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Abstract. At EUROCRYPT 2015, Zahur et al. argued that all linear,
and thus, efficient, garbling schemes need at least two k-bit elements to
garble an AND gate with security parameter k. We show how to circum-
vent this lower bound, and propose an efficient garbling scheme which
requires less than two k-bit elements per AND gate for most circuit lay-
outs. Our construction slightly deviates from the linear garbling model,
and constitutes no contradiction to any claims in the lower-bound proof.
With our proof of concept construction, we hope to spur new ideas for
more practical garbling schemes.

Our construction can directly be applied to semi-private function eval-
uation by garbling XOR, XNOR, NAND, OR, NOR and AND gates in
the same way, and keeping the evaluator oblivious of the gate function.

Keywords: Garbled circuits · Lower bound on linear garbling schemes ·
Semi-private function evaluation

1 Introduction

Yao’s garbled circuit technique [28], modeled as a stand-alone primitive by
Bellare et al. [4], is one of the most important techniques to achieve secure
two-party computation. In this technique, one of the parties, the garbler, creates
an encrypted form of a circuit, a so-called garbled circuit, which the other party,
the evaluator, can evaluate without being able to learn anything other than the
output of the computed function. Malkhi et al. demonstrated practical feasibility
of Yao’s technique with their implementation Fairplay [21].

Continued research on Yao’s technique has improved its efficiency in terms
of computational as well as communication cost. After Yao’s original proposal,
which needed four ciphertexts to garble a single gate, several techniques have
been proposed which reduce the number of ciphertexts in a garbled circuit. The
most important works achieve a reduction to a factor roughly between 0.25 and
0.75. Naor et al. [22] pointed out that the number of ciphertexts needed per gate
can be reduced from four to three, by setting one of them to the all-zero string.
Kolesnikov and Schneider [15] showed how to garble XOR gates “for free”, by
setting their output keys to be the XOR of their input keys. Pinkas et al. [26]
use polynomial interpolation to garble gates with only two ciphertexts per gate.
Their technique is not compatible with the free XOR technique.
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Recently, Zahur et al. [29] observed that all of these garbling schemes men-
tioned above share a structure which they model as linear garbling schemes.
Basically, garbler and evaluator use only XOR operations in the field GF (2k),
and calls to a random oracle, to process the circuit. Zahur et al. showed that gar-
bling an AND gate in this linear structure requires at least two ciphertexts. They
further proposed a garbling scheme, the half gate construction, which matches
this lower bound, and is compatible with the free XOR technique. They con-
cluded that to require less ciphetexts, one needs to employ non-linear, and thus,
presumably inefficient techniques. This gives the impression that the optimum we
can achieve concerning communication cost in the semi-honest case has already
been reached. In this work, we show that this is not necessarily the case.

Our Contribution: We propose an efficient garbling scheme which requires
strictly less than two k-bit ciphertexts per AND gate. Our construction is easy
to understand and implement, its computational cost comparable to existing
practical schemes. Evaluation looks the same for XOR, XNOR, AND, NAND,
OR, and NOR gates, so our technique can be applied to secure function evalu-
ation of semi-private functions (SPF-SFE) [25], where the evaluator knows the
circuit topology, but not the gate functions. If the positions of XOR gates are
known, the number of ciphertext can be further reduced. We prove that our gar-
bling scheme achieves simulation-based privacy [4] in the random oracle model.

Our construction requires only a single k-bit ciphertext for AND gates of
which at least one input wire is a circuit input wire. This already seems contra-
dictory to the lower bound, which considers a single AND gate, rather than a
whole circuit. All other (inner) AND gates need one additional k-bit ciphertext
for adjustment. Thus, general circuits require 1 ≤ s < 2 k-bit ciphertexts1 per
AND gate. In circuits with fan-out one, at least half of the gates are input gates,
so we require 1 ≤ s ≤ 1.5 ciphertexts per gate. Even though, we do not break
the lower bound. We circumvent it by slightly deviating from the linear garbling
model, and we do need 5 > 2 ciphertexts for circuit input gates, and 6 > 2
ciphertexts for inner gates. But four of them have the length of merely 2 bit.

We demonstrate how we circumvent the lower bound, and hope that our
observations sow new ideas for further improvement. We further show that there
is at least one other garbling scheme which circumvents the lower bound in a
very similar way: a secret-sharing based construction introduced by Kolesnikov
in 2005 [13] garbles AND gates with zero ciphertexts. Kolesnikov’s technique
produces a large blow-up of the input key size, and is impractical for large
circuits. It is nonetheless interesting to look at in order to find directions for
more efficient constructions.

Idea of our Construction: The linear garbling model performs all operations
in GF (2k). It allows only XOR operations (denoted by ⊕) and random oracle
calls. In contrast, we also use (Z2k ,+), where + denotes standard addition, in
cases where we need d + d �= 0 for some value d.

1 The case s = 2 can only happen in circuits which have no input.
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Consider a hash function H and an AND gate with input wires A and B,
to which we want to assign input wire labels K0

A,K1
A and K0

B ,K1
B , respectively,

as well as output wire labels K0
i and K1

i . We exploit a similar relation as the
free XOR technique, but in Z2k rather than GF (2k): if K1

A = K0
A + d and

K1
B = K0

B + d for some d ∈ Z2k , we have

K0
A + K1

B = K1
A + K0

B = K0
A + K0

B + d.

The garbler can then set the output wire label K0
i to either

K0
i := H(K0

A + K0
B) or K0

i := H(K0
A + K0

B + d),

each with probability 1
2 , and include the single ciphertext

G := H(K0
A + K0

B) ⊕ H(K0
A + K0

B + d)

in the garbled circuit. If we further set

K1
i := H(K0

A + K0
B + 2d) = H(K1

A + K1
B),

the evaluator simply needs to hash his input keys, and XOR the hash value with
the ciphertext G if necessary.

Obviously, this construction is not yet secure, since the ciphertext is never
used if the gate’s output truth value is 1. Therefore, in the case of input (1, 1),
with probability 1

2 , we just let the evaluator use the ciphertext anyway, by setting

K1
i = H(K0

A + K0
B + 2d) ⊕ b1G

for a random bit b1 ∈ {0, 1}. This way, we need to provide only a single k-
bit ciphertext G for security parameter k. The evaluator needs to use G with
probability 1

2 in any case, and learns nothing about the actual input.
Additionally, we need four 2-bit ciphertexts2 to communicate whether the k-

bit ciphertext is to be used or not. Also, the difference d is not preserved for the
output wire labels, so for inner gates, we need one additional k-bit ciphertext for
adjustment. For the same reason, our construction is not compatible with free
XOR. However, XOR gates of which at least one input wire does not depend
on the output of an AND gate, can use the free XOR technique and need 0
ciphertexts, while inner XOR gates can be garbled with only one k-bit ciphertext.

How we bypass the lower bound: In all known linear garbling schemes, the
operation the evaluator needs to perform, for example, which ciphertext to use,
depends on wire-specific permute bits. Changing even one permute bit assigns a
differrent operation to the output truth value 1. The lower-bound proof strongly
depends on this fact, and on the assumption that all ciphertexts are elements of
GF (2k). However, 2-bit values can be masked with 2-bit ciphertexts3.
2 One bit in each ciphertexts contains the actual choice bit whether to use the cipher-

text, and the other contains the color bit of the output label.
3 More precisely, these ciphertexts need only 2 bits of entropy, and can be represented

with a bitstring of length 2.
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Our scheme can be divided into a k-bit part not dependent on any permute
bits, and a 2-bit part which depends on permute bits. For the k-bit part, the same
operation using the same ciphertext might be performed by the evaluator for two
different inputs, which might even lead to different output truth values. Thus,
arguments of the lower-bound proof do not apply4 to our k-bit part. However,
we communicate which operation to perform via several 2-bit ciphertexts, which
depend on permute bits in the standard way, and for which all arguments in the
lower-bound proof hold — we do need more than two of them per AND gate.

Some Remarks: Our construction offers significant improvements for semi-
private functions, where the gate function needs to be hidden and free XOR can-
not be used anyway. If the gate functions are known to the evaluator, whether our
construction actually performs better than the half gate construction strongly
depends on the circuit layout. It might offer significant improvement for circuits
with fan-out one consisting mostly of odd gates like AND, NAND, OR and NOR.
However, for most interesting circuits, the actual practical improvement might
be insignificant or non-existent in the non-semi-private case.

One could argue that, since each circuit input is known either by the garbler
or by the evaluator, all input gates can be garbled as half gates, which require
only one ciphertext. This would make the half gate construction [29] strictly bet-
ter than ours in the case of known gate functions. However, this approach has
several problems. When used with the cut and choose technique, check circuits
would reveal part of the garbler’s input if generator half gates on input level
are opened. In addition, inputs need to be known at the time of garbling, which
makes this approach incompatible with reactive garbling [24], and prevents pro-
ponong the garbling process to an offline phase. Compliance with simulation
based privacy is unclear, since the simulator does not know the inputs. In addi-
tion, this approach seems to contradict the lower bound introduced in the same
paper. Nontheless, we introduce an optimization in Appendix A, which combines
our scheme with this idea, such that the first two gate levels require only one
k-bit ciphertexts per AND gate for fortunate circuit layouts.

Other Related Work: There are at least two garbling schemes [12,13] which
do not need to communicate any k-bit ciphertexts at all, if the garbled circuit has
fan-out one, by garbling the circuit backwards from output gate to input gates.
Both schemes produce larger input keys, and when garbling general circuits,
require additional ciphertexts. One is the information theoretically secure con-
struction by Kolesnikov [13]. Output keys are secret-shared into the input keys,
and no ciphertexts are required at all. However, the secret sharing produces a
blow-up in the input key size which is quadratic in the circuit depth. The other,
introduced by Kempka et al. [12], creates ciphertexts by hashing public data,
sparing the need to communicate them. Fitting decryption keys are then deter-
mined by the garbler, who uses a secret trapdoor to invert the ciphertexts with

4 As we will see, this is also the case in Kolesnikov’s scheme [13], where permute bits
are only assigned to one input wire per gate.
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an inverse trapdoor one-way permutation. Due to the asymmetric primitive, the
construction requires a larger security parameter.

Huang et al. [8] garble AND gates as generator half gates with one ciphertext,
to realize a permutation network. Paus et al. [25] eliminate constant inputs to
reduce the circuit size. Both techniques might be used before applying ours.
However, the benefits do not necessarily add up, because they reduce the number
of input wires. Compliance with simulation-based privacy [4] is unclear since the
simulator does not know the garbler’s input.

Secure function evaluation is called semi-private (SPF-SFE), if the topology
of the circuit is known to the evaluator, but the gate functions are kept secret.
As pointed out by Paus et al. [25], Yao’s original construction [28] already hides
the gate function, and can directly be used for SPF-SFE. The same holds for
the three-row reduction (GRR3) [22]. Both constructions allow using free XOR
in circuit parts which are known to the evaluator. Paus et al. implement circuits
with privately programmable blocks by garbling several functions (sub-circuits)
with Yao’s construction and multiplexing their output. Their construction can
easily be combined with our technique, giving up free XOR for non-private parts,
but reducing the garbled circuit size significantly for the private part of the cir-
cuit. One limitation here is that we cannot realize left-or-right wire choosing
(multiplexing), or constant gates within a single gate. Therefore, the multiplexer-
subcircuit by Paus et al. still needs to be realized using Yao5 circuits. The half
gate approach [29] hides which odd gate (AND, NAND, OR, NOR) is evaluated.
However, the positions of XOR gates need to be known to the evaluator. The
same holds for the GRR2-techniques of Pinkas et al. [26] and Gueron et al. [7].
SPF-SFE is also covered by works on private function evaluation, which addi-
tionally hide the circuit topology. Naturally, hiding the topology comes with a
lager overhead in the circuit size. Constructions using universal circuits require
O(l · log(l)) [27] or O(l · log2(l)) [16] additional gates, where l is the number
of gates of the original circuit. The LEGO-like construction of Katz and Malka
[11] produces less overhead, but requires asymmetric primitives, in particular,
one-time homomorphic encryption.

Another line of research focuses on security against malicious adversaries
[1,5,6,9,10,17,19,20,23]. This work focuses on the semi-honest case.

2 Preliminaries

2.1 Notation

We use the following notations. By x
U← X, we denote that x is randomly selected

from the set X according to uniform distribution, x ← Algo denotes that x is
the output of a probabilistic algorithm Algo, A := B denotes that A is defined
by B, and [S]x denotes the x-th bit of bitstring S. Our security parameter is k.

5 It is easy to see that we can use Yao’s garbling technique, GRR3 and our technique
in the same circuit, and even adjust the difference of output wire labels in gates
garbled with Yao’s technique or GRR3 on the way.
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2.2 Garbling Scheme

In this section, we recall the definition of garbling schemes and the notion of
simulation-based privacy of Bellare et al. [4].

A circuit is described as f = (n,m, l, A,B, g). Here, n ≥ 2 is the number
of circuit input wires, m ≥ 1 is the number of circuit output wires, and l ≥ 1
is the number of gates (and their output wires). Let W = {1, ..., n + l} be
the set of all wires, Winput = {1, ..., n} the set of circuit input wires, Woutput =
{n+l−m+1, ..., n+l} the set of circuit output wires, and Wgate = {n+1, ..., n+l}
the set of gates (and their output wires). The functions A : Wgate → W \Woutput

and B : Wgate → W \ Woutput specifiy the first input wire A(i) and the second
input wire B(i) of each gate i, respectively. We require A(i) < B(i) < i for all
i ∈ Wgate. The function g : Wgate × {0, 1}2 → {0, 1} specifies the gate function
g(i, ·, ·) = gi(·, ·) of each gate i. We leave out the parameter i if it is clear from
context. We define the notion of garbling schemes as follows.

Definition 1 (Garbling Scheme). A garbling scheme for a family of circuits
F = {Fn}n∈N, where n is a polynomial in a security parameter k, consists
of probabilistic polynomial-time algorithms GC = (Garble,Encode,Eval,Decode)
defined as follows.
– Garble takes as input security parameter 1k and circuit f ∈ Fn, and outputs

garbled circuit F , encoding information e, and decoding information d, i.e.,
(F, e, d) ← Garble(1k, f).

– Encode takes as input encoding information e and circuit input x ∈ {0, 1}n,
and outputs garbled input X, i.e., X ← Encode(e, x).

– Eval takes as input garbled circuit F and garbled input X, and outputs garbled
output Y , i.e., Y ← Eval(F,X)

– Decode takes as input decoding information d and garbled output Y , and out-
puts circuit output y, i.e., y ← Decode(d, Y ).

A garbling scheme should have the following correctness property: for all
security parameters k, circuits f ∈ Fn, and input values x ∈ {0, 1}n, (F, e, d) ←
Garble(1k, f), X ← Encode(e, x), Y ← Eval(F,X), y ← Decode(d, Y ), it holds
that y = f(x).

We then define simulation-based privacy of garbling schemes as follows. We
adapt the notion of Bellare et al. [4] slightly to allow the adversary access
to a random oracle H. We denote by Φ(f) the information about circuit f
that is allowed to be leaked by the garbling scheme, e.g., size Φsize(f) =
(n,m, l), topology Φtopo(f) = (n,m, l, A,B), or the entire information Φcirc(f) =
(n,m, l, A,B, g) of circuit f = (n,m, l, A,B, g).
Definition 2 (Simulation-based Privacy). For a garbling scheme GC =
(Garble,Encode,Eval,Decode), function f ∈ Fn, input values x ∈ {0, 1}n, simu-
lator Sim, and random oracle H, the advantage of the adversary A is defined as
Advprv.sim

GC,Sim,Φ,A(k) :=

| Pr[s ← AH(1k), (F, e, d) ← Garble(1k, f), X ← Encode(e, x) : AH(s, F, X, d) = 1]

−Pr[s ← AH(1k), (F,X, d) ← Sim(1k, Φ(f), f(x)) : AH(s, F,X, d) = 1]|.
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A garbling scheme GC = (Garble,Encode,Eval,Decode) is private, if there
exists a probabilistic polynomial-time simulator Sim, such that for any function
f ∈ Fn, input values x ∈ {0, 1}n, and probabilistic polynomial-time adversary
A, the advantage Advprv.sim

GC,Sim,Φ,A(k) is negligible.

3 A Garbling Scheme Which Circumvents the Lower
Bound

We first describe our basic garbling scheme considering only AND gates, in the
semi-honest model. In Sect. 3.2, we describe how to garble other gate types,
and application to semi-private functions. Our scheme is not compatible with
free XOR, but Sect. 3.3 shows that we can garble XOR gates with 0 or 1 k-bit
ciphertexts, and sometimes even inner AND gates can be garbled with 1 k-bit
ciphertext. Section 3.4 briefly discusses the malicious case. We estimate efficiency
in Sect. 4, and prove that our scheme achieves simulation-based privacy as defined
by Bellare et al. [4] in the semi-honest setting in Sect. 5.

3.1 Our Construction

We use the following notation. Let k be our security parameter. With the +
symbol, we denote addition in Z2k . The operation ⊕ performs a bitwise XOR
on bitstrings. Elements in Z2k are interpreted as bitstrings when used with the
⊕ operation. The function lsb(x) returns the least significant bit of its input x,
and the function lsb2(x) returns the two least significant bits of x.

We assign to each wire i two labels K0
i ,K1

i ∈ Z2k , where Kb
i represents the

truth value b ∈ {0, 1} on that wire. To each wire i, we assign a random permute
bit λi known only to the garbler. Each wire label Kb

i has assigned a bit cb
i = λi⊕b,

which we call the color bit or the color of a wire label, in the style of previous
work, and to avoid confusion with other choice bits which we describe below. So
far, this is no different from most existing garbling schemes. However, jumping
ahead, to circumvent the lower bound, the actual operation to compute a gate’s
output label needs to be somewhat detached from the color bits and the permute
bits. To achieve this, we use three additional kinds of choice bits. Their exact
role, and their relations among each other as well as to the permute and color
bits, will become clear in the scheme description. We provide a brief overview
here. In the garbling process, the garbler chooses two random bits b0 and b1

for each gate. These bits define by which operation the gate’s output labels are
computed. The bits b0 and b1 are independent of all color bits cb

i and permute
bits λi. They need to remain secret, but define a single choice bit γ(a,b) for each
gate input (a, b) ∈ {0, 1}2. The appropriate γ(a,b) needs to be communicated to
the evaluator. We use the color bits ca

i , cb
i of the gate’s input wires to point to

the correct encryption of the corresponding choice bit γ ∈ {γ(a,b)}(a,b)∈{0,1}2 ,
which then points to the correct operation to compute the gate’s output label.

Our garbling algorithm is described in Fig. 1. Encoding of inputs and evalu-
ation are described in Figs. 2 and 3. Decoding consists of XORing the color bits
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of the circuit output wires with the corresponding permute bits, as specified in
Fig. 4. To prevent attacks similar to the one described by Bellare et al. [3], we
include a second parameter in our hash function H: a unique tweak j, incre-
mented before each (evaluator’s) call to the hash function. This is also done in
the half gate construction for similar reasons. We denote this in the same way,
using a stateful procedure nextindex(), which increments an internal counter and
returns it. For the sake of readability, we leave out this tweak in the following
informal description of our garbling scheme.

Let i be an AND gate with input wires A and B. Similar to the free XOR
technique, we exploit commutativity of the + operation: if K1

A = K0
A + di and

K1
B = K0

B + di, we have

K0
A + K1

B = K1
A + K0

B = K0
A + K0

B + di.

We further arrange the output wire labels to be either the hash of the input
keys, or the k-bit ciphertext included in the garbled gate XOR this hash value.

In more detail, to garble an AND gate, the garbler chooses two random bits
b0, b1 ∈ {0, 1}, sets the output wire label K0

i assigned to truth value 0 to

K0
i := H(K0

A + K0
B + b0di),

and includes in the garbled circuit the single ciphertext

G := H(K0
A + K0

B) ⊕ H(K0
A + K0

B + di).

The garbler further sets the output wire label K1
i assigned to truth value 1 to

K1
i := H(K0

A + K0
B + 2di) ⊕ b1G = H(K1

A + K1
B) ⊕ b1G.

To evaluate an AND gate, given the input wire labels KA and KB , the
evaluator needs to compute either H(KA + KB) or H(KA + KB) ⊕ G. We let
the evaluator know whether he needs to use the ciphertext G via a choice bit γ,
which he can compute using his input keys as described below. The choice bit γ
does not reveal any information about the input, since for any input combination
(a, b) ∈ {0, 1}2, the evaluator needs to use the ciphertext with probability 1

2 .
Before we continue our description, let us point out that so far, we have not

used any permute bits or color bits. In fact, whether the evaluator needs to use
the ciphertext G, only depends on the input, and the bits b0 and b1, which are
independent of any wire-specific permute bits. This fact plays an important role
in circumventing the lower bound on garbling schemes [29]. Details on this can be
found in Sect. 6. Arguments in the lower-bound proof show us that to circumvent
the lower bound, we need to avoid a direct dependency between permute bits
assigned to the input wires and the choice bit γ, which implies that γ cannot be
computed by the evaluator as a function of the color bits. Instead, we include in
the garbled circuit the four 1-bit ciphertexts

bγ
(a,b) := lsb(H(Ka

A||Kb
B)) ⊕ γ(a,b),
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which encrypt the correct choice bit γ(a,b) for each possible input combination
(a, b) ∈ {0, 1}2. The choice bits γ(a,b) only depend on b0 and b1, we have

γ(0,0) = b0, γ
(0,1) = γ(1,0) = 1 − b0, γ

(1,1) = b1.

However, we order the four ciphertext bγ
(a,b) according to the permute bits

λA and λB of the input wires, so the evaluator can choose the correct ciphertext
using his color bits ca

A = λA ⊕ a and cb
B = λB ⊕ b as usual.

We still need to describe how the evaluator learns the color bits. For the
circuit input wires, we can use the least significant bit of the input wire labels as
usual. However, we have little freedom in choosing output wire labels, and thus
cannot guarantee their least significant bits to be different. Instead, as for γ, we
include in the garbled circuit four additional 1-bit ciphertexts,

bc
(a,b) := lsb(H(Ka

A||Kb
B)) ⊕ gi(a, b) ⊕ λi,

among which the evaluator chooses using the color bits of the input wire labels,
so together with the four ciphertexts encrypting γ, we would have eight 1-bit
ciphertexts in total. To reduce the number of oracle calls, we use the two least
significant bits of the hash output, denoted by lsb2(H(.)), and create the four
2-bit ciphertexts

bc
(a,b)||bγ

(a,b) := lsb2(H(Ka
A||Kb

B)) ⊕ ((gi(a, b) ⊕ λi)||γ(a,b))

instead. This way we avoid having to evaluate the hash function twice on the
same input values but with different tweaks.

Unfortunately, we cannot have a global difference d such that K1
i = K0

i + d
for each wire i. Since the labels of circuit input wires can be chosen freely,
they can be given the same difference. However, this difference is not preserved
and cannot be controlled in non-input wires. In the next circuit level, gate i’s
input wires A and B will thus have wire labels (K0

A,K1
A) and (K0

B ,K1
B) with

K1
A−K0

A �= K1
B−K0

B with high probability. We provide one additional ciphertext
to adjust the difference: let λB the permute bit on wire B, and the difference d′

used for this gate d′ := K1
A−K0

A. Then we set KλB

B′ := KλB

B , K1−λB

B′ := KλB

B′ +d′

and include a second k-bit ciphertext E := K1−λB

B′ +K1−λB

B in the garbled circuit.
This is why we need two ciphertexts for inner6 AND gates. The complete garbling
algorithm is described in Fig. 1. For better readability, we only describe AND
gates in the main algorithm. A discussion about arbitrary gates and semi-private
function evaluation can be found in Sect. 3.2.

We cannot use a field with characteristic two to compute addition, since we
require 2d �= 0 for all differences d occurring in the garbled circuit. Therefore,
we perform addition in Z2k , which gives us a small error probability: there is one
element d0 ∈ Z2k with order 2. Since K + 2d0 = K for all K ∈ Z2k , garbling a

6 The situation changes when an inner AND gate has only XOR gates as predecessors.
In this case, we can use the freedom of key choices in the XOR gates to adjust the
difference of the AND gate’s input keys.
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Garbling algorithm Garble(1k, f)

Input: Security parameter k, Circuit f = (n, m, l, A, B, g)
Algorithm: 1. Initialize empty arrays F [], e[], d[] with |F | = l, |e| = n and |d| = m.

2. Garbling the gates: For i := n + 1 to l + n do:
(a) Set A := A(i) and B := B(i)
(b) If undefined, choose permute bits λA, λB ∈ {0, 1} at random.

For all (a, b) ∈ {0, 1}2, if undefined, set ca
A := λA ⊕ a, cb

B := λB ⊕ b.
(c) Input keys:

– If A’s and B’s labels are defined:
Set di := K1

A − K0
A,

K
λB
B

:= K
λB
B , and

K
1−λB
B

:= K
λB λB
B

+ (-1) di.

Set jE := nextindex(),

E := H(K
1−λB
B , jE) ⊕ K

1−λB
B

.

– If A’s labels are defined and B’s labels are undefined (vice versa ana-
log), set di := K1

A−K0
A, choose K0

B at random and set K1
B := K0

B +di,

K0
B

:= K0
B , K1

B
:= K1

B .
– If A’s and B’s labels are undefined,

choose K0
A, K0

B and di at random and

set K1
A := K0

A + di, K1
B := K0

B + di, K0
B

:= K0
B , K1

B
:= K1

B .
(d) GarbleAND:

Set jL := nextindex().
Set G := H(K0

A + K0
B

, jL) ⊕ H(K0
A + K0

B
+ di, jL).

Choose random bits b0, b1 ∈ {0, 1}.
Set K0

i := H(K0
A + K0

B
+ b0di, jL).

Set K1
i := H(K0

A + K0
B

+ 2di, jL) ⊕ b1G.

Set γ(0,0) := b0, γ(0,1) := γ(1,0) := 1 − b0, γ(1,1) := b1.

(e) Encrypt choice bits γ(a,b) and color bits of output wire:
Set jc,γ := nextindex().
Choose random permute bit λi ∈ {0, 1}.
For all (a, b) ∈ {0, 1}2,

bc,γ

2ca
A

+cb
B

:= lsb2(H(Ka
A||Kb

B
, jc,γ)) ⊕ ((gi(a, b) ⊕ λi)||γ(a,b)),

(f) Set F [i] := (bc,γ
0 , bc,γ

1 , bc,γ
2 , bc,γ

3 , G, E), if E is defined.
Set F [i] := (bc,γ

0 , bc,γ
1 , bc,γ

2 , bc,γ
3 , G), otherwise.

(g) If j ∈ {A, B} is a circuit input wire (j ∈ Winput),

set e[j] := (K0
j ||c0j , K1

j ||c1j ).

If i ∈ Woutput, set d[i − (n + l) + m] := λi.

Output: Garbled circuit F , encoding e, decoding d = (λn+l−m+1, . . . , λn+l)

Fig. 1. The proposed garbling algorithm.

Encoding algorithm Encode(e, x)

Inputs: Garbled input keys e, input x
Algorithm: Parse x to x = x1 . . . xn

For i = 1 to n do:
Parse e[i] = (e0, e1)
X[i] := exi

Return X

Fig. 2. The function Encode.
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Evaluation algorithm Eval(F, X)

Inputs: Garbled circuit F , garbled input X
Algorithm: 1. For j = 1 to n do

Kj ||cj := X[j]
2. Compute wire labels:

For i := n + 1 to l + n do
– Set A := A(i) and B := B(i).
– Set x := 2cA + cB .
– Parse F [i] = (bc,γ

0 , bc,γ
1 , bc,γ

2 , bc,γ
3 , G, E)

– If E is defined:
• Set jE := nextindex().
• If cB = 0, set KB := E ⊕ H(KB , jE).

– Set jL := nextindex(), jc,γ := nextindex().
– Compute ci||γ := lsb2(H(KA||KB , jc,γ)) ⊕ bc,γ

x .
– Set Ki := H(KA + KB , jL) ⊕ γG.

3. Return Y := (cn+l−m+1, . . . , cn+l).

Fig. 3. The evaluation algorithm.

Decoding algorithm Decode(d, Y )

Inputs: Decoding d, evaluation output Y

Algorithm: Parse Y = (c1, . . . , cm)

Parse d = (λ1, . . . , λm)

Return f(x) := (c1 ⊕ λ1, . . . , cm ⊕ λm)

Fig. 4. The function Decode.

Garbling other gate types

GarbleOR:
Set jL := nextindex().
Set G := H(K0

A + K0
B

+ di, jL) ⊕ H(K0
A + K0

B
+ 2di, jL).

Choose random bits b0, b1 ∈ {0, 1}.
Set K0

i := H(K0
A + K0

B
, jL) ⊕ b1G.

Set K1
i := H(K0

A + K0
B

+ di + b0di, jL).

Set γ(0,0) := b1, γ(0,1) := γ(1,0) := b0, γ(1,1) := 1 − b0.

GarbleXOR:

Set jL := nextindex().

Set G := H(K0
A + K0

B
, jL) ⊕ H(K0

A + K0
B

+ 2di, jL).

Choose random bits b0, b1 ∈ {0, 1}.

Set K0
i := H(K0

A + K0
B

+ b02di, jL).

Set K1
i := H(K0

A + K0
B

+ di, jL) ⊕ b1G.

Set γ(0,0) := 1 − b0, γ(0,1) := γ(1,0) := b1, γ(1,1) := b0.

Fig. 5. Garbling OR and XOR gates. Garbling NAND, NOR and XNOR can be done
by swapping K0

i and K1
i in the AND, OR and XOR description, respectively.
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gate with input wire labels differing by d0 produces identical output wire labels
for this gate, or labels differing by G. However, the error probability is negligible,
and the garbler can detect it and start over with different randomness. We need
to take care of this in the malicious case, as discussed in Sect. 3.4.

3.2 Arbitrary Gates and Semi-private Function Evaluation

We can garble other odd gates like NAND, OR and NOR, as well as the even
gates XOR and XNOR, in a very similar way, by substituting the GarbleAND part
(Step (d) in Fig. 1) with the appropriate one in Fig. 5. Evaluation is the same
as for AND gates, so the evaluator only needs to know the circuit topology.
This makes our construction directly applicable to semi-private functions [25].
To our knowledge, the best construction in previous work which garbles XOR
and odd gates in the same way is Yao’s original construction with GRR3, which
needs three ciphertexts per garbled gate, while our construction needs one k-bit
ciphertext for each input gate and two k-bit ciphertexts for each inner gate.

The reason we can easily garble odd and even gates in the same way is the
shared additive difference d in (Z2k ,+) of the gate input wires. In most garbling
schemes, a function F (·, ·) is applied to the two input wire labels to compute
the output labels in some way. Often F is a hash function or a key derivation
function. The mapping F (KA,KB)) 	→ Ki has a different input/output pattern
for odd and even gates in most garbling schemes (see Table 1): leaving out free-
XOR, F (Ka

A,Kb
B)) usually has a different value for each of the four gate inputs

(a, b) ∈ {0, 1}2. In odd gates, three of them are mapped to a value v, and one is
mapped to 1−v, where v depends on the gate type, we call this a 3/1 pattern. In
the even gates XOR and XNOR, the two values F (K0

A,K0
B)) and F (K1

A,K1
B))

are mapped to a value v, and the other two to 1 − v, producing the even 2/2
pattern. In our construction, F (Ka

A,Kb
B)) = H(Ka

A + Kb
B). We only have the

three values H(K0
A + K0

B), H(K0
A + K0

B + d), and H(K0
A + K0

B + 2d). In each
gate, two of them are mapped to a value v, and one is mapped to 1− v, creating
a 2/1 pattern for both odd and even gates (see Table 2).

Table 1. Usual output patterns

input odd gates even gates

(N)AND (N)OR X(N)OR

F (K0
A, K0

B) v 1 − v v

F (K0
A, K1

B) v v 1 − v

F (K1
A, K0

B) v v 1 − v

F (K1
A, K1

B) 1 − v v v

Pattern: 3/1 3/1 2/2

Table 2. Output patterns in our construction

input odd gates even gates

(N)AND (N)OR X(N)OR

F (K0
A + K0

B) v 1 − v v

F (K0
A + K0

B + d) v v 1 − v

F (K0
A + K0

B + 2d) 1 − v v v

Pattern: 2/1 2/1 2/1
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3.3 More Efficient Handling of XOR Gates

Our wire labels do not share a global difference Δ with K1
i = K0

i ⊕ Δ for
each wire i. Thus, we cannot use the free XOR technique directly. We can still
incorporate its idea in our garbling scheme to save ciphertexts.

Free XOR and 1-Ciphertext-XOR. Input XOR gates can be garbled with
zero ciphertexts. An XOR gate with only circuit input wires as input can simply
be garbled as in the free XOR technique. Now assume an XOR gate i with input
wires A and B with labels K0

A,K1
A,K0

B ,K1
B , where B is a circuit input wire, and

the labels for A are already defined. We can set Δi := K0
A ⊕ K1

A, choose K0
B at

random, set K1
B := K0

B ⊕ Δi, K0
i := K0

A ⊕ K0
B , and K1

i := K0
i ⊕ Δi.

Inner XOR gates can be garbled using one ciphertext to adjust the difference
between the input wire labels in the same way as for the AND gates, but in
GF (2k) rather than Z2k . Alternatively, one could use the FleXOR technique
[14] or the technique by Gueron et al. [7] for inner XOR gates.

Backward Construction for Inner Gates with Preceding XOR Gates.
If all paths of an input wire of an inner gate to circuit input wires consist only of
XOR gates, we can sometimes adjust these preceding XOR gates in a backward
manner, such that we can garble an inner XOR gate for free, or garble an inner
AND gate with one ciphertext as if it were an input gate.

As an example, consider the circuit wA := w1 ⊕ w2, wB := w3 ⊕ w4, and
wO := wA ∧ wB where w1, w2, w3, w4 are the circuit input wires, wA and wB

are the left and right input wires of the AND gate, and wO is the circuit output
wire. Using the following construction, we only need 0, 0, and 1 ciphertexts for
the left XOR gate, right XOR gate, and AND gate, respectively.

1. Construct the left XOR gate with 0 ciphertexts as in the usual free XOR
technique, using some random difference Δ0. This defines the labels K0

A,K1
A

for the left input wire wA of the AND gate.
2. Define the additive difference d := K1

A − K0
A. Select random K0

B , set K1
B :=

K0
B +d for the right input wire wB of the AND gate. The AND gate can now

be garbled with 1 ciphertext.
3. Define the XOR difference Δ := K1

B ⊕ K0
B . Select random K0

3 and K0
4 , set

K1
3 := K0

3 ⊕ Δ and K1
4 := K0

4 ⊕ Δ for the input wires w3 and w4 of the right
XOR gate. No ciphertexts are needed for this gate.

Using intelligent difference adjustment like this, we can save adjustment
ciphertexts for inner gates.

3.4 Security Against Malicious Adversaries

To achieve security against malicious adversaries, we can combine our construc-
tion with standard cut and choose [18]. Additional care needs to be taken that a
malicious garbler cannot violate correctnes by choosing input wire labels K0

A,K1
A
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and K0
B ,K1

B with a difference d with order 2 in Z2k . Otherwise, he could set the
labels of the output wire to identical values K0

i = K1
i := H(K0

A + K0
B) =

H(K0
A + K0

B + 2d), or even make the circuit output the same for any input. A
standard cut and choose check as in Lindell et al. [18] can prevent this, too.

4 Efficiency

In this efficiency estimation, we focus on the communication cost of our garbling
scheme. Computational cost is comparable to existing practical constructions. A
comparison of the number of calls to the hash function is listed in Table 3, where
we consider plain SFE and handling of XOR gates as described in Sect. 3.3.

Table 3. Number of oracle calls per gate in plain SFE

Technique Garbler Evaluator

XOR AND XOR AND

classical [2] 4 4 4 4

row reduction (GRR3) [22] 4 4 1 1

row reduction [26] 4 4 1 1

free XOR + GRR3 [15] 0 4 1 1

fleXOR [14] {0, 2, 4} 4 {0, 1, 2} 1

half gates [29] 0 4 0 2

this work {0, 1} {4, 5} {0, 1} {2, 3}

We estimate efficiency in three settings: Plain secure function evaluation
(SFE) in which the evaluator knows all gate functions, SPF-SFE in which he
only knows the circuit topology, and SFE with semi-private sub-circuits. Garbled
odd gates do not differ in size, so it is sufficient to consider AND and XOR gates.

4.1 Efficiency in Plain SFE

First, we estimate efficiency assuming the evaluator knows all gate functions. We
call a gate with at least one circuit input wire as input wire an input gate, and an
inner gate is a gate which is not an input gate. Let lA denote the number of AND
gates, lA,in the number of AND gates which are input gates, and lA,mid = lA − lA,in

the number of inner AND gates. Similarly, lX denotes the number of XOR gates,
lX,in the number of XOR gates which are input gates, and lX,mid = lX − lX,in the
number of inner XOR gates. We have l = lA + lX = lA,in + lA,mid + lX,in + lX,mid.

We consider handling XOR gates as described in Sect. 3.3, without the opti-
mization for inner gates preceded by XOR gates. We compare the size of our
garbled circuits with several garbling schemes in Table 4. In our construction, an
XOR gate requires 0 or 1 k-bit elements, and an AND gate requires 1 or 2 k-bit
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Table 4. Size of garbled circuit in the plain SFE

technique k-bit elements/gate total bits of garbled circuit

XOR AND

classical [2] 4 4 4(k + 1)l

row reduction (GRR3) [22] 3 3 3(k + 1)l

row reduction (GRR2) [26] 2 2 2(k + 1)l

free XOR + GRR3 [15] 0 3 3(k + 1)lA

fleXOR [14] {0, 1, 2} 2 x s.t. 2lA(k + 1) ≤ x ≤ 2(k + 1)l

half gates [29] 0 2 2lA(k + 1)

this work {0, 1} {1, 2} 8lA + k(lA,in + 2lA,mid + lX,mid)

elements, depending on the gate’s position in the circuit. The other construc-
tions use the least significant bits of wire labels to communicate color bits. This
reduces security by one bit, so (k + 1)-bit elements are needed to achieve the
same security parameter k. Our construction requires 8 bits per gate in addition
to the k-bit elements, 8l + k(lA,in + 2lA,mid + lX,mid) bits in total.

Our construction generates smaller garbled circuits than the half gate con-
struction when k(lA,in−lX,mid)−8l > 0, i.e., when there are more input AND gates
than inner XOR gates. Although our construction circumvents the lower bound
and generates smaller garbled circuits in some cases, the half gate construc-
tion may still be the most efficient garbling scheme for most realistic circuits in
plain SFE.

4.2 Efficiency in SPF-SFE

Second, we consider semi-private functions, where the evaluator is only allowed to
learn the circuit topology. We assume that the garbler knows the function before
garbling, and circuits consist of AND, NAND, OR, NOR, XOR and XNOR
gates7. In the SPF-SFE setting, we garble XOR gates according to Fig. 5 to make
them indistinguishable from other gate types. Therefore, the size of a gate does
not depend on its type. Let lin denote the number of input gates, lmid the number
of inner gates, and l = lin + lmid the total number of gates. We compare our
construction to other garbling schemes compatible with SPF-SFE in Table 5. We
omit GRR2, free XOR + GRR3 and fleXOR in this comparison, since they are
less efficient than the half gates approach, and require the evaluator to know the
positions of XOR gates. The same is true for the half gates approach, so for SPF-
SFE, the circuit has to be transformed into one without XOR gates, which can be
done by replacing each XOR gate with two odd gates. Therefore, effectively four
ciphertexts are required for an XOR gate in the half gate approach. Note that

7 Circuits containing multiplexers (for example to realize programmable blocks), or
gates with constant output, could use GRR3 only for these gates.
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Table 5. Size of garbled circuit in SPF-SFE

technique k-bit elements/gate total bits of garbled circuit

classical [2] 4 4(k + 1)l

GRR3 [22] 3 3(k + 1)l

half gates [29] {2, 4} (k + 1)(2lA + 4lX)

this work {1, 2} 8l + k(lin + 2lmid)

free XOR cannot be used, because the gate types need to be indistinguishable.
As shown in Table 5, our construction is the most efficient one in this setting.

4.3 Efficiency in SFE with Semi-private Sub-circuits

Finally, we consider an evaluator who knows the gate function in some parts of
the circuit, and only the topology in the other parts. Let l(pub) be the number of
gates of which the evaluator knows the gate function, and l(prv) be the number of
the other, “private” gates. Let l(pub)A,in , l(pub)X,in , and l(prv)

in denote the public/private
part of lA,in, lX,in, and lin, respectively.

We observe that GRR3 and the half gate construction can be combined easily.
The difference between the half gate construction and ours is k(l(pub)A,in − l(pub)X,mid) −
8l(pub) in the public part. The difference between GRR3 and our technique is
2k(l(prv)+l(prv)

in )−5l(prv) in the private part. Therefore, our construction generates
smaller garbled circuits when k(l(pub)A,in + 2l(prv) + 2l(prv)

in − l(pub)X,mid) − 5l − 3l(pub) > 0.
Which construction is the most efficient depends on how much of the circuit is
private, and on the number of inner XOR gates in the public part.

5 Proof of Security

5.1 Correctness

Correctness of our garbling scheme clearly holds. In the case of AND gates,
correctness follows from the following equations:

((gi(a, b) ⊕ λi)||γ(a,b)) = bc,γ

2caA+cbB
⊕ lsb2(H(Ka

A||Kb
B′ , jc,γ))

and

H(K0
A + K0

B , jL) ⊕ γ(0,0)G = H(K0
A + K0

B , jL) ⊕ b0G = H(K0
A + K0

B + b0di, jL),

H(K0
A+K1

B , jL)⊕γ(0,1)G = H(K0
A+K0

B+di, jL)⊕(1−b0)G = H(K0
A+K0

B+b0di, jL),

H(K1
A+K0

B , jL)⊕γ(1,0)G = H(K0
A+K0

B+di, jL)⊕(1−b0)G = H(K0
A+K0

B+b0di, jL),

H(K1
A + K1

B , jL) ⊕ γ(1,1)G = H(K0
A + K0

B + 2di, jL) ⊕ b1G.

Correctness of the other gate types can be shown analogously.
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5.2 Simulation-Based Privacy of Semi-private Functions

By active labels we denote labels which are used in an actual evaluation. An
inactive label is a label which is not active. For example, if the actual truth
value on wire i is vi, Kvi

i is an active label and K1−vi
i is an inactive one.

In the proof, the simulator can obtain only active labels, and cannot obtain
inactive labels and differences di. It means that the simulator can compute
only one of {H(K0

A + K0
B + bdA, j)}b∈{0,1,2}, and one of {H(K0

A + adA||K0
B +

bdA, j)}a,b∈{0,1}.
To simulate the hash values of inactive labels without knowledge of di’s, the

simulator uses the following 10 oracles for a given hash function H : {0, 1}∗ −→
Z2k ,

– Corr
(1)
di

(K, b, j) = H(K + bdi, j) where K ∈ Z2k and b ∈ {−2,−1, 1, 2}.

– Corr
(2)
di

(K, b1, b2, j) = H(K + b1di, j) ⊕ H(K + b2di, j) where K ∈ Z2k and
(b1, b2) ∈ {(−1,−2), (1, 2), (−1, 1)}.

– For each (K, j), one can query Corr
(1)
di

(K, b, j) or Corr(2)di
(K, b1, b2, j) only once

(one cannot query both).
– Corr

(3)
di

(K1,K2, a, b, j) = H(K1 + adi||K2 + bdi, j) where K1,K2 ∈ Z2k and
a, b ∈ {−1, 0, 1}.

– Corr
(4)
di,dj

(K, a, b, j′) = H(K + adj , j
′) ⊕ (K + bdi) where K ∈ Z2k and a, b ∈

{−1, 1}.
– Corr

(5)
di,dj

(i, j, a, b) = adi + bdj where (a, b) ∈ {(1,−1), (−1, 1)}.

– Rand
(1)
di

(K, b, j),Rand(2)
di

(K, j),Rand(3)
di

(K1,K2, a, b, j) and Rand
(4)
di,dj

(K, a, b, j)
output a random value in Z2k .

– Rand
(5)
di,dj

(i, j, a, b) chooses d̂i and d̂j at random and outputs ad̂i + bd̂j .

We use Corr(1)dA
, Corr(2)dA

and Corr
(3)
dA

for obtaining H(K0
A+K0

B+bdi, j), H(K0
A+

K0
B + b1di, j) ⊕ H(K0

A + K0
B + b2di, j) and H(K0

A + adi||K0
B + bdi, j), which are

used for simulating G and bc,γ . For simulating E, we use Corr
(4)
dA,dB

and Corr
(5)
dA,dB

to obtain H(K1−vi

B , j) ± dA and ±dA ∓ dB , respectively.
In the random oracle model, it is clear that Corr

(1)
di

, Corr
(2)
di

, Corr
(3)
di

and

Corr
(4)
di,dj

output a uniformly random distribution. In addition, each di is uni-
formly random since di is either chosen uniformly at random or the difference
of two hash values. Therefore, Corr(5)di,dj

and Rand
(5)
di,dj

output an identical distri-
bution. In our sequence of games, we replace the Corr oracles with Rand oracles
to move from the real game to the simulation. The proposed garbling scheme is
simulation-based private for Φ = Φtopo in the random oracle model.

Theorem 1 (Simulation-based Privacy of Semi-private Functions).
The proposed garbling scheme described in Sect. 3 satisfies simulation-based
privacy, for Φ = Φtopo = (n,m, l, A,B) of ciruit f = (n,m, l, A,B, g), of
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S(1k, Φtopo(f), f(x))

Input: Security parameter k, Circuit f = (n, m, l, A, B, g), and output f(x).
Algorithm: 1. Initialize empty arrays F [], X[] and d with |F | = l, |X| = n and d =

m.
2. Garbling the gates: For i := n + 1 to l + n do:

(a) Set A := A(i) and B := B(i)
(b) If undefined, choose permute bits λA, λB ∈ {0, 1} at random.

For all (a, b) ∈ {0, 1}2, if undefined, set ca
A := λA ⊕ a, cb

B := λB ⊕ b.
(c) Input keys:

– If A’s and B’s labels are defined, set jE := nextindex(). If 0 = λB ,

set K0
B

:= K0
B and E := Rand

(4)
dA,dB

(K0
B , 1, 1, jE). Otherwise, set

K0
B

:= K0
B + Rand

(5)
dA,dB

(A, B, 1, −1) and E := H(K0
B , jE) ⊕ K0

B
.

– If A’s labels are defined and B’s labels are undefined (vice versa ana-
log), choose K0

B at random and set K0
B

:= K0
B .

– If A’s and B’s labels are undefined, choose K0
A and K0

B at random and

set K0
B

:= K0
B .

(d) Output Keys:
Choose random bit b0, b1, ∈ {0, 1} and set jL := nextindex().

Set γ(0,0) := b0, γ(0,1) := γ(1,0) := 1 − b0, γ(1,1) := b1.

Choose random G and K0
i := H(K0

A + K0
B

, jL) ⊕ γ(0,0)G.
(e) Encrypt choice bit:

Set jc,γ := nextindex(), choose λi ∈ {0, 1} at random.
– If (a, b) = (0, 0),

bc,γ

2c0
A

+c0
B

:= lsb2(H(K0
A||K0

B
, jc,γ)) ⊕ ((gi(0, 0) ⊕ λi)||γ(0,0)).

Exception: if i = l + n, set

bc,γ

2c0
A

+c0
B

:= lsb2(H(K0
A||K0

B
, jc,γ)) ⊕ ((gi(0, 0) ⊕ λi ⊕ f(x))||γ(0,0)).

– Otherwise,

bc,γ

2ca
A

+cb
B

:= lsb2(Rand
(3)
dA

(K0
A, K0

B
, a, b, jc,γ))⊕((gi(a, b)⊕λi)||γ(a,b)).

(f) Set F [i] := (bc,γ
0 , bc,γ

1 , bc,γ
2 , bc,γ

3 , G, E), if E is defined.
Set F [i] := (bc,γ

0 , bc,γ
1 , bc,γ

2 , bc,γ
3 , G), otherwise.

(g) If j ∈ {A, B} is a circuit input wire, set X[j] := K0
j ||c0j .

If i ∈ Woutput, set d[i − (n + l) + m] := λi.
Output: Garbled circuit F , garbled input X, decoding d.

Fig. 6. The simulator S.

Definition 2, if we assume that H is a random oracle. More precisely, for any
adversary A there exists an adversary B such that

Advprv.sim
GC,Sim,Φtopo,A(k) ≤ l

2k−2
+

lq

2k

where k is the length of keys, l is the number of gates, and q is the number of
random oracle queries.

Proof. We consider the simulator S in the simulated experiment of

Definition 2, and the games G0, G1, GO(1)
di

,O(2)
di

,O(3)
di

,O(4)
di,dj

,O(5)
di,dj

2 ,

GCorr
(1)
di

,Corr
(2)
di

,Corr
(3)
di

,Corr
(4)
di,dj

,Corr
(5)
di,dj

3 , and Greal. We explain the simulator and the
games in the following. For simplicity, we only consider AND, OR, and XOR gates.
For NAND, NOR, and XNOR gates, we can swap K0

i and K1
i in S, G0, G1, G2, G3,

and Greal.
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G0(1
k, Φcirc(f), f(x))

Input: Security parameter k, Circuit f = (n, m, l, A, B, g), and output f(x).
Algorithm: 1. Initialize empty arrays F [], X[] and d[] with |F | = l, |X| = n and

|d| = m.
2. Compute f(0) and vi ∈ {0, 1} that is the actual value on wire i for x = 0.
3. Garbling the gates: For i := n + 1 to l + n do:

(a) Set A := A(i) and B := B(i)
(b) If undefined, choose permute bits λA, λB ∈ {0, 1} at random.

For all (a, b) ∈ {0, 1}2, if undefined, set ca
A := λA ⊕ a, cb

B := λB ⊕ b.
(c) Input keys:

Same as S.
(d) Output Keys:

Choose random bit b0, b1, ∈ {0, 1} and set jL := nextindex().

– AND gate case: Set γ(0,0) := b0, γ(0,1) := γ(1,0) := 1−b0, γ(1,1) := b1.

Choose random G and K
vi
i := H(K

vA
A + K

vB
B

, jL) ⊕ γ(vA,vB)G.

– OR gate case: Set γ(0,0) := b1, γ(0,1) := γ(1,0) := b0, γ(1,1) := 1 − b0.

Choose random G and K
vi
i := H(K

vA
A + K

vB
B

, jL) ⊕ γ(vA,vB)G.

– XOR gate case: Set γ(0,0) := 1−b0, γ(0,1) := γ(1,0) := b1, γ(1,1) := b0.

Choose random G and K
vi
i := H(K

vA
A + K

vB
B

, jL) ⊕ γ(vA,vB)G.

(e) Encrypt choice bit:
Set jc,γ := nextindex(), choose λi ∈ {0, 1} at random.

– If (a, b) = (vA, vB),

bc,γ

2ca
A

+cb
B

:= lsb2(H(K
vA
A ||KvB

B
, jc,γ)) ⊕ ((gi(a, b) ⊕ λi)||γ(a,b)).

Exception: if i = l + n, set

bc,γ

2ca
A

+cb
B

:= lsb2(H(Ka
A||Kb

B
, jc,γ)) ⊕ ((gi(a, b) ⊕ λi ⊕ f(x))||γ(a,b)).

– Otherwise,

bc,γ

2ca
A

+cb
B

:= lsb2(Rand
(3)
dA

(K
vA
A , K

vB
B

, a−vA, b−vB , jc,γ))⊕((gi(a, b)⊕
λi)||γ(a,b)).

(f) Set F [i] := (bc,γ
0 , bc,γ

1 , bc,γ
2 , bc,γ

3 , G, E), if E is defined.
Set F [i] := (bc,γ

0 , bc,γ
1 , bc,γ

2 , bc,γ
3 , G), otherwise.

(g) If j ∈ {A, B} is a circuit input wire, set X[j] := K0
j ||c0j .

If i ∈ Woutput, set d[i − (n + l) + m] := λi.
Output: Garbled circuit F , garbled input X, decoding d.

Fig. 7. The game G0 in which the output keys are generated as in the real scheme.

S(1k, Φtopo(f), f(x)): S given in Fig. 6 generates the garbled circuit and garbled
input (F,X, d) without knowledge of x. S generates only labels corresponding
to truth value 0, chooses G,E uniformly at random. S chooses bc

2c0A+c0B
so

that Eval and Decode output f(x).
G0(1k, Φcirc(f), f(x)): G0 generates the garbled circuit and garbled input

(F,X, d) as described in Fig. 7. In this game, the actual value vi for each
wire i for input x = 0 is computed and known to the simulator. G0 chooses
bc
2caA+cbB

so that Eval and Decode output f(x).

G1(1k, Φcirc(f), x): G0 generates the garbled circuit and garbled input (F,X, d)
as described in Fig. 8. In this game, the actual value vi for each wire i for
input x is computed and known to the simulator. G0 generates the output
label in one of two ways, which depends on vi.

G2
O(1)

di
,O(2)

di
,O(3)

di
,O(4)

di,dj
,O(5)

di,dj (1k, Φcirc(f), x): In the game, (F,X, d) is generated as
described in Fig. 9, with three oracles without knowledge of di’s. The oracles
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G1(1
k, Φcirc(f), x)

Input: Security parameter k, Circuit f = (n, m, l, A, B, g), and input x.
Algorithm: 1. Initialize empty arrays F [], X[] and d[] with |F | = l, |X| = n and

|d| = m.
2. Compute f(x) and vi ∈ {0, 1} that is the actual value on wire i.
3. Garbling the gates: For i := n + 1 to l + n do:

(a) Set A := A(i) and B := B(i)
(b) If undefined, choose permute bits λA, λB ∈ {0, 1} at random.

For all (a, b) ∈ {0, 1}2, if undefined, set ca
A := λA ⊕ a, cb

B := λB ⊕ b.
(c) Input keys:

Same as S.
(d) Output Keys:

Choose random bit b0, b1, ∈ {0, 1} and set jL := nextindex().

– AND gate case: Set γ(0,0) := b0, γ(0,1) := γ(1,0) := 1−b0, γ(1,1) := b1.

Choose random G and K
vi
i := H(K

vA
A + K

vB
B

, jL) ⊕ γ(vA,vB)G.

– OR gate case: Set γ(0,0) := b1, γ(0,1) := γ(1,0) := b0, γ(1,1) := 1 − b0.

Choose random G and K
vi
i := H(K

vA
A + K

vB
B

, jL) ⊕ γ(vA,vB)G.

– XOR gate case: Set γ(0,0) := 1−b0, γ(0,1) := γ(1,0) := b1, γ(1,1) := b0.

Choose random G and K
vi
i := H(K

vA
A + K

vB
B

, jL) ⊕ γ(vA,vB)G.

(e) Encrypt choice bit:
Set jc,γ := nextindex(), choose λi ∈ {0, 1} at random.

– If (a, b) = (vA, vB),

bc,γ

2ca
A

+cb
B

:= lsb2(H(K
vA
A ||KvB

B
, jc,γ)) ⊕ ((gi(a, b) ⊕ λi)||γ(a,b)).

– Otherwise,

bc,γ

2ca
A

+cb
B

:= lsb2(Rand
(3)
dA

(K
vA
A , K

vB
B

, a−vA, b−vB , jc,γ))⊕((gi(a, b)⊕
λi)||γ(a,b)).

(f) Set F [i] := (bc,γ
0 , bc,γ

1 , bc,γ
2 , bc,γ

3 , G, E), if E is defined.
Set F [i] := (bc,γ

0 , bc,γ
1 , bc,γ

2 , bc,γ
3 , G), otherwise.

(g) If j ∈ {A, B} is a circuit input wire, set X[j] := K0
j ||c0j .

If i ∈ Woutput, set d[i − (n + l) + m] := λi.
Output: Garbled circuit F , garbled input X, decoding d.

Fig. 8. The game G1 in which the output keys are generated as in the real scheme.

queried are either (Rand(1)
di

, Rand
(2)
di

,Rand
(3)
di

,Rand
(4)
di,dj

,Rand
(5)
di,dj

) or the ora-

cles (Corr(1)di
,Corr

(2)
di

, Corr
(3)
di

, Corr
(4)
di,dj

, Corr
(5)
di,dj

). In G1, the active labels Kvi
i

and oracle outputs H(K0
A +K0

B +(vA + vB)d, j) are computed similar to the
real scheme.
For simulating the ciphertext G, H(K0

A +K0
B , jL)+H(K0

A +K0
B +d, jL) has

to be computed. The simulator makes oracle query O(1)
dA

(KvA

A +KvB

B , b−(vA+

vB), jL) if (vA, vB) �= (1, 1), and O(2)
dA

(KvA

A + KvB

B , jL) if (vA, vB) = (1, 1).
For simulating the ciphertexts bc

2caA+cbB
||bγ

2caA+cbB
, the simulator makes ora-

cle query O(3)
dA

(KvA

A ,KvB

B , a − vA, b − vB, jc,γ), obtains H(K0
A + adA||K0

B +
bdB , jc,γ), and computes bc

2caA+cbB
||bγ

2caA+cbB
.

The ciphertext E is computed as

E = H(K1−λB

B , je) + K1−λB

B′

=

{
H(KvB

B + (1 − 2vB)dB , je) + KvB

B + (1 − 2vB)dA if vB = λB

H(KvB

B , je) + KvB

B + (2vB − 1)dB + (1 − 2vB)dA otherwise
.
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G2
O(1)

di
,O(2)

di
,O(3)

di
,O(4)

di,dj
,O(5)

di,dj (1k, Φcirc(f), x)

Input: Security parameter k, Circuit f = (n, m, l, A, B, g), and input x.
Algorithm: 1. Initialize empty arrays F [], X[] and d[] with |F | = l, |X| = n and

|d| = m.
2. Compute f(x) and vi ∈ {0, 1} that is the actual value on wire i.
3. Garbling the gates: For i := n + 1 to l + n do:

(a) Set A := A(i) and B := B(i)
(b) If undefined, choose permute bits λA, λB ∈ {0, 1} at random.

For all (a, b) ∈ {0, 1}2, if undefined, set ca
A := λA ⊕ a, cb

B := λB ⊕ b.
(c) Input keys:

– If A’s and B’s labels are defined, set jE := nextindex(). If vB = λB ,

set K
vB
B

:= K
vB
B and E := O(4)

dA,dB
(K

vB
B , 1 − 2vB , 1 − 2vB , jE).

Otherwise, set K
vB
B

:= K
vB
B + O(5)

dA,dB
(A, B, 1 − 2vB , 2vB − 1) and

E := H(K
vB
B , jE) ⊕ K

vB
B

.

– If A’s labels are defined and B’s labels are undefined (vice versa ana-

log), choose K
vB
B at random and set K

vB
B

:= K
vB
B .

– If A’s and B’s labels are undefined, choose K
vA
A and K

vB
B at random

and set K
vB
B

:= K
vB
B .

(d) Output Keys:
Choose random bit b0, b1, ∈ {0, 1} and set jL := nextindex().

– AND gate case: Set γ(0,0) := b0, γ(0,1) := γ(1,0) := 1−b0, γ(1,1) := b1.
• If (vA, vB) = (1, 1),

G := H(K
vA
A + K

vB
B

, jL) ⊕ O(1)
dA

(K
vA
A + K

vB
B

, b, jL) where b = 0 if

vA + vB = 1, b = 1 if vA + vB = 0,

K
vi
i := H(K

vA
A + K

vB
B

, jL) ⊕ γ(vA,vB)G.

• If (vA, vB) = (1, 1),

G := O(2)
dA

(K
vA
A + K

vB
B

, −1, −2, jL),

K
vi
i := H(K

vA
A + K

vB
B

, jL) ⊕ γ(vA,vB)G.

– OR gate case: Set γ(0,0) := b1, γ(0,1) := γ(1,0) := b0, γ(1,1) := 1 − b0.
• If (vA, vB) = (0, 0),

G := H(K
vA
A + K

vB
B

, jL) ⊕ O(1)
dA

(K
vA
A + K

vB
B

, b, jL) where b = 1 if

vA + vB = 2, b = 2 if vA + vB = 1,

K
vi
i := H(K

vA
A + K

vB
B

, jL) ⊕ γ(vA,vB)G.

• If (vA, vB) = (0, 0),

G := O(2)
dA

(K
vA
A + K

vB
B

, 1, 2, jL),

K
vi
i := H(K

vA
A + K

vB
B

, jL) ⊕ γ(vA,vB)G.

– XOR gate case: Set γ(0,0) := 1−b0, γ(0,1) := γ(1,0) := b1, γ(1,1) := b0.
• If (vA, vB) = (0, 1), (1, 0),

G := H(K
vA
A + K

vB
B

, jL) ⊕ O(1)
dA

(K
vA
A + K

vB
B

, b, jL) where b = 0 if

vA + vB = 2, b = 2 if vA + vB = 0,

K
vi
i := H(K

vA
A + K

vB
B

, jL) ⊕ γ(vA,vB)G.

• If (vA, vB) = (0, 1), (1, 0),

G := O(2)
dA

(K
vA
A + K

vB
B

, −1, 1, jL),

K
vi
i := H(K

vA
A + K

vB
B

, jL) ⊕ γ(vA,vB)G.

(e) Encrypt choice bit:
Set jc,γ := nextindex(), choose λi ∈ {0, 1} at random.

– If (a, b) = (vA, vB),

bc,γ

2ca
A

+cb
B

:= lsb2(H(K
vA
A ||KvB

B
, jc,γ)) ⊕ ((gi(a, b) ⊕ λi)||γ(a,b)).

– Otherwise,

bc,γ

2ca
A

+cb
B

:= lsb2(O(3)
dA

(K
vA
A , K

vB
B

, a − vA, b − vB , jc,γ)) ⊕ ((gi(a, b) ⊕
λi)||γ(a,b)).

(f) Set F [i] := (bc,γ
0 , bc,γ

1 , bc,γ
2 , bc,γ

3 , G, E), if E is defined.
Set F [i] := (bc,γ

0 , bc,γ
1 , bc,γ

2 , bc,γ
3 , G), otherwise.

(g) If j ∈ {A, B} is a circuit input wire, set X[j] := K
vj
j ||cvj

j .

If i ∈ Woutput, set d[i − (n + l) + m] := λi.
Output: Garbled circuit F , garbled input X, decoding d.

Fig. 9. The game G2 in which garbling with actual values.
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G3
Corr

(1)
di

,Corr
(2)
di

,Corr
(3)
di

,Corr
(4)
di,dj

,Corr
(5)
di,dj (1k, Φcirc(f), x)

Input: Security parameter k, Circuit f = (n, m, l, A, B, g), and input x.
Algorithm: 1. Initialize empty arrays F [], X[] and d[] with |F | = l, |X| = n and

|d| = m.
2. Compute f(x) and vi ∈ {0, 1} that is the actual value in wire i.
3. Garbling the gates: For i := n + 1 to l + n do:

(a) Set A := A(i) and B := B(i)
(b) If undefined, choose permute bits λA, λB ∈ {0, 1} at random.

For all (a, b) ∈ {0, 1}2, if undefined, set ca
A := λA ⊕ a, cb

B := λB ⊕ b.
(c) Input keys:

Same as G
Corr

(1)
di

,Corr
(2)
di

,Corr
(3)
di

,Corr
(4)
di,dj

,Corr
(5)
di,dj

2 except setting K
1−vA
A := (1−

2vA)dA + K
vA
A , K

1−vB
B := (1 − 2vB)dA + K

vB
B , K

1−vB
B

:= (1 − 2vB)dA +

K
vB
B

if undefined.

(d) Output Keys:

Same as G
Corr

(1)
di

,Corr
(2)
di

,Corr
(3)
di,dj

,Corr
(4)
di,dj

,Corr
(5)
di,dj

2 except adding the following
in the last step:

– AND gate case:

If vi = 0, set K
1−vi
i := H(K

vA
A + K

vB
B

+ 2di, jL) ⊕ b1G.

If vi = 1, set K
1−vi
i := H(K

vA
A + K

vB
B

+ b0di, jL).
– OR gate case:

If vi = 0, set K
1−vi
i := H(K

vA
A + K

vB
B

+ di + b0di, jL).

If vi = 1, set K
1−vi
i := H(K

vA
A + K

vB
B

, jL) ⊕ b1G.
– XOR gate case:

If vi = 0, set K
1−vi
i := H(K

vA
A + K

vB
B

+ di, jL) ⊕ b1G.

If vi = 1, set K
1−vi
i := H(K

vA
A + K

vB
B

+ b02di, jL).

(e) Encrypt choice bit:

Same as G
Corr

(1)
di

,Corr
(2)
di

,Corr
(3)
di

,Corr
(4)
di,dj

,Corr
(5)
di,dj

2 .
(f) Set F [i] := (bc,γ

0 , bc,γ
1 , bc,γ

2 , bc,γ
3 , G, E), if E is defined.

Set F [i] := (bc,γ
0 , bc,γ

1 , bc,γ
2 , bc,γ

3 , G), otherwise.

(g) If j ∈ {A, B} is a circuit input wire, set X[j] := K
vj
j ||cvj

j .

If i ∈ Woutput, set d[i − (n + l) + m] := λi.
Output: Garbled circuit F , garbled input X, decoding d.

Fig. 10. The game G3 in which including inactive keys.

The simulator makes oracle query O(4)
dA,dB

(KvB

B , 1 − 2vB , 1 − 2vB , je) instead
of computing H(KvB

B + (1 − 2vB)dB , je) + (1 − 2vB)dA, and oracle query
O(5)

dA,dB
(A,B, 2vB−1, 1−2vB) instead of computing (2vB−1)dB+(1−2vB)dA.

G3
Corr

(1)
di

,Corr
(2)
di

,Corr
(3)
di

,Corr
(4)
di,dj

,Corr
(5)
di,dj (1k, Φcirc(f), x): This game, described in

Fig. 10, is almost identical to G1, except that inactive labels are defined.
In this game, the simulator knows di’s.

Greal: This is the real experiment of Definition 2.

Now we prove the indistinguishability between the simulators and the real
protocol. We use the following chain of simulators and hybrid games.

1. S ≡ G0: The only difference between the two games is that K0 is used in S but
Kv is used in G0 and there are 3 cases of AND, OR, and XOR in G0. However,
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the distributions of simulation are identical, since the inactive γ(a,b)’s are
masked by random oracle Rand.

2. G0 ≡ G1: The only difference between the two games is that vi for input
x = 0 is used and output f(x) is embedded in G0 but vi for input x is used in
G1. However, the distributions of simulation are identical, since the inactive
γ(a,b)’s are masked by random oracle Rand and embedded f(x) is masked by
random λi.

3. G1 ≡ GRand
(1)
di

,Rand
(2)
di

,Rand
(3)
di

,Rand
(4)
di,dj

,Rand
(5)
di,dj

2 : The only difference between them
is how G is generated. However, G is uniformly distributed in both games and
therefore these two games are indistinguishable.

4. GRand
(1)
di

,Rand
(2)
di

,Rand
(3)
di

,Rand
(4)
di,dj

,Rand
(5)
di,dj

2 ≡ GCorr
(1)
di

,Corr
(2)
di

,Corr
(3)
di

,Corr
(4)
di,dj

,Corr
(5)
di,dj

2 :
The Rand oracles are replaced with Corr oracles. These games are indistin-
guishable since the hash function is a random oracle except if di = 0 or
2di = 0 for some i. However, l di’s are chosen uniformly at random and then
the probability of the event is bounded by Pr[∃i s.t. (di = 0) ∨ (2di = 0)] =
1 − (1 − 2/2k)l ≤ l/2k−2.

5. GCorr
(1)
di

,Corr
(2)
di

,Corr
(3)
di

,Corr
(4)
di,dj

,Corr
(5)
di,dj

2 ≡ GCorr
(1)
di

,Corr
(2)
di

,Corr
(3)
di

,Corr
(4)
di,dj

,Corr
(5)
di,dj

3 : The
only difference between these two games is adding the inactive labels. How-
ever, the inactive labels are not used, so the distribution is unchanged. In

GCorr
(1)
di

,Corr
(2)
di

,Corr
(3)
di

,Corr
(4)
di,dj

,Corr
(5)
di,dj

1 , if the adversary correctly guess one of l
di’s, and ask a key unknown to the simulator for random oracle H among
q oracle queries, the simulator fails to simulate random oracle H since the
simulator does not know di’s. The probability of this simulation failure is
lq/2k.

6. GCorr
(1)
di

,Corr
(2)
di

,Corr
(3)
di

,Corr
(4)
di,dj

,Corr
(5)
di,dj

3 ≡ Greal: In G2, we first define Kvi
i and then

define K1−vi
i as K1−vi

i := (1 − 2vi)di + Kvi
i if either or both input wires is

a circuit input wire. In Greal, we first define K0
i and then K1

i := di + K0
i . In

addition, we define K1−vi
i := H(KvA

A +KvB

B′ +(2− (vA +vB))dA, jL)+ b1G or
K1−vi

i := H(KvA

A + KvB

B′ + (b0 − 2)dA, jL), depending on vi and b0 for inner
wires in G2. In Greal, we define K0

i := H(K0
A + K0

B′ + 2dA, jL) + b1G and
K1

i := H(K0
A + K0

B′ + b0dA, jL) + b1G. Although the steps to generate the
labels are changed, the outputs are unchanged. Therefore, these changes do
not affect the distribution.

Consequently, the simulated experiment is indistinguishable from the real exper-
iment except negligible probability l/2k−2 + lq/2k. ��

6 On the Lower Bound of Linear Garbling Schemes

Zahur et al. [29] observed that many practical garbling schemes share a com-
mon structure, which they formalize in their model of linear garbling schemes.
They proved that in this model, garbling a single AND gate requires at least two
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rows. They concluded that to garble an odd gate with significantly8 less than 2k
bits, an inherently different, non-linear structure is needed. Our garbling scheme
contradicts this, while maintaining a computational efficiency comparable to pre-
vious work. In this chapter, we first provide an intuition of how our construction
circumvents the lower bound. In Sect. 6.2, we provide an outline of the lower-
bound proof. Then, we state our garbling scheme in the linear garbling model,
and show how it exploits loopholes in the lower-bound proof more formally. Since
this chapter mostly discusses a single AND gate, we denote the color bits of a
gate’s input wires by α and β for better readability.

6.1 How We Circumvent the Lower Bound: An Intuition

Intuitively, the arguments in the lower-bound proof should also hold for our
“almost linear” garbling scheme. We now show where our construction exploits
loopholes. The proof relies on two assumptions which hold for most linear con-
structions, but are not needed for linearity in an algebraic sense:

Assumption (1): The linear operations to compute a gate’s output labels
directly depend on permute bits assigned to the gate’s input wires.

Assumption (2): Each ciphertext/row consists of k bit.

Let us first take a closer look at Assumption (1). The lower-bound proof
strongly depends on the fact that changing the permute bits assigned to the
two input wires of a gate changes the operation the evaluator needs to perform
when processing this gate. This is true for most existing garbling schemes, but
not for ours. In existing schemes, the evaluator usually uses two color bits α and
β to choose one out of four options. In Yao’s original scheme [28], when used
with the point and permute technique [2], the four options are four ciphertexts.
In the three-row reduction [22,26], the options are three ciphertexts and the
zero string. In the interpolation-based two-row reduction [26], the options are
four x-coordinates. The half gate construction [29] has the options ciphertext or
zero string for each half gate, so four possible options per garbled AND gate.
The common way to let the evaluator choose the correct option is letting the
options depend on permute bits, and communicating corresponding color bits to
the evaluator, which keeps him oblivious of the actual input. All of the above
mentioned schemes use this technique. As a side-effect, in all these constructions,
changing even one permute bit inevitably changes the assignment of options to
input values, in particular, which option is assigned to the input leading to
output truth value 1. In our scheme, the evaluator has only two options: to use
the given k-bit ciphertext or not. Neither this ciphertext itself nor its usage
depends on any permute bit. In fact, it might happen that the same operation
using this same ciphertext might be performed by the evaluator for two possible
inputs (xa, xb) �= (x′

a, x′
b), with g(xa, xb) �= g(x′

a, x′
b). Since we have only two

options, we need only one choice bit, which does not depend on permute bits.
8 As they point out, one can only prove a lower-bound of at least 2k minus some bits,

as one can always take away a few bits and maintain asymptotic security.
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To communicate this choice bit, we include four 2-bit ciphertexts in the
garbled circuit, which do depend on permute bits. And this is where we exploit
the second loophole in the lower-bound proof: Assumption (2), which says that
each row has the length of k bit, is neither used nor needed9 in any arguments in
the proof. Since M < k bit of information can perfectly be masked with a M -bit
ciphertext, we can instead “fill the necessary rows” with our 2-bit ciphertexts.

6.2 How We Circumvent the Lower Bound: Formal Discussion

Let us first briefly summarize the linear garbling model. All elements considered
in the model are in GF (2k), and the only operations allowed are XOR operations
and calls to a random oracle, which outputs elements in GF (2k). The model con-
siders garbling a single AND gate. Let r and h be constants, and let 〈·, ·〉 denote
the scalar product of two vectors. The garbler chooses R1, . . . , Rr ∈ GF (2k)
at random. Using linear combinations of these as inputs to a random oracle,
he obtains oracle responses Q1, . . . , Qh. Let S := (R1, . . . , Rr, Q1, . . . , Qh). The
garbler applies linear functions on S to obtain input wire labels A0, A1, B0, B1,
output wire labels C0, C1 and ciphertexts G1, . . . , Gm. The function to obtain
the ciphertexts can be written as a matrix Gλa,λb

with S ·Gλa,λb
= (G1, . . . , Gm),

and can depend on the permute bits λa and λb of the input wires.
The evaluator obtains as input the wire labels KA ∈ {A0, A1} and KB ∈

{B0, B1}, and color bits α and β. He makes several oracle queries using this
input to obtain a vector T , which consists of his input, the oracle responses and
the ciphertexts G1, . . . , Gm. He computes a linear function on T , denoted by a
vector Vα,β , to compute the output wire label C(λa⊕α)∧(λb⊕β) = 〈Vα,β , T 〉.

The Lower-Bound Proof. We recap the parts of the lower-bound proof [29]
which are important for a more formal discussion. The proof argues that the
matrix Gλa,λb

must have at least two rows, and thus creates at least two
ciphertexts. This is based on a chain of claims, of which we circumvent the
first one: it says that the Gλa,λb

are all distinct. The claim is argued for as
follows. The output wire label C(λa⊕α)∧(λb⊕β), computed by the evaluator as
C(λa⊕α)∧(λb⊕β) = 〈Vα,β , T 〉, can be written as

C(λa⊕α)∧(λb⊕β) =
〈
V pub

α,β ,Mα,β × ST
〉

+
〈
V prv

α,β ,Gλa,λb
× ST

〉
, (1)

for an appropriate matrix Mα,β , where Vα,β is divided into a public part V pub
α,β ,

independent of permute bits, and a private part V prv
α,β , which depends on λa and

λb. For only one input ((λa⊕α), (λb⊕β)), it holds that (λa⊕α)∧(λb⊕β) = 1, and
thus C(λa⊕α)∧(λb⊕β) = C1, the label assigned to truth value 1. When changing a
permute bit, a different combination of (α, β) is assigned to C1. However, since
all other values in Eq. 1 do not depend on permute bits, only Gλa,λb

can change

9 More precisely, elements in GF (2k) or Z2k do not necessarily have k bits of entropy,
and those with less entropy can be represented using shorter strings.
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when changing λa or λb. Thus, all Gλa,λb
must be distinct. Basic algebra then

implies that all Gλa,λb
must have at least two rows. If all rows have k bit, this

implies the lower bound of 2k bits per gate. In our garbing scheme, we divide
Gλa,λb

into a k-bit(-entropy) part and a 2-bit(-entropy) part. Our k-bit part
does not depend on permute bits and has only one row. The 2-bit part has four
rows and thus does not contradict the arguments in the lower-bound proof.

Our Construction and the Model of Linear Garbling Schemes. We now
compare our scheme to the linear garbling model, and explain how it bypasses
the lower bound more formally. Since the lower-bound proof only considers a
single AND gate, the labels of both input wires can be chosen freely, and we can
leave out the ciphertext for difference adjustment in the following discussion.

Our construction does not perfectly fit into the model in two points. The first
point is that we use Z2k rather than F2k , simply because we need + and ⊕ to be
different operations. The second point is that the linear garbling model considers
only k-bit values. In contrast, we use oracles with k-bit output and with 2-bit
output. The 2-bit oracle is implemented by using the lsb2 function on the k-bit
oracle output. Similarly, we have k-bit ciphertexts and 2-bit ciphertexts.

A garbling algorithm in the linear garbling model consists of five steps. We
describe our scheme in these steps, using the same enumeration as in [29]. We
omit the tweaks implemented by nextindex() in the calls to the random oracle H.

1. The garbler chooses several random k-bit values. The only 1-bit randomness
considered in the model are the permute bits. In our scheme, the garbler
chooses the random k-bit values K0

A, K0
B , and d, and the random bits b0 and

b1. So we allow 1-bit randomness here, which is only a technical issue.
2. The garbler makes several oracle queries, using the random values from Step 1

as input. The random values and oracle responses form a vector S, on which
all following linear operations are performed. In our construction, we have k-
bit queries and 2-bit queries. We divide S into the two vectors Sk, containing
k-bit values, and S2, containing 2-bit values. We have:
k-bit queries:
Q1 := H(K0

A + K0
B), Q2 := H(K0

A + K0
B + d), Q3 := H(K0

A + K0
B + 2d),

⇒ Sk = (K0
A,K0

B , d,Q1, Q2, Q3).
2-bit queries Q4−7:
Q2(λa⊕a)+(λB⊕b)+1 = lsb2(H(K0

A + ad||K0
B + bd)) for all (a, b) ∈ {0, 1}2.

3. The random permute bits λA, λB and λC are chosen.
4. Linear operations are performed on S to compute the input wire labels

A0, A1, B0, B1 and the output wire labels C0, C1. The latter can be writ-
ten as Ci = 〈Cλa,λb,i, S〉, i ∈ {0, 1}, for appropriate vectors Cλa,λb,i, which
can depend on permute bits. In our case, we have:
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(A0, B0, A1, B1, C0, C1) =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
0 1 0 0 0 0
1 0 1 0 0 0
0 1 1 0 0 0
0 0 0 1 − b0 b0 0
0 0 0 b1 b1 1

⎞
⎟⎟⎟⎟⎟⎟⎠

Sk

The rows Cλa,λb,0 = (0, 0, 0, 1−b0, b0, 0) and Cλa,λb,1 = (0, 0, 0, b1, b1, 1) define
the output labels. They depend on b0 and b1, but not on λa and λb.

5. Ciphertexts are computed: for i ∈ [m], Gi =
〈
G

(i)
λa,λb

, S
〉

for appropriate

G
(i)
λa,λb

, where m is the number of ciphertexts included in the garbled circuit.
In our scheme, we have k-bit and 2-bit ciphertexts:

Gk−bit
1 =

〈
G

(1)
λa,λb

, Sk

〉
, G2−bit

i =
〈
G

(i)
λa,λb

, S2

〉
, i = 2, . . . , 5.

Let Gλa,λb
be the matrix consisting of the rows G

(i)
λa,λb

for i ∈ [m]. We divide
Gλa,λb

into a k-bit part and a 2-bit part. The k-bit part has only one row:

G
k−bit
λa,λb

= G
(1)
λa,λb

= (0, 0, 0, 1, 1, 0)

for all (λa, λb) ∈ {0, 1}2. So our k-bit ciphertext is

Gk−bit
1 := 〈(0, 0, 0, 1, 1, 0), Sk〉 = (H(K0

A + K0
B) ⊕ H(K0

A + K0
B + d)).

As we can see, Gk−bit
λa,λb

does not depend on λa and λb, so changing the permute
bits cannot change Gk−bit

λa,λb
. This seems like a contradiction to the lower-bound

proof, which argues that changing the permute bits must change Gλa,λb
in

order to assign a different pair (α, β) to the label C1. However, in our con-
struction, the labels C0 and C1 only depend on the random bits b0 and b1

chosen by the garbler. Thus, the assignment of color bits to output truth
values is irrelevant for the computation of the labels on the garbler’s side.
However, to allow the evaluator to compute the correct output label, a choice
bit γ needs to be communicated using ciphertexts which do depend on α and
β. These are computed by the rows of the 2-bit part G2−bit

λa,λb
, which takes care

of the dependence on permute bits this way. Thus, the k-bit part G
k−bit
λa,λb

can
stay unchanged for changing permute bits (and thus consist of only one row),
without causing a contradiction to the lower-bound proof.

To enable the evaluator to compute the color bit (α⊕λA)(β ⊕λB)⊕λC of
the output wire, we define the four rows G

(2)−(5)
λa,λb

of the 2-bit part such that

bc
2α+β ||bγ

2α+β =
〈
G

(2+2α+β)
λA,λB

, S2

〉
= lsb2(H(Kα⊕λA

A + Kβ⊕λB

B )) ⊕ (((α ⊕ λA)(β ⊕ λB) ⊕ λC)||γ(α,β))

for all (α, β) ∈ {0, 1}2, where

γ(λA,λB) = b0, γ
(1⊕λA,λB) = γ(λA,1⊕λB) = 1 − b0, γ

(1⊕λA,1⊕λB) = b1.
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The order of the rows in G
2−bit
λa,λb

depends on λa and λb. Thus, in compliance
with the lower-bound proof, G2−bit

λa,λb
is different for each choice of (λa, λb).

6.3 Further Analyzing the Lower Bound

In 2005, Kolesnikov [13] introduced an information-theoretically secure secret
sharing based garbling scheme which requires zero ciphertexts, using only XOR
operations. Kolesnikov’s construction produces an exponential blow-up of the
input key size, so the comparison is slightly unfair. It does not fit into the
model for the simple reason that the wire labels of one input wire are not ele-
ments in GF (2k), but have the form BL||BR for BL, BR ∈ GF (2k). Regardless,
Kolesnikov’s construction seems like a contradiction to the lower bound. We
analyze how this “almost linear” construction circumvents the lower bound.

Kolesnikov also introduces an optimization which reduces the blow-up to
approximately

∑
d2

j , where dj is the depth of the jth leaf of the circuit. However,
the optimization is irrelevant for our analysis.

Outline of Kolesnikov’s Construction. Kolesnikov’s construction works by
garbling circuits backwards from output gates to input gates. Consider garbling
an AND gate i with yet undefined input wire labels K0

A,K1
A,K0

B ,K1
B , and given

output wire labels K0
i and K1

i . The labels K0
i and K1

i are secret-shared in the
following way: Assign a single random permute bit λA to input wire A, no
permute bit is assigned to the second input wire B. Choose the input labels
K0

A and K1
A at random, append λA to K0

A, and 1 − λA to K1
A. The labels

K0
B and K1

B each consist of two entries, which are permuted according to λA:
K0

B := K0
i ⊕ KλA

A ||K0
i ⊕ K1−λA

A , and K1
B := KλA

i ⊕ KλA

A ||K1−λA
i ⊕ K1−λA

A . To
evaluate gate i, the evaluator XORs his label KA with the entry of his label KB

which is indicated by the color bit appended to KA.

Kolesnikov’s Construction and the Lower Bound. Kolesnikov’s construc-
tion is linear in an algebraic sense. It circumvents the lower bound in a way
similar to our scheme: the operations performed by the evaluator do not depend
on two permute bits. Kolesnikov’s construction only assigns permute bits to
“A-wires” to indicate which part of the “B-wire” to use. “B-wires” are not
assigned any permute or color bit. Thus we have only one bit assigned to four
possible input combinations, making claim one in the lower-bound proof mean-
ingless. And in fact, similar to the k-bit part of our construction, the same linear
operation is performed for different truth values on the output wire.

6.4 Conclusion

If less than two rows imply less than two possible operations, only one or no
choice bit is needed, making claim one in the lower-bound proof meaningless. It
is left for future work whether our observations can be used to break the lower
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bound and omit even the small ciphertexts altogether without input key blow-
up. It would be interesting whether garbling schemes with less than two k-bit
rows can be constructed without sacrifising free XOR.

Acknowledgements. We thank the reviewers for their helpful and constructive
comments.

A Combining our Construction with Half Gates

By combining our technique with the half gate construction [29], we can garble
the first two gate levels in a circuit with only one ciphertext per AND gate and
0 ciphertexts per XOR gate, if the circuit layout is fortunate. Each circuit input
is known either by the garbler or the evaluator, so one could argue that all input
gates can be garbled as half gates. A similar technique is used by Huang et al.
[8], who use generator half gates as input gates. We need to modify the half gate
technique such that output wires i which are used as inputs for AND gates get an
additive global difference d such that K1

i = K0
i +d, and output wires j which are

used as input to an XOR gate get a global difference Δ such that K1
j = K0

j ⊕Δ.
We cannot do both at the same time, so this only saves ciphertexts when most
output wires of input gates go to either an AND gate or an XOR gate, but not
both. If this is the case, the next level can be garbled with our construction
using one ciphertext for most AND gates, and zero ciphertexts for most XOR
gates. A half gate can produce an additive difference in its output wire using
the following modification: A generator half gate with input a known to the
garbler produces the ciphertexts H(KB) ⊕ K0

i and H(KB ⊕ Δ) ⊕ (K0
i + ad), of

which one is set to the zero string as in the original scheme. It is evaluated as in
the original half gate construction. An evaluator half gate, where the evaluator
knows input a, and gets input labels Ka

A and KB , consists of the ciphertexts
G1 = H(K0

A) ⊕ K0
C , which is set to the zero string by setting K0

C = H(K0
A),

and G2 = H(K1
A)⊕ (K0

C −B). In the evaluator half gate, we require an additive
difference K1

B −K0
B = d for the labels of input wire B. If a = 0, it is evaluated by

computing H(K0
A) ⊕ G1. If a = 1, the evaluator computes (G2 ⊕ H(K1

A)) + KB .
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