(0.25)

0.42

(0.33)

0.52

(0.35)

0.47

(0.23)

0.55

(0.25)

0.72

(0.18)

0.45

(0.25)

0.39

(0.34)

0.44

(0.29)

With adaptations 0.51

(0.26)

0.40

(0.29)

0.40

(0.25)

0.44

(0.27)

0.50

(0.30)

0.47

(0.22)

0.57

(0.28)

0.71

(0.15)

0.44

(0.24)

0.41

(0.29)

0.47

(0.28)

Baseline 0.67 0.64 0.89 0.68 0.68 0.42 0.33 0.40

F-Measure

Without adaptations 0.51

(0.26)

0.44

(0.29)

0.33

(0.22)

0.47

(0.31)

0.40

(0.31)

0.48

(0.24)

0.44

(0.26)

0.59

(0.23)

0.46

(0.25)

0.45

(0.32)

0.42

(0.26)

With adaptations 0.51

(0.26)

0.48

(0.28)

0.37

(0.25)

0.49

(0.25)

0.40

(0.30)

0.47

(0.24)

0.45

(0.27)

0.58

(0.23)

0.45

(0.24)

0.46

(0.27)

0.43

(0.25)

Baseline 0.67 0.65 0.85 0.69 0.65 0.36

Legend: DT-Decision Trees; KS-K-Star; LR-Logistic Regression; NB-Naive Bayes;
NN-Neural Networks; RF-Random Forest.



90 C.W. Araújo et al.

However, the other metrics used by GY slightly improved both precision and
recall for LR and NN but for DT, which obtained the best results for GY, they
remained the same. Therefore, there is evidence that LOC plays a key role in
our context. Although KI also uses LOC, the other used metrics might have
introduced noise in the model used for prediction.

In addition to comparing results across different approaches, we also investi-
gated how our measurements vary across different target systems, as presented
in Fig. 2. We observed that commercial applications presented worse results in
comparison with open source systems. This observation holds even for the Com-
mercial System C, which has a low number of commits as described in Sect. 3.3.
Analyzing results, we considered two hypotheses: (1) there are differences in the

Fig. 2. Effectiveness measurements by target system.
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system datasets that has impact in the construction of the prediction model;
and (2) coding standards and practices adopted by developers of our commer-
cial applications are less suitable for bug prediction. The number of investigated
systems is not large enough to allow us to reach a conclusion regarding this and,
therefore, further studies could help clarify this issue. However, it is possible to
observe in Table 2 that the percentage of files with bugs is much lower in commer-
cial applications. Consequently, the highly unbalanced classes in these datasets
make the prediction model construction more difficult. Moreover, although our
proprietary applications are maintained by the same company, they were origi-
nally developed outside this company (not by the same provider). Consequently,
hypothesis (2) is less likely to be true.

With LWIP, an open source system, results obtained were impressively high,
for three of its four analyzed versions. Based on an analysis of LWIP’s commits
and release information, our hypothesis is that, again, the balance between the
dataset classes is the reason for these results. In the version in which LWIP
performed significantly well, the number of files with bugs are similar to that of
files with no bugs. Therefore, this facilitates the machine learning process.

5 Discussion

We now discuss relevant issues that emerged from the analysis of our results.
These issues are related to the differences of results obtained using different sets
of metrics or systems.

Use of Adapted Object-Oriented Metrics. Based on our results, we observed that
all metrics adapted from OO metrics were not helpful to predict defects in pro-
cedural systems. On the one hand, this was expected given that programming
practices are different in procedural and OO systems. Moreover, metrics that
are associated with inheritance could not be adapted, because this concept does
not exist in procedural systems, and such metrics may be relevant to be used
in combination with other OO metrics to build predictors. On the other hand,
some of the metrics, such as CBO, capture coupling and cohesion in classes,
while our adapted metrics capture them in source files. Therefore, they could
have been helpful. Although coupling is useful in predictors for OO systems,
we could not observe this in our study. Possibly, this metric alone may be not
enough for the predictor, and it should be combined with other metrics that can-
not be adapted, e.g. those related with inheritance, so that a proper correlation
with bugs is found.

Open-Source vs. Proprietary Systems. As discussed before, the results obtained
with open-source and proprietary systems are different. This can be seen in
Fig. 2. As discussed before, a potential explanation is that these differences are
due to the unbalanced classes (i.e. number of files with bugs and with no bugs)
in the proprietary systems’ datasets. Because of the low number of instances of
files with bugs, it is difficult to the learning technique to build a model that dis-
tinguishes these two classes. This is actually a general problem of bug prediction
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because, typically, the number of files with bugs is relatively small. Moreover,
datasets usually contain noise, because the bugs are not those that exist, but
those that were identified. Therefore, techniques that address these issues are
essential and should be explored in the context of bug prediction.

Another possible explanation for the differences between results is the devel-
opment process adopted in open-source and proprietary systems. In the former,
developers have their own agenda (most of them are volunteers or employers of
different companies), while in the latter changes can be limited to a set of files in
each software release, because it may be focused on a particular system feature.

Effectiveness with Object-Oriented vs. Procedural Systems. In Table 5, we pre-
sented previously reported results for us to have as a baseline. Note that the
results reported by the KI approach include change metrics, and KO’s evalua-
tion included procedural and OO systems, made available by NASA. As can be
seen, for all approaches but MO, our results are worse. The only approach that
presented results similar to ours is KO but with a different learning technique
(our results with RF is similar to the baseline performance, which used DT).
All approaches performed better with the original set, indicating that obtained
results may not generalizable to systems other than those obtained with the
dataset used for evaluation. Moreover, the differences between results can also
be explained using the arguments we presented above, when we compared results
using adapted OO metrics—use of a subset of metrics and different meanings of
the relationships between the metrics and defects.

In addition to these issues that might explain difference between results, the
typical application domains of procedural systems may also be an issue. Such
domains often involve low level details or complex calculations. Consequently,
complexity metrics may be more correlated with defects than metrics associated
with aspects more relevant to OO systems, such as response for a class or number
of children. In fact, previous work indicates that there is a correlation between
code complexity and defects [30]. Moreover, variability is often present in such
application domains, which results in the inclusion of macro definitions from the
C language. This may compromise code legibility and make it more fault-prone.

A relevant observation from the results of the GY approach is the importance
of the lines of code (LOC) metric for building a bug predictor for procedural
systems. Using only LOC for identifying fault-prone files is almost as good as
using other metrics, confirming the correlation between LOC and defects [12,25].
This may be an indication that approaches are overfitting their models with large
amounts of metrics, which do not bring useful information. Therefore, studies
that identify which metrics are in fact responsible for good prediction results,
both for OO and procedural systems, are needed. This also helps reduce the cost
of metric extraction.

Threats to Validity. We performed an empirical evaluation of existing bug pre-
dictors, and we mitigated identified threats that could invalidate our results. An
external threat is the number of projects used for evaluation. In order to address
this, we selected systems from different domains, with difference sizes, and both
open-source and proprietary.
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A construction threat is the procedure adopted to extract defects. To mitigate
this, we followed a procedure similar to that adopted by existing approaches,
when issue trackers were not available. Based on the analysis of our systems,
we observed that we would not be able to detect defects introduced and fixed
during the development of a single release—we are not aware how or if prior
work has addressed this issue, given that this was not reported. It would be
inadequate to count them as bugs, because they were not present in the code
from which metrics were extracted. Therefore, we added an additional step in the
defect extraction, which verified if the fix commit changed code present in the
code baseline. Another construction validity is that we implemented ourselves
the investigated approaches. Although most approaches require only to execute
learning techniques, parameters used in previous studies were not published.
Consequently, we calibrated the models. For mitigating this threat, we replicated
published studies using datasets that were made available by the authors, before
performing our study.

6 Conclusion

In this paper, we presented a study in which we investigated how existing bug
prediction approaches perform in the context of procedural software systems,
using static code metrics. Although object orientation is currently the most
used paradigm, procedural languages are still largely used for many fundamen-
tal applications, such as operating systems and scientific computing applica-
tions. The only investigated approach that relies solely on metrics that can be
extracted from procedural systems is that proposed by Koru and Liu [18]. This
approach presented one of the best results, followed by the approach proposed by
Gyimothy et al. [7]. Note that such results were obtained with a subset of metrics
used by these authors, given that some metrics rely on object-oriented concepts.
In fact, the second best approach uses only one metric that can be extracted,
namely lines of code. Therefore, we concluded that this metric plays a key role
to build bug predictors in our context. We also adapted object-oriented metrics
to be extracted from procedural systems. Our conclusion is that they do not
improve the bug prediction for these systems.

Our results showed that bug predictors that have good performance with
object-oriented systems do not necessarily are the best with procedural systems.
Therefore, our future work includes the exploration of particularities of proce-
dural systems and exploitation of metrics based on these particularities to build
prediction models. Moreover, based on the analyzed systems, there is evidence
that it is difficult to obtain good results with systems associated with datasets
that have a low number of files with bugs. Therefore, it is important to explore
techniques in the context of machine learning that deal with the issue of unbal-
anced classes.
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