Indistinguishable Proofs of Work or Knowledge

Foteini Baldimtsi!®™), Aggelos Kiayias?, Thomas Zacharias?,

and Bingsheng Zhang®

1 George Mason University, Fairfax, USA
foteini@gmu.edu
2 University of Edinburgh, Edinburgh, UK
{akiayias,tzachari}@inf.ed.ac.uk
3 Security Lancaster Research Centre, Lancaster University, Lancaster, UK
b.zhang2@lancaster.ac.uk

Abstract. We introduce a new class of protocols called Proofs of Work
or Knowledge (PoWorKs). In a PoWorK, a prover can convince a verifier
that she has either performed work or that she possesses knowledge of
a witness to a public statement without the verifier being able to distin-
guish which of the two has taken place. We formalize PoWorK in terms
of three properties, completeness, f-soundness and indistinguishability
(where f is a function that determines the tightness of the proof of work
aspect) and present a construction that transforms 3-move HVZK proto-
cols into 3-move public-coin PoWorKs. To formalize the work aspect in a
PoWorK protocol we define cryptographic puzzles that adhere to certain
uniformity conditions, which may also be of independent interest. We
instantiate our puzzles in the random oracle (RO) model as well as via
constructing “dense” versions of suitably hard one-way functions.

We then showcase PoWorK protocols by presenting a number of appli-
cations. We first show how non-interactive PoWorKs can be used to
reduce spam email by forcing users sending an e-mail to either prove
to the mail server they are approved contacts of the recipient or to
perform computational work. As opposed to previous approaches that
applied proofs of work to this problem, our proposal of using PoWorKs
is privacy-preserving as it hides the list of the receiver’s approved con-
tacts from the mail server. Our second application, shows how PoWorK
can be used to compose cryptocurrencies that are based on proofs of work
(“Bitcoin-like”) with cryptocurrencies that are based on knowledge rela-
tions (these include cryptocurrencies that are based on “proof of stake”,
and others). The resulting PoWorK-based cryptocurrency inherits the
robustness properties of the underlying two systems while PoWorK-
indistinguishability ensures a uniform population of miners. Finally, we
show that PoWorK protocols imply straight-line quasi-polynomial simu-
latable arguments of knowledge and based on our construction we obtain
an efficient straight-line concurrent 3-move statistically quasi-polynomial
simulatable argument of knowledge.

F. Baldimtsi et al.—Work performed while at the National and Kapodistrian Uni-
versity of Athens. Research supported by ERC project CODAMODA, #259152 and
H2020 Project Panoramix #653497. Baldimtsi also did part of this work while at
Boston University supported by NSF #1012910.

© International Association for Cryptologic Research 2016

J.H. Cheon and T. Takagi (Eds.): ASTACRYPT 2016, Part 1T, LNCS 10032, pp. 902-933, 2016.
DOI: 10.1007/978-3-662-53890-6_30

Indistinguishable Proofs of Work or Knowledge 903

Keywords: Proof of Work - Cryptographic puzzle - Concurrent zero-
knowledge - Dense one-way functions - Cryptocurrencies

1 Introduction

We introduce a new class of prover verifier protocols where the prover wishes
to convince the verifier that it is either in possession of a witness to a publicly
known statement or that it has invested a certain amount of computational
effort. A Proof of Work or Knowledge (PoWorK) enables the prover to achieve
this objective while at the same time ensuring that the verifier is incapable
of distinguishing which way the prover has followed: performing the work or
exploiting her knowledge of the witness.

At an intuitive level a PoWorK protocol is a disjunction of a proof of work
and a proof of knowledge. Proofs of knowledge are a fundamental notion in
cryptography [GMRS85] with a very wide array of applications in the design of
cryptographic protocols. They have been studied extensively, both in terms of
efficient constructions, e.g., [Sch89], as well as in terms of their composability
with themselves or within larger protocols, see e.g., [CDS94,DNS98, CGGMOO0,
Can01,CF01,Pas03,Pas04]. Proofs of work on the other hand, were first intro-
duced in [DN92], further studied in [RSW96,Bac97,JB99,DGN03, CMSWO09],
and were primarily applied as a denial of service network or spam protection
mechanism; recently they have also found important applications in building
decentralized cryptocurrencies (notably Bitcoin [Nak08] but also many others).

In an interactive proof protocol, we are interested primarily in two basic
properties, soundness and zero-knowledge, that represent the adversarial objec-
tives of the prover and the verifier respectively: the prover must not be able to
convince the verifier of false statements while the verifier should not extract any
knowledge from interacting with the prover beyond what can be inferred by the
public statement. An important class of prover verifier protocols is the 3-move
honest-verifier zero knowledge (HVZK) protocols. They are three-move proto-
cols that are “public-coin”, i.e., the verifier in the second move merely selects a
random value (that is drawn independently to the statement of the prover’s first
move) and submits it to the prover. 3-move HVZK protocols capture a very wide
class of practical proofs of knowledge (including Schnorr’s identification scheme
[Sch89]) but also all languages in NP can be shown with a (computational)
HVZK protocol via reduction to e.g., the Hamilton cycle protocol [Blu87]. The
class of X-protocols possesses very useful properties including being closed under
conjunction and disjunction operations [CDS94].

Given the above, one may construct a PoWorK protocol for a language
L as follows: the verifier samples a cryptographic puzzle, puz, and submits
it to the prover. The prover provides a commitment 1 and shows that she
either possesses a witness w showing that the statement x belongs to L or
that the commitment 1 contains a solution to puz. It is easy to prove that
this is a general four-move protocol that implements a PoWorK for any lan-
guage L and any cryptographic puzzle. On the other hand, it is known that for

904 F. Baldimtsi et al.

zero-knowledge proofs, two-round protocols do not exist for non-trivial languages
[GO94] and this result remains true even if the zero-knowledge property is
relaxed to O(\°8°(M)_simulatability [Pas03], in the sense that only languages
decidable in quasi-polynomial time may have two-round quasi-polynomial-time
simulatable protocols.

1.1 Owur Results

We define and construct efficient three-move PoWorK protocols as well as rele-
vant cryptographic puzzles. Morerover, we demonstrate how PoWorK can instan-
tiate systems that reduce email spam while preserving user privacy, how they
are useful in composition of cryptocurrency systems and how they can give rise
to concurrent simulatable protocols. In more details:

Definition of PoWorKs. Our formalization entails two definitions,
f-soundness and (statistical) indistinguishability. In f-soundness we require that
any prover that has running time (in number of steps) less than a specified para-
meter calibrated according to the function f of the running time of the puzzle
solver, it is guaranteed to lead to a knowledge extractor. The importance of
the function f is to provide a safe running time upper bound under which the
complete protocol execution is successful only via an (a-priori) knowledge of the
witness. Indistinguishability on the other hand, ensures that a malicious veri-
fier is incapable of discerning whether the prover performs the proof of work
or possesses the knowledge of the witness. We note that timing issues are not
taken into account in our model (i.e., we assume that the prover always takes
the same amount of time to finish no matter which one of the two strategies it
follows). What we do care about though, is that the prover who performs a proof
of work spends at least a certain amount of computational resources. Note that
indistinguishability easily implies witness indistinguishability [FS90], and thus
any PoWorK is also a witness indistinguishable protocol.

PoWorK Constructions. We present a three-move public-coin protocol
instantiating a PoWorK given any 3-move HVZK protocol with special sound-
ness. Our protocol transformation preserves the structure and round complexity
of the given 3-move HVZK protocol. Observe that the verifier cannot simply
provide a puzzle challenge since this would violate the public-coin characteristic
of the protocol. To achieve our construction we require puzzle generation algo-
rithms that have a suitable uniformity characteristics, specifically, we require
that the domain of puzzles (the “puzzle space”) and the challenge space of the
3-move HVZK protocol are statistically very close (in terms of the distribu-
tions induced by the puzzle sample algorithm and the verifier in the protocol).
Given such suitable puzzle distribution we present a protocol where the prover
is capable of generating a puzzle solution on the fly (utilizing the verifier’s public
coins) and solve it, if she wishes. To establish the practicality of our approach we
also construct puzzles that are “dense” within {0, 1}’ and hence consistent with

Indistinguishable Proofs of Work or Knowledge 905

the challenge space of many natural 3-move HVZK protocols. Our dense puzzle
based PoWorK construction has the characteristic that is black-box with respect
to the underlying puzzle system (which is suitable for puzzles whose security is
argued, say, in the RO model).

Definition and Instantiations of Puzzles. We give formal definitions of
cryptographic puzzle systems PuzSys that are easy to generate, hard to solve,
and easy to verify. We define additional properties like density and amortiza-
tion resistance and we give two instantiations. Our first instantiation utilizes the
random oracle model [BR93] while the second relies on complexity assumptions.
More specifically, we use Universal One Way Hash Function families (UOWHF)
[NY89] to build extractors with special properties, invoking a variant of left-
over hash lemma [Dod05]. We then combine this special extractor with suitably
hard one-way functions to obtain our second puzzle instantiation; we present
an instantiation of this methodology for the discrete-logarithm problem. As an
intermediate result, which may be of independent interest, we show how to con-
vert any arbitrary oneway function to a “dense” oneway function over {0, 1}Z(A)
for some £(-) and security parameter A € Z* (cf. Theorem 3).

Our puzzle definitions are close in spirit to previous formalizations
[RSW96, WIHF04, CMSW09,MMV11,BGJ+16] with the following distinctions.
In [CMSWO09] the hardness of a puzzle is defined as a monotonically increas-
ing function that maps the running time of an adversary to the success rate of
solving the puzzle. Contrary to this, our definition, motivated by our proof of
knowledge application, imposes a sharp time threshold, below which the suc-
cess rate of solving a puzzle becomes negligible. Also, contrary to time-lock
puzzles [RSW96, WJHF04, MMV11,BGJ+16], we do not restrict the paralleliz-
ability of our puzzles as such feature does not hurt (and may even be desirable)
in the PoWorK context. Parallelizable puzzles, like the ones we are focusing on
here, have become very popular by their applications to cryptocurrencies. The
requirement there is that the puzzle solver should spend a minimum of compu-
tational resources to find a solution to the puzzle (and may or may not choose
to parallelize).

Applications. Generally speaking, PoWorKs can be used in applications where
we would like to allow access to either “registered” or “approved” users (who
know a witness) or to every user who is willing to invest computational effort.
The key property of PoWorKs is that they enhance privacy since they do not
leak the type of user (i.e. approved or not) to the entity that verifies access. A
nice illustration of this type of application of PoWorKs is in regard to reducing
spam email. Dwork and Naor proposed using proofs of work to control spam
e-mails [DN92]. The gist of the idea is that every non-approved contact of a
receiver would have to perform some work (i.e. invest computational effort) in
order to send her an email. A downside of the method is that the mail server
has to maintain an updated list of “approved-contacts” for every user; this can
be a privacy concern for the users (not to mention the cost of updating the

906 F. Baldimtsi et al.

approved contacts database). We show how by using PoWorK’s, one can still
enforce the non-approved senders to perform work while preserving user pri-
vacy, since the mail server (who acts as a PoWorK verifier) will not be able to
distinguish between approved and non-approved contacts because of PoWorK
indistinguishability property.

Our second application is related to cryptocurrencies based on blockchains to
maintain the ledger of transactions. These systems can be naturally divided by
the mechanism they use to produce the next block in the blockchain as follows:
first there are “puzzle-based” ones, (e.g., Bitcoin [Nak08] and many others that
followed!), and then there are “knowledge-based” ones, that include those? that
use “proof-of-stake”, “proof-of-activity” or other type of consensus mechanism
that relies e.g., on a public-key infrastructure, e.g., [BLMR14,DM16,Maz15]).
We demonstrate how given two cryptocurrencies Cq, Co of each type, one can use
PoWorK to fuse them into a single cryptocurrency C with the following proper-
ties: (i) in C, the miners that perform C;-type of mining are indistinguishable from
those that perform Co-type of mining, (ii) C would reach consensus in the sense of
persistence of transactions in the ledger under the conjunction of the conditions
that systems Cy, Co would do, (iii) C would satisfy liveness under the disjunction
of the conditions that systems C,Co would do.? PoWorK-based cryptocurren-
cies that fuse the knowledge-based and the puzzle-based approach have novel
features in the context of cryptocurrencies: for instance, by composing a regular
Bitcoin-like cryptocurrency C; with a centralized cryptocurrency Co supported
by a single authority, we get a cryptocurrency C that resembles Bitcoin but has
a trusted authority with a trapdoor that enables it to regulate and normalize
the block production rate. Such systems may offer a more attractive solution for
nation-states or central banks that wish to issue centralized cryptocurrencies,
however they do not want to be constantly involved with block production and
they prefer to leave ledger maintenance to the public, while retaining the ability
to issue blocks in case of an emergency situation (e.g., many miners go offline due
to a software problem). The PoWorK indistinguishability property is critically
useful in this setting, since it enables the regulation of the block production rate
made by the trusted party to be indistinguishable to everyone, thus ensuring
that the trusted party’s involvement will be unnoticed and hence will have no
impact to the economy that the cryptocurrency supports.

Our third application relates to zero-knowledge protocols and concerns quasi-
polynomial time straight-line simulatable arguments of knowledge. This class
of protocols was introduced by [Pas03] and was motivated by the construc-
tion of concurrent zero-knowledge proofs in the plain model (as opposed to
using a “setup” assumption). In [Pas03] a four-move argument of knowledge
was presented that is quasi-polynomial time simulatable. We show that any
suitable PoWorK protocol (see Theorem 1 for the precise formulation) implies

! E.g., Litecoin, Dogecoin, Ethereum, Dashcoin, etc.

2 E.g., Peercoin, NXT, Nushares, Faircoin etc.

3 For definitions of properties like liveness and persistence of the ledger we refer to
e.g., [GKL15,BMC+15].

Indistinguishable Proofs of Work or Knowledge 907

quasi-polynomial time straight-line simulatable arguments of knowledge. Given
our 3-move PoWorK construction, this immediately yields a 3-round protocol in
this setting which is optimal in terms of efficiency (round complexity is optimal
and computational overhead is just two exponentiations for prover and verifier
in total when using the elliptic curves from [BHKL13]); we note that a simi-
lar result in terms of rounds can be obtained via a different route, specifically,
via the efficient OR composition with an input-delayed X-protocol as recently
observed in [CPS+16], however the resulting complexity overhead would be at
least 5 exponentiations for prover and verifier in total when instantiated using
discrete logarithms.

Roadmap. The rest of this paper is organized as follows. In Sect. 2, we provide
basic notation, and formalize cryptographic puzzles, the additional properties
of dense samplable puzzles and the property of amortization resistance, as well
as the notion of PoWorKs by defining completeness, f-soundness and indistin-
guishability. In Sect. 3, we present our efficient dense puzzle based construction
built upon an arbitrary 3-move special sound HVZK protocol for a language £
and some puzzle system, and prove that our construction achieves f-soundness
and indistinguishability. In the same section, we present two dense puzzle instan-
tiations. Finally, in Sect. 4, we describe the applications of PoWorKs. Namely,
(i) a method to reduce the amount of spam email while preserving the privacy
of the receiver, (ii) the composition of knowledge-based and puzzle-based cryp-
tocurrencies that gives rise to PoWorK-based cryptocurrencies, (iii) an efficient
3-move straight-line concurrent statistically AP°%Y (102} _simulatable argument of
knowledge as defined in [Pas03,Pas04].

Alternative PoWorK Constructions. In the full version of this work [BKZZ15] we
provide a second PoWorK construction based on the Lapidot-Shamir 3-move spe-
cial sound computationally special HVZK protocol [LS90], which is less efficient
than the dense puzzle based construction but works for all puzzle systems; note
that this construction is not black-box with respect to the puzzle and depending
on the puzzle may not be public-coin. A third way to construct PoWorK’s can
be derived from the recent efficient OR composition technique that was intro-
duced in [CPS+16] that can be used with “input-delayed” X-protocols, where
the statement need not be determined ahead of time. It is easy to see that in
the case a puzzle accepts an “input-delayed” X proof of knowledge of the puzzle
solution (e.g., a puzzle based on discrete-logarithms), a third possible construc-
tion method for PoWorK’s is facilitated. We stress however that these alternative
methods for constructing PoWorK’s do not combine well with puzzles based on
hash functions and thus may be of only theoretical interest in the context of our
primitive.

2 Definitions

We start by setting the notation to be used in the rest of the paper. By A
we denote the security parameter and by negl(-) the property that a function

908 F. Baldimtsi et al.

is negligible in some parameter. Let z & 2 denote the uniformly at random
selection of z from space Z and A[X,Y] the statistical distance of random
variables (or distributions) X,Y. Composition of functions is denoted by o.

Let (P(y) < V)(xz,z) denote the interaction between a prover P and a
verifier V on common input z, auxiliary input z, and P’s private input y.
For an algorithm B that is part of an interactive protocol let viewg and
outputp denote the views and the output of B respectively. Let Stepsg(x)
be the number of steps (i.e. machine/operation cycles) executed by algorithm
B on input z, and Stepsp((P(y) < V)(z,z)) be the number of steps of P,
when interacting on inputs z,y,z*. If R, is a witness relation for the lan-
guage L € NP (i.e. Rz polynomial-time-decidable and (z,w) € Ry implies
that |w| < poly(|z|)), we define the set of witnesses for the membership z € L
as Rp(z) ={w: (z,w) € Rp}.

2.1 Cryptographic Puzzles

Roughly speaking, a cryptographic puzzle should be easy to generate, hard to
solve, and easy to verify. Given a specific security parameter A, we denote the
puzzle space as PS, the solution space as SS», and the hardness space as HS .
We first define puzzles with a minimum set of properties, and then add extra
properties that are useful in our constructions.

Definition 1. A puzzle system PuzSys = (Sample, Solve, Verify) consists of the
following four algorithms:

~ Sample(1*, h) is a probabilistic puzzle instance sampling algorithm. On input
the security parameter 1* and a hardness factor h € HSx, it outputs a puzzle
instance puz € PSy.

~ Solve(1*, h, puz) is a probabilistic puzzle solving algorithm. On input the secu-
rity parameter 1*, a hardness factor h € HSy and a puzze instance puz €
PS, it outputs a potential solution soln € SSy.

~ Verify(1*, h, puz, soln) is a deterministic puzzle verification algorithm. On input
the security parameter 1, a hardness factor h € HSy, a puzzle instance puz €
PS\ and a potential solution soln € SSy it outputs true or false.

Subsequently, we define the following properties for a puzzle system.

Completeness: We say that a puzzle system PuzSys is complete, if for every
h € HS»:

puz « Sample(1*, h);soln « Solve(1*, h, puz) :

" Verify(1*, h, puz, soln) = false = negl(\).

Note that the number of steps that Solve takes to run is monotonically decreasing
in the hardness factor h and may exponentially depend on A, while Verify should
run in polynomial time in .

4 In this work we focus on parallelizable puzzles so counting in number steps as opposed
to actual running time is more intuitive.

Indistinguishable Proofs of Work or Knowledge 909

g-Hardness: We say that a puzzle system PuzSys is g-hard for some function
g, if for every adversary A, for every auxiliary tape z € {0,1}" and for every

h € HSx:

puz < Sample(1*, h);soln « A(z, 1%, h, puz) :
Pr | Verify(1*, h, puz, soln) = trueA = negl(\).
ASteps 4(2, 1%, h, puz) < g(Stepssoe (17, b, puz))

Dense Samplable Puzzles. In addition to the standard puzzle definition, for
our PoWorK construction in Sect.3 we need puzzles that can be sampled by
just generating random strings (i.e. the puzzle instances should be “dense” over
{0, 1}Z(/\’h) for some function ¢ and A\, h € Z1). Formally it holds that for some
function ¢ in A and h,

A[Sample(l’\, h), Uga,ny] = negl(A),

where Uy) stands for the uniform distribution over {0, 1}€(’\’h). For such puz-
zles we will require some additional properties. First there should be a puzzle
sampler that outputs a valid solution together with puz:

— SampleSol(1*, h) is a probabilistic solved puzzle instance sampling algorithm.
On input the security parameter 1* and a hardness factor h € HS}, it outputs
a puzzle instance and solution pair (puz,soln) € PSy x SS.

Correctness of Sampling: We say that a puzzle system PuzSys is correct with
respect to sampling, if for every h € HS), we have that:

Pr [(puz, soln) < SampleSol(1*, k) : Verify(1*, h, puz, soln) = false | = negl(}).

Efficiency of Sampling: We say SampleSol is efficient with respect to the puzzle
g-hardness, if for every A € Z*, h € HS and puz € PS,, we have that:

StepsSampleSol(l)\7 h) < g(StePSSolve(l)\a h, puz)).

Statistical Indistinguishability: We define the following two probability distrib-
utions

D, {(puz, soln) < SampleSol(1*, 1)} and

Dy n def {puz — Sample(1*, h), soln — Solve(1*, h, puz) : (puz, soln)} .

We say a PuzSys is statistically indistinguishable, if for every A € Z* and h €
HS)\:
A[D&)\’}L,Dp’)\,h] = negl()\)

(1, k)-Amortization Resistance. For certain applications it is important that
the puzzle is not amenable to amortization. We say that a g-hard puzzle sys-
tem, PuzSys, is (7, k)-amortization resistant if for every adversary A, for every
auxiliary tape z € {0,1}" and for every h € HSy:

910 F. Baldimtsi et al.

V1 <i < k: puz; +— Sample(1*, h);
{solni,...,solng} — A(z,1*, h, {puz,,...,puz,}) :
Pr (V1<i<k: Verify(1*, h,puz;,soln;) = true)A = negl()).

/\(StepsA(z7 1, by {puz, }iy) < 7(Zle g(Stepsg,e (17, R, puzi))))

Informally, (7, k)-amortization resistance implies a lower bound on the hardness
preservation against adversaries that attempt to benefit from solving vectors of
puzzles of length k.

2.2 Definition of PoWorK

In a PoWorK, the prover P may interact with the verifier V by running in either
of the two following modes: (a) the Proof of Knowledge (PoK) mode, where P
convinces V that she knows a witness for some statement x, or (b) the Proof
of WorK (PoW) mode, where P makes calls to the puzzle solving algorithm
to solve a certain puzzle. For some language in NP and a fixed puzzle system
PuzSys, we define PoWorK to satisfy: (i) completeness, (ii) f-soundness (for some
“computation-scaling” function f) and (iii) indistinguishability, as follows:

Definition 2 (PoWorK). Let L be a language in NP and R be a witness
relation for L. Let PuzSys = (Sample, Solve, Verify) be a puzzle system anf f
be a function. We say that (P,V) is an f-sound Proof of Work or Knowledge
(PoWorK) for L and PuzSys, if the following properties are satisfied:

(i). Completeness: for every x € LN{0, 1}V N w e Ry (2),2 € {0,1} and
every hardness factor h € HSy, it holds that
(i.a) Prlouty — (P(w) < V)(x, z,h) : outy = accept] > 1 — 1/poly(\) and
(i.b) Prlouty — <PS°"’e(1k’h") — V)(x, z,h) : outy = accept] > 1 — 1/poly(A) .
(ii). f-Soundness: For every x € {0,1}P°YXN ¢ 2 € {0,1}", every hardness
factor h € HSy and prover P* define by 7y - n,x the probability

.| Puz = Sample(1*, h); outy «— (P*(y) < V)(z, z,h) : (outy = accept)
AStepsp. ((P*(y) < V)(z,2,h)) < f(Stepssone (1, h, puz))

f-Soundness holds if there are non-negligible functions s,q such that for
any P*, there exists a PPT witness-extraction algorithm K such that for
any A € Nyz € {0,1}P°WN 1y > € {0,1}*,h € HSy, if Tuyonr > S(A)
(representing the knowledge error), then

Pr[ICP*(x,y,z,h) € Re(z)] > q(N) .

(i1i) Statistical (resp. Computational) Indistinguishability: for every x €
£0{0, 13PN € Re(2), 2 € {0,1}", for every hardness factor h € HS)
and for every verifier (resp. PPT wverifier) V*, the following two random
variables are statistically (resp. computationally) indistinguishable:

DY Y {viewy. — (P(w) = V*)(x,2,h)}
DY,y e {viewy. — (PF01) vy zm).

Indistinguishable Proofs of Work or Knowledge 911

Intuitively, soundness is related to the hardness of solving a presumably hard
cryptographic puzzle. The hardness threshold T is set to be the (probabilistic)
computational complexity (in number of steps) of the puzzle solver, when the
latter is provided some output of the puzzle sampling algorithm, scaled to some
function f. According to Definition 2, any prover who does not know a witness,
cannot convince the verifier in less than f(7') steps with some good probability.
Observe that in the definition of f-soundness, the convincing capability of the
prover is limited by the hardness of solving puzzle challenges. This implies that
in an f-sound protocol, provers who do not know (per the knowledge extractor)
are forced to “work” in order to convince the verifier. The indistinguishabil-
ity property of PoWorKs implies that a (potentially malicious) verifier cannot
distinguish the running mode (PoK or PoW) that P follows.

3 The Dense Puzzle Based PoWorK Construction

In this section, we show how to transform an arbitrary 3-move, public coin, spe-
cial sound, honest verifier zero-knowledge (SS-HVZK) into a 3-move public-coin
PoWorK. Our construction is lightweight and requires dense samplable puzzle
systems that we formalized in Sect. 2.1. In our full version [BKZZ15] we provide
a second construction which is less efficient, non-black-box on the puzzle, but it
works for all puzzle systems and may not be public-coin (depending on the puz-
zle). For both constructions, we consider a puzzle system PuzSys that achieves
completeness and g-hardness for some function g : N — R7T. In addition, for
dense samplable puzzle systems, we require correctness, efficient samplability,
and statistical indistinguishability.

3.1 Preliminaries

The puzzle, solution and hardness spaces are denoted by PS»y,SSy, HS), as in
Sect. 2.1. Our PoWorK protocols are interactive proofs between a prover P and
a verifier V, denoted by (P, V).

The challenge space of our dense puzzle based construction (P,V), denoted
by CS), is determined by the security parameter A. From an algebraic point
of view, CS, is set to be a group with operation @, where performing @ and
inverting an element should be efficient. For the first construction, we require
that PS) C CS,. For instance, we may set CS) as the group (G]F(%()‘),EB),
where £()) is the length of the challenges and @ is the bitwise XOR operation.
Of course, one may select a different setting which could be tailor made to the
algebraic properties of the underlying primitives.

Let ChSampler be the algorithm that samples a challenge from CS). For a
fixed security parameter, we define the following random variables (r.v.):

— The challenge sampling r.v. Cy p, def ChSampler(1*, h).
— The puzzle sampling r.v. Py 5 def {puz « Sample(1*, h) : puz}.

912 F. Baldimtsi et al.

Finally, we denote by @ D (resp. D) the r.v. of performing @ on some fixed
x € CS) and an element y sampled from r.v. D (resp. inverting an element
sampled from D). The r.v. D @ z is defined similarly. Formally,

toDY {yD:zoy Do (- Diyes), D™ (y —D:).

3.2 The Dense Puzzle Based Compiler

We now provide a detailed description of our protocol (P,V), which can
be viewed as a compiler that can transform a SS-HVZK protocol II =
(P1y,P2p,Verp) for £ € NP and a g-hard puzzle system PuzSys into a 3-move
PoWorK. The resulting PoWorK protocol achieves ©(g)-hardness and statistical
indistiguishability. From a syntax point of view, our compiler will set the chal-
lenge space of the PoWorK CS) to be equal to CSpy. We denote by Simy the
HVZK simulator of IT.
The protocol (P, V) can be executed in either of the two following modes:

1. Proof of Knowledge (PoK) mode: P has a witness w € R (z) as private
input. In order to prove knowledge of w to V, P runs Pl and P2 as
described by the original SS-HVZK protocol, with the difference that instead
of providing P2;; with the challenge ¢ from V directly, P runs the puzzle
sampler algorithm to receive a pair of a puzzle and its solution, (puz,soln),
computes the value ¢ = ¢ @ puz and runs P2;; with challenge ¢.

2. Proof of Work (PoW) mode: P has no private input and tries to convince
V that it has performed a minimum amount of computational “work” (i.e.
at least some expected number of steps). To achieve this, P runs Simj to
simulate a transcript of the original SS-HVZK protocol. Then, it receives the
challenge ¢ from V and computes the value puz = (—c) @ ¢é. It runs the Solve
algorithm on input puz, and if puz is a puzzle in PSy (which, as we argue
later, must occur with high probability), then it obtains a solution soln of
puz, except for some negligible error.

The verification mechanism, must be the same for both modes, so that indis-
tinguishability can be achieved. Namely, the verifier checks that: (i) the relation
¢ = ¢ @ puz holds, (ii) the transcript of the SS-HVZK protocol is accepting and
(iii) the prover has output a correct pair of a puzzle puz and some solution soln
of puz. The protocol (P,V) is presented in detail in Fig. 1.

3.3 Security of the Dense Puzzle Based Construction

In order to prove that our protocol satisfies soundness and indistinguishabil-
ity, we need to assume that the challenge and puzzle distributions satisfy some
plausible properties and that the presumed g-hardness of the puzzle system
dominates the step complexity of the group operation and challenge sampling
algorithms. In detail, we require that:

(A). The challenge and puzzle sampling distributions are statistically close.

Indistinguishable Proofs of Work or Knowledge 913

Statement: 2 € £ N {0, 1}P°Y™),
Prover’s private input: w € Rz ().

P:(a,p1) « Plg(w,z).
P —V:a.
P« V: ¢+ ChSampler(1*, h);

‘P : e sample a puzzle-solution pair
(puz, soln) « SampleSol(1*, h);
e sct ¢ = c P puz;

Statement: = € £ N {0, 1}P°Y ™),
Prover’s private input: —

P : e execute (a,¢,7) < Sim(z);
P —=V:a.
P < V:c <+ ChSampler(1*, h);
P:esetpuz = (—c) D
e compute a puzzle solution
soln < Solve(1*, h, puz);
P — V: ¢, T, puz,soln.

e execute 7 < P27 (¢, €);
P — V: ¢, 7T, puz,soln.
Verification: Verification:

l. ¢ =c® puz. l. ¢ =c® puz
2. Verg(z,a,¢,7) = 1. 2. Verg(z,a,¢,7) = 1.
3. Verify(1*, h, puz, soln) = true. 3. Verify(1*, h, puz, soln) = true.

(a) Knowing the witness (PoK) (b) Doing work (PoW)

Fig. 1. The Dense Puzzle Based PoWorK Construction for fixed security parameter A
and pre-determined hardness factor h € HS), given a 3-move-SS-HVZK protocol IT
for language £ and a dense samplable puzzle system PuzSys satisfying that PSy C
CS» = CS; ChSampler is the challenge sampling algorithm over CS .

(B). The challenge sampling distribution is (statistically) invariant to any
group operation, i.e. (a) inverting a challenge sampled from CSy and (b)
performing @ operations on some element = in CS) = CSp and a sam-
pled challenge. Observe that these two assumptions imply that the puzzle
sampling distribution is also (statistically) @-invariant.

(C). With high probability, the number of steps needed for Stepsg,, (17, h, puz)
to solve a g-hard puzzle puz according to P j,, scaled to the puzzle hardness
function g, is more than the number of steps of performing group operations
(inversion and @ operation), or sampling from CS.

The assumptions described are stated formally in Fig.2. Assumptions (A)
and (B) can be met for meaningful distributions, widely used in cryptographic
protocols. For example, when C, j, and P} j are close to uniform, it is straight-
forward that assumption (A) holds. Moreover, since the uniform distribution
is invariant under group operations, we have that assumption (B) also holds.
The assumption (C) is expected to hold for any meaningful cryptographic puz-
zle construction. Indeed, if solving a puzzle is believed to be hard (on average)
within a bounded amount of steps T', then performing efficient tasks, such as
group operations or sampling a challenge in the space where this puzzle belongs
must be feasible in a number of steps much less than 7.

914 F. Baldimtsi et al.

(A). For every hardness factor h € HS\, the r.v. Cy , and P 5, are e;-statistically close,
where €1 (+) is a negligible function.

(B). For every x € CS» and hardness factor b € HS, the r.v. Cj j, is ea-statistically close to
the r.v. ® Ci . Ca,p ® z and CYY,, where e(-) is a negligible function.

(C). There exists a constant x < 1 and a negligible function €3(-) s.t. for every hardness factor
h € HSy and every 1,7’ € CSx

Pr[puz < Sample(1*, h) : - g(Stepsg.e (17, b, puz)) >
> StepsChSampler(l)\7 h’) + Stepslnv(r) + Steps® (/’)7 T/)] 2 1- 63(A)7

where Steps,,,, Steps,, denote the number of steps needed for inversion and group opera-
tion in CS .

Fig. 2. Assumptions for our Dense Puzzle Based PoWorK Construction, where Cy
and P 5, are the challenge sampling and the puzzle sampling distributions respectively.

We prove that our dense puzzle based construction is a PoWorK, assuming
(A), (B) and (C), the g-hardness of PuzSys and the soundness and ZK properties
of the original SS-HVZK protocol. The soundness of our protocol is in constant
relation with the hardness of PuzSys.

Theorem 1. Let L be a language in NP and let II = (Ply,P2p,Very) be
a special-sound 3-move statistical HVZK protocol for L, where the challenge
sampling distribution is uniform. Let PuzSys = (Sample, SampleSol, Solve, Verify)
be a dense samplable puzzle system that satisfies g-hardness for some function
g. Define (P,V) as the protocol described in Fig. 1 when built upon II,PuzSys
and assume that (A), (B), (C) in Fig. 2 hold. Then, (P,V) is a ((1—£)/2) - g-
sound PoWorK for L and PuzSys with statistical indistiguishability, where K is
the constant defined in assumption (C).

Proof. Completeness: By the completeness of IT and the correctness of PuzSys,
the dense puzzle based PoWorK construction is complete in the case that P
executes the PoK mode of the protocol. Regarding the PoW mode, an honest
execution of PuzSys is incorrect, only if either of the two following cases is true:

(). puz=(—c)@® ¢ € CSx \ PS,, i.e. puz is not a puzzle. By assumptions (A),
(B) in Fig. 2, this happens with negligible probability, since

A[Pxn, Coanl <ear(A) AA[Cxu, CYY, @8 <2-e(X) =
= A[Pk,ha CI)?’\;l 2 6] < 61(/\) +2- 62()\),

where we applied (B) two times (one for inversion and one for @ operation).

(ii). puz is a puzzle, but the puzzle solver algorithm Solve does not output a
solution for puz. Namely, we have that Verify(1*, h, puz, soln) = false. By the
completeness property of PuzSys, this also happens with negligible proba-
bility.

Indistinguishable Proofs of Work or Knowledge 915

Therefore, (P,V) achieves completeness with high probability, as required in
Definition 2.

((1 - m)/2) - g-Soundness. First, we make use of the special soundness PPT
extractor Ky of IT to construct a knowledge extractor K that on input (x,y,2,h)
and given the code of an arbitrary prover P, executes the following steps:

1. By applying standard rewinding, K interacts with P(y) for statement
r and auxiliary input 2z, using two challenges c¢;,co sampled from
C,,» and receives two protocol transcripts (ai,ci, (é1,71, puz;,solny)) and
<dla02a(527f23puz2a50|n2)>~

2. K runs Ky on input (z, (a1, ¢1,71), (a1, Ca,T2)).

3. K returns the output of py.

Since K7 is a PPT algorithm, K also runs in polynomial time.

Assume that for some x € {0, 1}P°YN 4 € {0,1}*,2 € {0,1}", h € HS,,
there exists a prover P* and a non-negligible function s(-) s.t

Pr[puz < Sample(1*, h); outy — (P*(y) < V)(z, 2, h) : (outy = accept)A
N Stepsp. ((P*(y) < V)(2,2,h)) < ((1 = #)/2) - g(Stepssope(1”, b, puz))] = s(N).

We construct an algorithm W that makes use of P* to break the g-hardness
of PuzSys. The input that W receives is ((x,y,2), 1%, h, puz), where (x,y,2) is
the auxiliary input and puz sampled from Sample(1*, h). Then, W executes the
following steps:

1. It samples ¢; by running ChSampler(1*, h).

2. It interacts with P*(y) for statement x, auxiliary input z, hardness factor h
and challenge c;. It receives the transcript (ai, ¢1, (¢1, 71, puzy,solny)).

3. Tt computes the inverse of puz, denoted by (—puz).

It computes ca = ¢; @ (—puz).

5. It rewinds P* at the challenge phase and provides P* with challenge co. It
receives a second transcript (as, ca, (G2, T2, puzs, solng)).

6. It returns the value solns.

i

By the assumption for P* and the splitting Lemma, we have that when P* is
challenged with two honestly selected cy, c2, it outputs two accepting transcripts
by running in no more than ((1 —)/2) - g(Stepssoe(1*, h, puz)) steps with at
least (s())/2)? probability. By Equal we denote the event that this happens and
€1 = ¢ holds. Obviously, either Equal, or =Equal will occur with probability at
least (s()\)/2)%/2 = s(A\)?/8.

Assume that Equal happens with at least s()\)?/8 probability. We will show
that this case leads to a contradiction; namely, VW will output a solution of puz
while running in no more than g(Stepse,.(1*, k2, puz)) steps, hence breaking the
g-hardness of PuzSys.

916 F. Baldimtsi et al.

We observe that for any puz, if both transcripts generated by the interaction
with P* are accepting and the values ¢1, ¢o are equal, then we have that

(co =& ® (—puz)) A (G2 = c2 ® puzy) A (61 = &2) = puzy = (— (—puz)) = puz,

where the second equality holds due to verification step 1. Therefore, it holds
that

Verify(1*, h, puz,, solny) = true < Verify(1*, h, puz, solny) = true. (1)

By the assumptions (A), (B) in Fig.2, we have that there are negligible
functions €1 (), e2(A) s.t. for any ¢ that P* returns,

A[Cl @b CA ho 1P Pl)?:lh] < 261()\) and A[C)\,h,él S5 CI;:/h] < 262()\),

where in the first and second inequality, we applied assumptions (A) and (B)
respectively two times (one for inversion and one for @ operation). Therefore,
by the triangular inequality we have that

A[C)\Ju 1@ PI)T’Vh] < 261()\) + 262()\). (2)

Eq. (2) implies that the probability distribution of co = ¢ @ (—puz) that W com-
putes is [2€1 (+) + 2e2(+)]-statistically close to the challenge sampling distribution
of V.

By construction, the running time of W (in number of steps) is at most

2- Stepsp. ((P*(y) < V)(z,z,h)) + Steps(((—puz)))+
+Steps(¢ @ (—puz)) + Stepschsampler (17).

By assumption (C) in Fig. 2, there is a negligible function e3(-) and a constant
K <1s.t.

Pr[puz — Sample(lAv h) R g(StepSSolve(lAv ha puz)) < StepSChSampler(l)\a h)+
+Steps((—puz)) + Steps(¢; @ (—puz))] < e3(N).
3)
When Equal occurs, then it holds that
Stepsp- ((P*(y) < V) (@, 2,h)) < (1 = 5)/2) - g(Stepssone(1*, h, puz)),

hence by the assumption for P* and Eqs. (2) and (3), the probability that the
running time of W is bounded by
Stepsyy, (17, (z,, 2), h, puz) <
< 2-Stepsp. ((P*(y) = V)(x,2,h)) + K - g(Stepssoe(1*, B, puz)) <
< (2 ((1 = #)/2)) - 9(Stepssae(1*, b, puz)) + K - g(Stepssone (1, b, puz)) =
= g(Stepssoe (1%, 1, puz)),

Indistinguishable Proofs of Work or Knowledge 917

is at least Pr[Equal] — (2e1(\) 4 2e2(A) + e3()). By Eqgs. (1), (2) and (3), and
the assumption Pr[Equal] > s(\)?/8, we have that for auxiliary tape (z,v,2)
and hardness factor h:

puz < Sample(1*, h);
soln, « W(1*, (2,v, 2), h, puz) :
Pr | Verify(1*, h,puz,soln,) = true A | > s(A)*/8 — (2e1(A) + 262(A) + €3(N)),
AStepsyy, (12, (z,y, 2), h, puz)
< g(StepSSoIve<1>\7 h’ puz)

which contradicts to the g-hardness of PuzSys, as s(A\)?/8 — (2e1()) + 2e2()) +
e3())) is a non-negligible function. Therefore, it holds that Pr[Equal] < s())?/8
which implies

Pr[-Equal] > s(\)?/8. (4)

By the construction of K and the special soundness property of 11, we have
that IC will return a witness for x whenever Ky is provided with different ¢y, éo.
Define g(\) = s()\)?/8. By Eq. (4), when K is given oracle access to P* it holds
that

Pr[K”" (z,y, 2 h) € Re(x)] = Pr[-Equal] > g()).

Thus, we conclude that our protocol is ((1 —)/2) - g-sound.

Statistical Indistinguishability. Assume that the protocol described in Fig. 1
does not satisfy the PoWorK indistinguishability property in Definition 2. Then,
for some (z, z, h) there exists a verifier V* that w.l.o.g. outputs a single bit and
can distinguish between:

D%;K = {viewy- «— (P(w) < V*)(z,2,h)} and
DEZW = {Wiewv* — <,PSO|Ve(1)\7h") — V*>(x727h)} ’

with non-negligible advantage n(X).

In the following, we will show that if such a V* exists, then we can construct
an adversary B who breaks the statistical (auxiliary input) HVZK property of
the underlying 3-move protocol IT = (P17, P2, Veryr). This means that B can
distinguish between:

Dy = {(&7(151) — Plp(w,z);¢ & CSm;7 «— P2 (¢1,¢) : (i@ﬂ} and
Dsim = {(@,¢é,7) < Simp(x,(z,h)) : (a,¢,7)}

with some non-negligible advantage 7n'(\), where (z,h) is the auxiliary input.
Namely, B takes as input (z, (z, h), (@, ¢, 7)), and works as follows:

1. Invokes V* with input x, z, h and first move message a.

2. V* responds back with his challenge c.

3. B computes puz = (—c) @ ¢ and runs Solve on input (1}, h, puz) to receive
back soln.

918 F. Baldimtsi et al.

4. B sends (¢, 7, puz,soln) to V*.
5. B returns V*’s output b*.

By construction of B, what is left to argue is that puz = (—c¢) @ ¢ and
soln < Solve(1*, h, puz) are indistinguishable from a pair (puz’,soln’) that was
picked by SampleSol(1*, h). We stusy the following two cases:

1. B's input is sampled according to D: By the assumption (B) in Fig. 2 and
for any c returned by V*, we have that:

A[Cp, CY, @ & < 262(N),

where we applied (B) two times (one for inversion and one for @ operation).
By assumption (A), we have that

A[C)\’h,P)Vh] < 61<)\).

By the triangular inequality, we have that for the distribution of puz = (—¢)®
¢, it holds that
APy, O, @8 < e1(M) + 262 (V).

By the statistical indistinguishability property of PuzSys (Definition 1),
we have that the distribution {soln « Solve(1*, h,puz) : soln} is e4())-
statistically close to the distribution {(soln’, puz’) < SampleSol(1*, k) : soln},
for some negligible function e4. Consequently, the probability distribution of
puz that B computes is [e1(\) + 2ea(\) + e4(\)]-statistically close to the puzzle
sampling distribution.

2. B's input is sampled according to Dsin: in this case, it is straightforward
that B simulates perfectly the PoW mode of the PoWorK protocol.

By the above and given that the probability of success of V* is at least n()),
we have that

|Pr[(&,6, 7)< Dy : B(z,(2,h),a,¢,7) = 1]—
— Pr((a,¢,7) < Dsim : Bz, (2,h),a,¢,7) = 1]| >

> ‘(Pr[viewy* — DYy Vi (iewy:) = 1] — (e1(A) + 262(A) + es(V))) —

IsH
o

— Pr[viewy. — DYy : V* (viewy-) = 1]‘ >

> |Priviewy« « D}ﬁZK : V* (viewy-) = 1]—

— Pr[viewy. «— DY,y : V*(viewy-) = 1]‘ — (e1(A) + 2€2(A) + €4(N))) >
>n(A) = (e1(N) + 2e2(N) + ea(N)).

Therefore, B is successful in breaking the statistical HVZK property of the
underlying 3-move SS-HVZK protocol with non-negligible advantage n'(\) =
n(A) — (e1(A) +2€2(A) + €4(X)). This leads us to the conclusion that the protocol
in Fig. 1 is a PoWorK with statistical indistinguishability. |

Indistinguishable Proofs of Work or Knowledge 919

Remark. Theorem 1 can be extended to encompass the case where the pro-
tocol IT to be compiled in the construction described in Fig. 1 achieves T(A)-
computational HVZK, i.e. it is HVZK for every verifier B which runs in T'(\)
steps. Specifically, in the indistinguishability proof the running time of the HVZK
adversary B is (in number of steps) bounded by:

Stepsy« (((P1g,P27)(w), Ver (€))(z, z, b))+
+Steps|nv(c) + Steps@((_c)v E) + StepsSolve(1>\> h7 pUZ).

Therefore, we can prove that if T'()) is an asymptotically larger function than the
time of the puzzle solving algorithm, then our dense puzzle based construction
achieves computational indistinguishability.

3.4 Dense Puzzle Instantiation in the Random Oracle Model

We now instantiate a dense puzzle system in the random oracle model. For a
given security parameter A, let O : {0,1}" — {0,1}"™ be a random oracle, where
m > A/2. Our dense puzzle system is described in Fig. 3.

Theorem 2. Let A € Z* be the security parameter. Define PSy = {0,1}’\,
S8y = {0,1}*, and HSx = [log? X\, \/4]. Let O be a random oracle mapping
from {0,1}" to {0,1}™, where m > X\/2. For any h € HS), the puzzle sys-
tem PuzSys described in Fig. 3 is correct, complete with Solve’s running time
oht2log A " efficiently samplable, statistically indistinguishable, and g-hard, where
g(T) = TY¢, for any constant ¢ > 2. In addition, for any k that is O(2"?%),
PuzSys is (id(+), k)-amortization resistant, where id(+) is the identity function.

Proof. Please see the full version [BKZZ15].

Define PSy = {0,1}*, SS» = {0,1}*, and HS\ = [logZ X, \/4]. Let H() :
LSB,2(O(+)), where LSBy, stands for k least significant bits.

- Sample(1*, h): Return puz + {0,1}.
- SampleSol(1*, h): Pick random x < {0,1}* and y « {0,1}"?. Return puz =
(H(z,y),y) and soln = x.
— Solve(1*, h, puz):
e Parse puz to (z,y); set soln = L and initialize an empty set X.
e For ctr = {1, .. .,2h+21°gk}:
Randomly pick 2 « {0,1}* \ X, and add z to X. Set soln = z if LSBy,(z)
LSBy(H (z,y)).
e Return soln.
— Verify(1*, h, puz,soln): Parse puz to (z,y). Return true if and only if LSBy(z)
LSB, (H (soln, y)).

Fig. 3. The Dense Puzzle system from the random oracle O.

920 F. Baldimtsi et al.

3.5 Dense Puzzle Instantiation from Complexity Assumptions

In this section, we show how to construct a puzzle system whose puzzle instance
distribution is statistically close to the uniform distribution (over {0,1}™™)
without random oracles. The main challenge is, given an arbitrary oneway func-
tion ¥ : X +— Y, to build another oneway function with uniform output dis-
tribution (on random inputs) while still maintaining its onewayness. As an
intuition, we would like to first map the output of the given oneway func-
tion from Y to {0, l}é using an efficient injective map (which is usually the
bit representation of y € J), and then apply a strong extractor on it. Let
Ext : {0,1} x {0,1}% — {0,1}™ be a strong extractor as defined at Definition 3.

Definition 3. Function Ext : {0,1}* x {0,1}% — {0,1}™ is (¢, €)-strong extrac-
tor if for any t-source X (over {0,1}"), we have A[(S,Ext(X,S)), (S, Un)] <e,

where S «— {0, 1}d and U,, « {0,1}" are drawn uniformly and independently
of X.

The new oneway function ¥ : X x {0,1}* — {0,1}™ x {0,1}" is defined
as YV (z,s) = (Ext(¢(w),s),s). According to LHL [HILL93], if Hyo(x) > m +
21og(1/e), then the output of ¥ is at most e-far from the uniform distribution
over {0, 1}m+d. However, in order to maintain its onewayness, we need an extra
property of the strong extractor — Target Collision Resistance (TCR), i.e. given x
and s, it is computationally infeasible to find 2’ such that « # 2’ and Ext(z, s) =
Ext(z’,s). We construct TCR strong extractors from regular universal oneway
hash functions (UOWHFS), initially proposed by Naor and Yung [NY89]. We
first formally define the TCR property for a strong extractor in Definition 4.

Definition 4. Let Ext : {0, I}Z(A) x {0, 1}d(>‘) — {0, 1}m(>‘) be a strong extractor.
We say Ext is target collision resistant if for all PPT adversary A, the following
probability:

r — A(1M);s « {0, 1}d(>‘) sl — A(s) ~ negl())
x, 2" € {0, l}g(/\) Az # &' ANExt(z,s) = Ext(a’,s) | neei A

A stronger notion, collision resistant extractors, was introduced by Dodis
[Dod05]. Collision resistant extractors were applied to construct perfectly oneway
probabilistic hash functions proposed [CMRI8] in 2005. The construction of such
collision resistant extractors relies on a variant of leftover hash lemma proved by
Dodis and Smith [DS05]. Our observation is that in the same way that [Dod05]
employ regular collision resistant hash functions (CRHF) to derive collision
resistant strong extractors, we can use regular universal oneway hash function
(UOWHF), to obtain TCR strong extractor. The notion of UOWHF was ini-
tially proposed by Naor and Yung [NY89] where they showed that UOWHF's
can be constructed by composing oneway permutations with (weakly) pairwise
independent hash functions. Since then, many constructions of UOWHFs have

Indistinguishable Proofs of Work or Knowledge 921

been proposed, assuming the existence of regular oneway functions [SY90] or
any oneway functions [Rom90, HHR+10].5

We would like to use Hay, = {Hap)(z) = ax + b|Va # 0,a,b € GF(2™)} as
the family of pairwise independent permutations and a regular UOWHF family
Fx to construct our TCR strong extractors. Define Fi(-) := (Fj(-),4), where
F; € Fx. Our TCR strong extractor is constructed as Ext(z, (i, s)) = F o Hy(x).
Note that regularity of the UOWHFs is important to ensure that the output
distribution of such strong extractors is close to the uniform distribution, as
Fi(Ug, (n)) = Ugy(n)- On the other hand, some UOWHEF constructions give regular
UOWHFs by default (i.e., the UOWHF's constructed by the oneway permutation
based approach [NY89]).

Dense Oneway Functions and Dense Puzzles from Complexity
Assumptions. We apply a TCR strong extractor for our construction. The
key to the construction will be a “dense” oneway function: a oneway function
is e-dense oneway if its output distribution is at most e-far from U, for some
m € Z*. We now present a transformation of a one-way function to a dense one-
way function via the application of a TCR-strong extractor. The TCR property
will ensure that any attempt to invert the dense one-way function will result to
an inversion of the underlying one-way function. Formally we prove the following.

Theorem 3. Let A\, Ay € ZT be the security parameters. Let 1y, : Xy, — Vi,
be an arbitrary oneway function, and define Hyx, = Hoo (¥, (X)) for random
variable X drawn uniformly from Xy,. Assume there exists an efficient injective

map Gy, = Va, = (0.1} If
Exta, (7, (s1,52)) : {0,132 5 {0, 172100 o o, 13 m2leel/a =
is a (Hx,,€)-TCR strong extractor, then

U5 (@51, 82) = (Exta, (O, (¥a, (2)), (51, 52)), 52)

2-£(Aa)+Hx, —2log(1/e)—1

is an e-dense oneway function with range {0,1} and

domain X, x {0, 1}>\2+2-e()\2)'

Proof. Please see the full version [BKZZ15].

The above result paves the way for constructing dense puzzles from complex-
ity assumptions. Essentially, given a function with moderately hard characteris-
tics making it suitable for a puzzle, it is possible to transform it to a dense puzzle
by applying a suitably hard TCR extractor (“suitable” here means that breaking
the TCR property should be harder than solving the puzzle). We now illustrate
this methodology by applying it to the discrete logarithm problem. More gen-
erally this methodology transforms any puzzle in the sense of Definition 1 to a
dense puzzle (assuming again a suitably hard TCR extractor).

® We note that, on the contrary, CR strong extractors cannot be built from arbitrary
oneway functions, since Simon [Sim98] gave a black-box separation between CRHFs
and oneway functions.

922 F. Baldimtsi et al.

The DLP Based Puzzle and Calibrating Its Hardness. Consider the
discrete logarithm problem (DLP) as the candidate oneway function for our
puzzle. Let G = (G) be some (multiplicative) cyclic group where the DLP is
hard, and G is a generator with order p, which is a A;-bit prime. The oneway
function ¢ : Z, — G is defined as Y (x) = G*. It is shown by Shoup [Sho97]
that any probabilistic algorithm takes £2(,/p) steps to solve the DLP over generic
groups. Analogously, [GJKY13] shows any probabilistic algorithm must take at
least 1/2pe steps to solve DLP with probability € in the generic group model. To
build a puzzle, we would like to calibrate the hardness of the DLP by revealing
the most significant bits of the pre-image. For example, for a puzzle with hardness
factorh < |21-1], we pick z € {0,1}" and y € {071}“’\1_1)/2J uniformly at
random, and set the puzzle as (Exty,(Yc(z + 2" - y), (51, 52)), s2,%). We assume
the calibrated DLP is still moderately hard with respect to the min-entropy of
z. Note that a similar assumption was used by Gennaro to construct a more
efficient pseudo-random generator [Gen00]. It is easy to see that this assumption
holds for DLP in generic groups, i.e. given ¢ (z + 2" - y) and y, the best generic
algorithm must take at least v2"*1¢ steps to solve DLP with probability e. We
note that this problem is closely related to leakage-resilient cryptography [AM11,
ADVW13].

On the other hand, due to the out-layer extractor, we cannot directly adopt
any known (generic) DLP algorithms, such as [GTY07,GPR13]. Instead, our
puzzle solver just exhaustively searches for a valid solution. There is a subtle
caveat, namely the expected running time of solving a puzzle with hardness
factorh, ie. z « {0,1}" is designed to be 2", whereas the TCR property of
UOWHTF is only guaranteed against PPT adversaries with respect to As (the
security parameter of the UOWHF). To address this issue, we introduce an
additional assumption, that is the expected running time of any adversary A
(in number of steps) can break the TCR property of the underlying UOWHF
with non-negligible probability on z < {0, l}h is w(2"/?), (i.e. breaking TCR is
expected to happen after the birthday paradox bound). The dense puzzle system
from DLP (combining with TCR strong extractors) is depicted in Fig. 4.

Theorem 4. Let A € ZT be the security parameter and h € [log* X + log® X +
1,10g” A] be the hardness factor. Let Exty : {0,1}" x {0,1}** — {0, 1}A+log4 A be
a TCR strong extractor such that the expected running time of any adversary A
that breaks its TCR property with non-negligible probability on x «— {0,1}h 18
w(2h/2). Assume Vg : Z, — G is a hard DLP in generic groups such that the
best generic algorithm must take at least vV 2ht1e steps to solve it with probability
e. The puzzle system PuzSys = (Sample, SampleSol, Solve, Verify) described in
Fig. 4 is correct, complete with Solve’s running time 2", efficiently samplable,
statistically indistinguishable, and g-hard, where g(T) = TY¢ for any constant
¢ > 2. In addition, for any k that is 0(21Og3), PuzSys is (id(-), k)-amortization
resistant, where id(-) is the identity function.

Proof. Please see the full version [BKZZ15].

Indistinguishable Proofs of Work or Knowledge 923

Define PSx = {0, 1}”/2“0‘{4}, 88, = {0, 1}10%4’\, and HSy = [log* X + log? X\ +
1,log® A]. For the given), select a pre-defined Exty : {0,1}* x {0,1}** — {0, 1})‘+1°g~4 A,
Set the DLP ¢ : Z, — G over the pre-defined elliptic curve, where p is A-bit prime such that
there exists an efficient injective map ¢ : G — {0, 1}’\. (We will omit this map ¢ in the rest of
the description for notation simplicity.)

Sample(1*, h): Return puz + {0, 1}M/2+log4 A,
SampleSol(1*, h):
e Pick random s; « {0,1}*, s5 {0,1}**, 2+ {0,1}" and y « {0, 1}*/2.
e Return puz = (Extx (e (z 4+ 2" - y), (s1,52)), 52, %) and soln = .
Solve(1*, h, puz):
e Parse puz to (z, s1, S2,¥); set soln = L and initialize an empty set X.
e Forctr = {1,..,,2h}:
o Randomly pick 2 + {0,1}" \ X, and add z to X.
o Setsoln = x if z = Exty (¥ (z 4 2" - y), (51, 52)).
e Return soln.
Verify(1*, h, puz, soln): Parse puz to (z,s1,s2,%). Return true if and only if z =
Extx (g (soln + 2" -), (51, 52)).

Fig. 4. The Dense Puzzle system From DLP.

Remark. For notation simplicity, we let the puzzle space “independent” of the
hardness factor h, therefore we have to limit A within a small interval to ensure
(i) ¥c(z + 2" - y) has enough entropy and (ii) it is infeasible to break the TCR
property of the underlying UOWHTF within 2"/2 steps. In practice, for any desired

h, we can always pick a suitable Exty : {0,1}* x {0,1}** — {0, 1}’\+h_1°g2 AL

3.6 Instantiation of the Dense Puzzle Based PoWorK

We instantiate our PoWorK protocol as described in Fig. 1 by building it upon
the Schnorr identification scheme [Sch89] and the dense puzzle system instan-
tiation in the RO model® (see Sect.3.4). The description of our instantiation is
presented in the full version of this work [BKZZ15].

4 Applications

Below we present some practical and theoretical applications of our PoWorK.
When using PoWorK in practice we must ensure that the verifier cannot distin-
guish between the two types of provers based on their response time. In Sect. 2.2
we argued that for our indistinguishability proofs, P(w) (i.e. the prover who
knows the witness) should perform some idle steps so that his running time will
be lower bounded by the time that one would need to solve the puzzle. However,

5 The construction using the DLP based puzzle system is similar. We chose to employ
the RO instantiation for simplicity in presentation.

924 F. Baldimtsi et al.

enforcing a real user to wait is not ideal. Luckily though, the time needed for
a prover who solves a puzzle (i.e., does not know the witness) depends on his
total computational power and on whether the puzzle is parallelizable or not.
Provers who own specialized hardware (e.g., based on ASICs) or that have access
to powerful computer clusters (in case that a puzzle is parallelizable) might be
able to solve the puzzle very fast — paying of course the relevant computation
cost. Thus, when applying PoWorK in practice, the time that takes a prover
to respond to a challenge is not a distinguishing factor: the prover might have
as well solved the puzzle in constant time by fully parallelizing its computation
or alternatively, for the case of non-interactive PoWorK’s the receiver may not
know when the prover started proof computation. Finally note that in any case,
we do care that the prover has paid the corresponding computational cost and
he is not able to amortize a previous solution of a puzzle to solve a new one.

4.1 Email Spam Application

Using proofs of work to reduce the amount of spam email was suggested back in
1992 by Dwork and Naor [DN92]. Their idea can be summarized in the following:

“If I don’t know you and you want to send me a message, then you must prove
that you spent, say, ten seconds of CPU time, just for me and just for this
message” [DN92].

In their proposal there exists some special software” that operates on behalf of
the receiver and checks whether the sender has properly computed the proof
of work or the sender is an approved (by the receiver) contact. The reason that
this approach helps to reduce spam is mainly economic: in order for spammers to
send high volumes of emails they would have to invest in powerful computational
resources which makes spamming non cost-effective.

A disadvantage of the method described above is that the list of the approved
contacts (i.e. email addresses) of the receiver has to be given to this special
software/mail server in order to check whether the sender belongs in this list or
not - in which case she will have to perform additional computation. This violates
the privacy of the receiver who needs to reveal which of her contacts she considers
to be approved and thus allows them to send emails “for free”. Adopting our
PoWorK protocol would give a privacy preserving solution to the spam problem:
given the indistinguishability feature of PoWorK, the software/verifier does not
need to know the approved list of contacts, in fact it does not even need to know
whether the incoming email is from an approved contact or a non-approved user
who successfully fulfilled the computational work.

Non-interactive PoWorKs. Sending an email should not require any extra com-
munication between the sender and the mail server. Our 3-move PoWorK is
public-coin, thus can be turned into non-interactive by applying the Fiat-Shamir
transformation [FS86]. Namely, the prover, instead of receiving a challenge from

" This special software could for example run on the receiver’s mail server or be an
independent program running on the receiver’s side.

Indistinguishable Proofs of Work or Knowledge 925

the verifier, hashes the first move message a together with the context of the
email and the email address of the receiver into ¢, and provides the verifier with
the whole proof, m, which includes (a,c,r) and the context of the email, in one
round.

Multi-witness Hard Relation. In order for a user to approve a list of contacts
she will have to provide each one of them with a unique witness for the same
statement (in order to ensure indistinguishability). Let Rz be a multi-witness
hard relation with a trapdoor for a language {z | Jw : (z,w) € Rc}. A rela-
tion is said to be hard if for (z,w) € R, a PPT adversary given x can only
output w’ s.t. (x,w’) € R, with negligible probability. A multi-witness hard
relation with a trapdoor is described by the following algorithms: (a) a trapdoor
generation algorithm sets a pair of a statement x and associated trapdoor t:
(z,t) «—GenT(Rz), (b) an efficient algorithm GenW that on input z € £ and
a trapdoor t outputs a witness w such that (z,w) € R, and, (c) a verification

algorithm 1/0 « Ver(R.,z,w) outputs 1 if (z,w) € Rz and 0 otherwise®.

PoWorK Based Spam Reducing System. Consider a PoWorK scheme as pre-
sented in Fig. 1 for a security parameter A, a puzzle system PuzSys and a multi-
witness hard relation with a trapdoor R, as described above. A spam reducing
system SRS consists of the following algorithms:

— MailServerSetup(1*): the mail server S,,qy on input the security parameter,
A, selects the hardness of the puzzle system h € HS).

— ReceiverSetup(1*,h): user R (i.e. the receiver) runs (x,t) «GenT(R,; and
sends x and her email address adgr to the mail server (potentially signed
together). The trapdoor ¢t is secretly stored by R.

— ApproveContact (t,x): in order for R to approve a sender S, it will run w «
GenW(t, z) and will give w € Rz (z) to the sender (unique witnesses allow for
revocation). From now on, § can use w to send emails to R.

— SendEMail(w, h, z): a sender S with input the public parameters v, statement
x € L and with a private input w € Rg(z) U {L}, prepares a PoWorK proof
7 = (a,c,r). If § is an approved contact of R, then she will use the witness w
to perform the PoK side of PoWorK, while if R is not an approved contact (i.e.
w = 1) she will have to execute the PoW side. To compute 7 non-interactively
she will fix ¢ to be H(a, m), where a is the first message of PoWorK, m stands
for the body of the email®, and H is a hash. The rest of PoWorKis computed
as before.

Examples of multi-witness hard relations with trapdoors are (a) the DL representa-
tion problem [Bra94,BF99] over prime order groups, (b) the representation problem
in composite modular groups [ACJT00] which has constant size parameters in the
number of adversarial parties.

We can assume that the email body also contains a time-stamp (or that the time-
stamp is added later by the mail server) and also includes (ads, adr) which are the
sender /receiver email addresses.

926 F. Baldimtsi et al.

— ApproveEMail(h,x,7): is run by the mail server S;,q.i; who verifies 7 and
outputs 0/1. If proof is 7 valid, then S,,,; forwards the enclosed email to R.

Note that our proposal, similar to [DN92, DGNO03], requires to implement addi-
tional protocols between the sender and the recipient (i.e. a change in the inter-
net mail standards would be required). In the full version of this work [BKZZ15]
we discuss some interesting extensions of our protocol that address revocation,
prevention of witness sharing and solving “useful” puzzles.

Security. Although a formal definition and description of properties of an email
system is out of the scope of this paper, we do define and prove spam resistance
and privacy. Briefly, spam resistance guarantees that the mail server will allow
an email message to reach the recipient if and only if a valid proof (of work or
knowledge) has been attached. At the same time for a non-approved contact the
number of valid proofs of work prepared should not affect the time required to
prepare a new one (similar to puzzle amortization property). Privacy implies
that the mail server cannot distinguish whether the sender of a message is an
approved contact of the recipient or not.

Definition 5. Let SRS be a spam reducing system built upon a PoWorK (P, V)
for a language L € NP and a puzzle system PuzSys = (Sample, Solve, Verify).
We define spam resistance and privacy of SRS as follows:

(i). (o,k)-Spam Resistance: We say that SRS is (o, k)-spam resistant if there
exists a PPT witness-extraction algorithm K, such that for every hardness
factor h € HSy, auziliary tape z € {0,1}" and every adversary A, if for
non-negligible functions ay(-), aa(:):

(t,x) < ReceiverSetup(1*,h);¥1 < i < k : puz; < Sample(1*, h);
{7ri - (ai7ci,ri)}i€[k] — A(Z7 1/\7 h7 :r) :
Pr (Vl <i<k: ApproveEMail(h,x,m;) = 1)/\ =ai(\),
AVi# j € [k] :mi # m5)A
/\(StepsA(z, 1M h,z) <o Zf;l Stepsc, (17, b, puzi)))

then Pr[KA(z, 1%, h,z) € Re(z)] = aa(N).
(ii). Privacy: We say that SRS is private, if for every hardness factor h € HS},
auziliary tape z € {0,1}" and every adversarial mail server A, it holds that:

Pr (t,) « ReceiverSetup(1*, h);w « ApproveContact(t, x); _
7w «— SendEMail(w, h,x) : A(z,h,z,7) =1

B (t,x) « ReceiverSetup(1*, h); B
Pr [71- — SendEMail(L, h,z) : A(z,h,z,7)=1|| negl(\).

We prove the following theorem for a private spam reducing email system:

Indistinguishable Proofs of Work or Knowledge 927

Theorem 5. Let SRS be a spam reducing system built upon dense puzzle-based
PoWorK (P,V) for a g-hard and (1, k)-amortization resistant dense puzzle sys-
tem PuzSys = (Sample, Solve, Verify), where k is polynomial in A\, 7 is an increas-
ing function and g is a subadditive function. Let H be a hash function with out-
put domain equal to challenge sampling space CS) modeled as a random oracle.
Assume that the worst-case Tunning time of Solve(1?,-,-) is o(|CSx|) and that
(/T o g(Solve(1*,-,-)) is super-polynomial in X. Then, the email system described
above is private and (/T o g, k)-spam resistant.

Proof. Please see the full version [BKZZ15].

Intuitively, the privacy holds because of the indistinguishability of PoWorK.
The (/T 0 g,k)-spam resistance property holds because of the soundness of
PoWorK and the amortization resistance of the underlying PuzSys.

4.2 PoWorK-Based Cryptocurrencies

Proofs of work is the basic primitive used in achieving the type of distributed
consensus required in cryptocurrencies, notably Bitcoin [Nak08] and many others
that use the same approach. The main idea is that a proof of work operation
can be used to calibrate the ability of parties to build a hash chain that contains
transaction records, commonly referred to as the blockchain.

An important feature of a blockchain is its decentralized nature. Given the
view of a participant (commonly referred to as a miner) that includes its view
of the blockchain, a fresh instance of a puzzle of a specified difficulty is created
(which itself may depend on the blockchain) and has to be solved in order to add
another block in the chain. Formally, the operation of a PoW-based miner as used
in Bitcoin and numerous other cryptocurrencies (such as Litecoin, Namecoin,
Dogecoin) is as shown in Fig. 5.

Let (B, ..., By) be the current blockchain where B; is a tuple (t;, T, ui, 7;) with ¢; a time-
stamp, T; a set of transactions, u; = H(B;_1) (for a hash function H) and 7; is such that
Verify(l’\, hi, H(B;),m;) = true. The hardness h; is calculated via a function operating on
the time-stamps as follows h; = HC(¢1,...,%;—1). A new block By, 41 is created as follows.

1. Collect transactions into a vector Tp,41.

2. Calculate hy11 = HC(t1, ..., tn).

3. Set puz = H(tn+1,Tpi1) where ¢, 11 is a current timestamp and run Solve(1*, h, puz)
to produce a soln = 7y, 41.

4. 1If the above step is successful, broadcast By41 = (tn41, Tnt1s Unt1, Tnt1)-

Fig. 5. Miner operation in a puzzle-based cryptocurrency (using a puzzle PuzSys =
(Sample, Solve, Verify) that is dense). HC(-) is the puzzle hardness calculation function
which depends on the timestamps of the blocks of the current blockchain.

Under certain assumptions about the network synchronicity and the hardness
of the proof, the above mechanism has been shown to be robust in the sense of

928 F. Baldimtsi et al.

satisfying two properties, persistence (transactions remain stable in the “ledger”)
and liveness (all transactions are eventually inserted in the ledger) assuming that
the honest parties are above majority [GKL15]. Puzzle-based cryptocurrencies
have also drawn a lot of criticism due to the fact that they require a lot of
natural resources (e.g., in [OM14] it is reported that Bitcoin mining in 2014
already consumed as much energy as the needs of the country of Ireland for
electricity).

This lead to the development of a number of systems that circumvent puz-
zles (including, [DM16,BLMR14,Maz15] as well as Peercoin, DasHCoin, NXT,
Nushares, ACHCoin, Faircoin and others). These systems maintain a blockchain
as well, however they rely on different mechanisms for producing blocks. We call
them, generically, “knowledge-based cryptocurrencies” since the production of a
block is associated with the production of a witness for a public-relation relation
R which parameterizes the system. Formally, we present the miner'? operation
in Fig. 6.

Let (Bi, ..., By) be the current blockchain where B; is a tuple (¢;, T3, ui, m;), for s, T3, u;
defined as in Figure 5 and 7; being a NIZK that shows z; € {z | 3w : (z,w) € R}, where
z; = V(B1,...,Bi—1,t;,T;) for i = 1,...,n. The miner, equipped with secret-key sk,
produces the next block as follows.

1. Collect transactions into a vector Ty, 1.

2. Calculate the pair (z,41,aux) < V(Bi,...,Bn,tn+1, Tnt1) where t,41 is the cur-
rent time. Then calculate Wiy (zn41,aux) = wpyi. If wper # L it holds that
($n+1,wn+1) cR.

3. If the above step is successful, compute a NIZK proof 7,41 for x,1 using witness wn1.

4. Broadcast Bn+1 = (tn+1, Tn+1, Un+1, 7Tn+1).

Fig. 6. Miner operation in a knowledge-based cryptocurrency parameterized by rela-
tion R. The function V' (), given the blockchain information, the current set of trans-
actions and the time-stamp produces a statement z, while the function Wy(-) given a
statement produces a witness w so that (z,w) € R.

A trivial way to construct a knowledge-based cryptocurrency would be to
have a a single trusted authority with a public and secret key pair, (pk, sk), act-
ing as the sole miner.!! At a time-step n + 1, the function V(-) would set simply
Znt1 = (tnt1, Tnt1s Unt1) and Wi (2p41) would produce a signature on 41
that would serve as 7,11 (there is no need for a NIZK). Another example of a
knowledge-based cryptocurrency is NXT. On a high level, in this system each
miner (called forger) has a digital signature public and secret key, (pk, sk), asso-
ciated with her account. The function V' (Bi,..., Bn,tnt1,Tn+1) (run by each

10 Note that we use the term “miner” for symmetry. Miners are associated with puz-
zle based cryptocurrencies and thus different terminology has been introduced in
knowledge-based systems including “mintettes”, “forgers” and others.

' For instance, this would be a single “mintette” instantiation of [DM16].

Indistinguishable Proofs of Work or Knowledge 929

miner), operates as follows: it parses T, 11 to recover the public pk of the miner
(note that it is always present in the transaction collecting the fees). Then,
based on the public-key pk and the blockchain By,..., B, it determines how
much currency is associated with the account that corresponds to the public-key
pk; this results in a time-window d € RT whose expectation is proportionate
to the amount of currency in the account (the more currency, the shorter the
expectation of d is; we omit the exact dependency in this high level descrip-
tion). The function V(-) returns (@,41,aux) with ©,+1 = (tn+1, Tht1, Un) and
aux = d. The procedure Wi (2,41, d), will produce a signature w on the message
(tnt1s Tty un) if thy1 > €, + d; else, it produces L. Note that in this system
no NIZK is employed, one may just set m,+1 = w; however, the system would
operate similarly if a NIZK was employed to establish knowledge of a signature
w on the message (tn+1,Trnr1,Un)-

We now show how to construct a PoWorK-based cryptocurrency derived from
a knowledge-based cryptocurrency C; and a puzzle-based cryptocurrency Cs for
a dense puzzle, see Fig. 7. The construction is straightforward: a new block can
be added to the blockchain by someone who can efficiently compute a proof
m; using some secret key or by someone who is computing a 7; by performing
computational work.

The properties of the composition are informally stated in the following
(meta)-theorem; the proof of the theorem follows from the properties of PoWorK
and is similar in spirit to the proof of Theorem 5. The formal statement and proof
of the theorem (that should also include a formalization of all relevant underly-
ing properties of cryptocurrencies, both in the puzzle-based and knowledge-based
setting, e.g., in the sense of [GKL15]) is out of scope for the present exposition.

Let (Bi,...,Bxy) be the current blockchain where B; is a tuple (¢;, T, us, m;), for t;, T;
u; defined as in Figure 5 and 7; being a non-interactive PoWorKthat demonstrates either the
solution of the puzzle puz = H (¢;,T;) with hardness h; = R(t1,...,¢;—1) or that z; € {x |
Jw : (z,w) € R} where z; = V(B1,...,Bi—1,t;,T3).

1. Collect transactions into a vector 7}, 41.

2. If a secret-key sk is available, perform steps 2-3 of Figure 6 and follow the PoK direction
of PoWorK(cf. Figure 1), using the H (-) to compute the challenge of the verifier.

3. Else, perform steps 2-3 of Figure 5 and follow the PoW direction of PoWorK(cf. Figure 1)
using the H (-) to compute the challenge of the verifier.

4. Broadcast Bn+1 = (tn+17 Tn+1, Un+1, 7Tn+1).

Fig. 7. Miner operation in a PoWorK-based cryptocurrency parameterized by relation
R and PuzSys = (Sample, Solve, Verify). The functions V' (-), Wsi(-) are as in Fig. 5 and
the function C() is as in Fig. 6.

Theorem 6. (informally stated) The cryptocurrency C of Fig. 7 is the composi-
tion of a knowledge-based cryptocurrency C1 and a puzzle-based cryptocurrency

930 F. Baldimtsi et al.

Ca so that (i) the population of miners of C1,Cy becomes a single set that is
indistinguishable to any adversary that controls a subset of miners of C, (ii) the
persistence property of C is upheld as long as the conditions for persistence of
C1,C2 hold in conjunction. (i) the liveness property of C is upheld as long as
the conditions for liveness of C1,Co hold in disjunction.

4.3 PoWorKs as 3-Move Straight-Line Concurrent Simulatable
Arguments of Knowledge

In this section, we present a theoretical application of PoWorKs. Namely, we
show that any PoWorK protocol that satisfies a couple of reasonable assump-
tions, implies straight-line concurrent (AP°Y(1°28X))_simulatable arguments of
knowledge. Our application is described at length in our full version [BKZZ15].
Here, we provide the statement of our main result.

Theorem 7. Let L be a language in N'P and let PuzSys be a puzzle system. Let
(P, V) be a 3-move f-sound PoWorK for L and PuzSys with statistical indistin-
guishability such that for every hardness factor h € HS), it holds that:

(i). Pr[puz « Sample(1*, h) : f(Stepssyne (17, h, puz)) < A°8A] = negl()).
(i3). The worst-case running time of Solve(1*, h, -) is AP°Y 12X and P is a poly-
nomial time algorithm that makes oracle calls to Solve(1*, h,).

Then, (P,V) is a 3-move straight-line concurrent statistically P08 .
simulatable argument of knowledge.

Remark. In practice, we can instantiate the dense puzzle with a DL function over
a dense elliptic curve [BHKL13] (without the need of an extractor). This means
that we can transform a 3-move proof/argument of knowledge to a concurrent
one with minimal computational overhead — 1 exponentiation for the prover and
1 exponentiation for the verifier. (cf. Fig.1(a).) Note that a similar result in
terms of rounds and with similar assumptions (i.e. DL) can be obtained via the
efficient OR composition with an input-delayed X-protocol as recently observed
in [CPS+16], however the resulting complexity overhead would be at least 3
exponentiations for the prover and 2 exponentiations for the verifier when the
underlying Chameleon X-protocol is instantiated from Schnorr’s protocol.

References

[ACJTO00] Ateniese, G., Camenisch, J., Joye, M., Tsudik, G.: A practical and prov-
ably secure coalition-resistant group signature scheme. In: Bellare, M.
(ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 255-270. Springer, Heidelberg
(2000). doi:10.1007/3-540-44598-6_16
[ADVW13] Agrawal, S., Dodis, Y., Vaikuntanathan, V., Wichs, D.: On continual leak-
age of discrete log representations. In: Sako, K., Sarkar, P. (eds.) ASI-
ACRYPT 2013. LNCS, vol. 8270, pp. 401-420. Springer, Heidelberg (2013).
doi:10.1007/978-3-642-42045-0_21

http://dx.doi.org/10.1007/3-540-44598-6_16
http://dx.doi.org/10.1007/978-3-642-42045-0_21

[AM11]

[Bac97]
[BF99]

[BGJ+16]

[BHKL13]

[BKZZ15)

[BLMR14]

[Blu87]

[BMC+15]

[BR93]
[Bra94]
[Can01]

[CDS94]

[CFO1]

[CGGMO0]
[CMROS]

[CMSW09]

[CPS+16]

Indistinguishable Proofs of Work or Knowledge 931

Aggarwal, D., Maurer, U.: The leakage-resilience limit of a computational
problem is equal to its unpredictability entropy. In: Lee, D.H., Wang,
X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 686-701. Springer,
Heidelberg (2011). doi:10.1007/978-3-642-25385-0_37

Back, A.: Hashcash (1997). http://www.cypherspace.org/hashcash
Boneh, D., Franklin, M.: An efficient public key traitor tracing scheme. In:
Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 338-353. Springer,
Heidelberg (1999). doi:10.1007/3-540-48405-1_22

Bitansky, N., Goldwasser, S., Jain, A., Paneth, O., Vaikuntanathan, V.,
Waters, B.: Time-lock puzzles from randomized encodings. In: ITCS (2016)
Bernstein, D.J., Hamburg, M., Krasnova, A., Lange, T.: Elligator: elliptic-
curve points indistinguishable from uniform random strings. In: CCS
(2013)

Baldimtsi, F., Kiayias, A., Zacharias, T., Zhang, B.: Indistinguishable
proofs of work or knowledge. Cryptology ePrint Archive, Report 2015/1230
(2015). http://eprint.iacr.org/2015/1230

Bentov, 1., Lee, C., Mizrahi, A., Rosenfeld, M.: Proof of activity: extending
bitcoin’s proof of work via proof of stake [extended abstract]. SIGMET-
RICS Perform. Eval. Rev. 42(3), 34-37 (2014)

Blum, M.: How to prove a theorem so no one else can claim it. In: Pro-
ceedings of the International Congress of Mathematicians, pp. 1444-1451
(1987)

Bonneau, J., Miller, A., Clark, J., Narayanan, A., Kroll, J.A., Felten, E.W.:
Sok: research perspectives and challenges for bitcoin and crypto currencies.
In: IEEE Symposium on Security and Privacy (2015)

Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for
designing efficient protocols. In: CCS (1993)

Brands, S.: An efficient off-line electronic cash system based on the repre-
sentation problem. In: CWI Technical Report CS-R9323 (1994)

Canetti, R.: Universally composable security: a new paradigm for crypto-
graphic protocols. In: FOCS (2001)

Cramer, R., Damgard, 1., Schoenmakers, B.: Proofs of partial knowledge
and simplified design of witness hiding protocols. In: Desmedt, Y.G. (ed.)
CRYPTO 1994. LNCS, vol. 839, pp. 174-187. Springer, Heidelberg (1994).
doi:10.1007/3-540-48658-5_19

Canetti, R., Fischlin, M.: Universally composable commitments. In: Kilian,
J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 19-40. Springer, Heidelberg
(2001). doi:10.1007/3-540-44647-8_2

Canetti, R., Goldreich, O., Goldwasser, S., Micali, S.: Resettable zero-
knowledge (extended abstract). In: STOC (2000)

Canetti, R., Micciancio, D., Reingold, O.: Perfectly one-way probabilistic
hash functions (preliminary version). In: STOC (1998)

Chen, L., Morrissey, P., Smart, N.P., Warinschi, B.: Security notions and
generic constructions for client puzzles. In: Matsui, M. (ed.) ASTACRYPT
2009. LNCS, vol. 5912, pp. 505-523. Springer, Heidelberg (2009). doi:10.
1007/978-3-642-10366-7_30

Ciampi, M., Persiano, G., Scafuro, A., Siniscalchi, L., Visconti, I.:
Improved OR-composition of sigma-protocols. In: Kushilevitz, E., Malkin,
T. (eds.) TCC 2016. LNCS, vol. 9563, pp. 112-141. Springer, Heidelberg
(2016). doi:10.1007/978-3-662-49099-0_5

http://dx.doi.org/10.1007/978-3-642-25385-0_37
http://www.cypherspace.org/hashcash
http://dx.doi.org/10.1007/3-540-48405-1_22
http://eprint.iacr.org/2015/1230
http://dx.doi.org/10.1007/3-540-48658-5_19
http://dx.doi.org/10.1007/3-540-44647-8_2
http://dx.doi.org/10.1007/978-3-642-10366-7_30
http://dx.doi.org/10.1007/978-3-642-10366-7_30
http://dx.doi.org/10.1007/978-3-662-49099-0_5

932 F. Baldimtsi et al.

[DGNO3]

[DM16]

[DN92]

[DNS98]
[Dod05)
[DS05]

[FS86]

[FS90]

[Gen00]

[GIKY13]

[GKL15]

[GMRSS5]
[GOY4]
[GPR13]

[GTY07]

[HHR+10]

[HILLO3]

[JB99]

Dwork, C., Goldberg, A., Naor, M.: On memory-bound functions for fight-
ing spam. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 426—
444. Springer, Heidelberg (2003). doi:10.1007/978-3-540-45146-4_25
Danezis, G., Meiklejohn, S.: Centrally banked cryptocurrencies. In: NDSS
(2016)

Dwork, C., Naor, M.: Pricing via processing or combatting junk mail. In:
Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 139-147. Springer,
Heidelberg (1993). doi:10.1007/3-540-48071-4-10

Dwork, C., Naor, M., Sahai, A.: Concurrent zero-knowledge. In: STOC
(1998)

Dodis, Y.: On extractors, error-correction and hiding all partial informa-
tion. In: ITW (2005)

Dodis, Y., Smith, A.: Correcting errors without leaking partial information.
In: STOC (2005)

Fiat, A., Shamir, A.: How To Prove Yourself: practical solutions to identi-
fication and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986.
LNCS, vol. 263, pp. 186-194. Springer, Heidelberg (1987). doi:10.1007/
3-540-47721-7_12

Feige, U., Shamir, A.: Witness indistinguishable and witness hiding pro-
tocols. In: STOC (1990)

Gennaro, R.: An improved pseudo-random generator based on discrete
log. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 469-481.
Springer, Heidelberg (2000). doi:10.1007/3-540-44598-6_29

Garay, J.A., Johnson, D.S., Kiayias, A., Yung, M.: Resource-based corrup-
tions and the combinatorics of hidden diversity. In: ITCS (2013)

Garay, J., Kiayias, A., Leonardos, N.: The Bitcoin Backbone Protocol:
analysis and applications. In: Oswald, E., Fischlin, M. (eds.) EURO-
CRYPT 2015. LNCS, vol. 9057, pp. 281-310. Springer, Heidelberg (2015).
doi:10.1007/978-3-662-46803-6-10

Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of inter-
active proof-systems (extended abstract). In: STOC (1985)

Goldreich, O., Oren, Y.: Definitions and properties of zero-knowledge proof
systems. J. Cryptology 7(1), 1-32 (1994)

Galbraith, S.D., Pollard, J.M., Ruprai, R.S.: Computing discrete loga-
rithms in an interval. Math. Comput. 82(282), 1181-1195 (2013)
Gopalakrishnan, K., Thériault, N., Yao, C.Z.: Solving discrete logarithms
from partial knowledge of the key. In: Srinathan, K., Rangan, C.P., Yung,
M. (eds.) INDOCRYPT 2007. LNCS, vol. 4859, pp. 224-237. Springer,
Heidelberg (2007). doi:10.1007/978-3-540-77026-8_17

Haitner, 1., Holenstein, T., Reingold, O., Vadhan, S., Wee, H.: Univer-
sal one-way hash functions via inaccessible entropy. In: Gilbert, H. (ed.)
EUROCRYPT 2010. LNCS, vol. 6110, pp. 616-637. Springer, Heidelberg
(2010). doi:10.1007/978-3-642-13190-5_31

Hastad, J., Impagliazzo, R., Levin, L.A., Luby, M.: Construction of a
pseudo-random generator from any one-way function. STAM J. Comput.
28, 12-24 (1993)

Juels, A.; Brainard, J.G.: Client puzzles: A cryptographic countermeasure
against connection depletion attacks. In: NDSS (1999)

http://dx.doi.org/10.1007/978-3-540-45146-4_25
http://dx.doi.org/10.1007/3-540-48071-4_10
http://dx.doi.org/10.1007/3-540-47721-7_12
http://dx.doi.org/10.1007/3-540-47721-7_12
http://dx.doi.org/10.1007/3-540-44598-6_29
http://dx.doi.org/10.1007/978-3-662-46803-6_10
http://dx.doi.org/10.1007/978-3-540-77026-8_17
http://dx.doi.org/10.1007/978-3-642-13190-5_31

[LS90]

[Maz15]

[MMV11]

[NakO8]
[NY89]
[OM14]

[Pas03]

[Pas04]
[Rom90]
[RSW96]
[Sch89)]

[Sho97]

[Sim98]

[SY90]

[WJHF04]

Indistinguishable Proofs of Work or Knowledge 933

Lapidot, D., Shamir, A.: Publicly verifiable non-interactive zero-knowledge
proofs. In: Menezes, A.J., Vanstone, S.A. (eds.) CRYPTO 1990.
LNCS, vol. 537, pp. 353-365. Springer, Heidelberg (1991). doi:10.1007/
3-540-38424-3_26

Mazieres, D.: The stellar consensus protocol: A federated model
for internet-levelconsensus (2015).https://www.stellar.org/papers/
stellar-consensus-protocol.pdf

Mahmoody, M., Moran, T., Vadhan, S.: Time-lock puzzles in the random
oracle model. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp.
39-50. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22792-9_3
Nakamoto, S.: Report (2008). https://bitcoin.org/bitcoin.pdf. Accessed 7
Oct. 2015

Naor, M., Yung, M.: Universal one-way hash functions and their crypto-
graphic applications. In: STOC (1989)

ODwyer, K.J., Malone, D.: Bitcoin mining and its energy footprint. In:
ISSC 2014/CIICT 2014 (2014)

Pass, R.: Simulation in quasi-polynomial time, and its application to proto-
col composition. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656,
pp. 160-176. Springer, Heidelberg (2003). doi:10.1007/3-540-39200-9-10
Pass, R.: Alternative variants of zero-knowledge proofs. In: Licentiate
(Master’s) Thesis, ISBN 91-7283-933-3 (2004)

Rompel, J.: One-way functions are necessary and sufficient for secure sig-
natures. In: STOC (1990)

Rivest, R., Shamir, A., Wagner, D.: Time-lock puzzles and timed-release
crypto. Technical report (1996)

Schnorr, C.P.: Efficient identification and signatures for smart cards.
In: Quisquater, J.-J., Vandewalle, J. (eds.) EUROCRYPT 1989.
LNCS, vol. 434, pp. 688-689. Springer, Heidelberg (1990). doi:10.1007/
3-540-46885-4_68

Shoup, V.: Lower bounds for discrete logarithms and related problems.
In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 256-266.
Springer, Heidelberg (1997). doi:10.1007/3-540-69053-0-18

Simon, D.R.: Finding collisions on a one-way street: can secure hash func-
tions be based on general assumptions? In: Nyberg, K. (ed.) EUROCRYPT
1998. LNCS, vol. 1403, pp. 334-345. Springer, Heidelberg (1998). doi:10.
1007/BFb0054137

Santis, A., Yung, M.: On the design of provably-secure cryptographic hash
functions. In: Damgard, I.B. (ed.) EUROCRYPT 1990. LNCS, vol. 473,
pp- 412-431. Springer, Heidelberg (1991). doi:10.1007/3-540-46877-3_37
Waters, B., Juels, A., Halderman, J.A., Felten, E.W.: New client puzzle
outsourcing techniques for dos resistance. In: CCS (2004)

http://dx.doi.org/10.1007/3-540-38424-3_26
http://dx.doi.org/10.1007/3-540-38424-3_26
https://www.stellar.org/papers/stellar-consensus-protocol.pdf
https://www.stellar.org/papers/stellar-consensus-protocol.pdf
http://dx.doi.org/10.1007/978-3-642-22792-9_3
https://bitcoin.org/bitcoin.pdf
http://dx.doi.org/10.1007/3-540-39200-9_10
http://dx.doi.org/10.1007/3-540-46885-4_68
http://dx.doi.org/10.1007/3-540-46885-4_68
http://dx.doi.org/10.1007/3-540-69053-0_18
http://dx.doi.org/10.1007/BFb0054137
http://dx.doi.org/10.1007/BFb0054137
http://dx.doi.org/10.1007/3-540-46877-3_37

	Indistinguishable Proofs of Work or Knowledge
	1 Introduction
	1.1 Our Results

	2 Definitions
	2.1 Cryptographic Puzzles
	2.2 Definition of PoWorK

	3 The Dense Puzzle Based PoWorK Construction
	3.1 Preliminaries
	3.2 The Dense Puzzle Based Compiler
	3.3 Security of the Dense Puzzle Based Construction
	3.4 Dense Puzzle Instantiation in the Random Oracle Model
	3.5 Dense Puzzle Instantiation from Complexity Assumptions
	3.6 Instantiation of the Dense Puzzle Based PoWorK

	4 Applications
	4.1 Email Spam Application
	4.2 PoWorK-Based Cryptocurrencies
	4.3 PoWorKs as 3-Move Straight-Line Concurrent Simulatable Arguments of Knowledge

	References

