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and Daniel Rausch4

1 IBM Research – Zurich, Rüschlikon, Switzerland
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Abstract. In universal composability frameworks, adversaries (or envi-
ronments) and protocols/ideal functionalities often have to exchange
meta-information on the network interface, such as algorithms, keys, sig-
natures, ciphertexts, signaling information, and corruption-related mes-
sages. For these purely modeling-related messages, which do not reflect
actual network communication, it would often be very reasonable and
natural for adversaries/environments to provide the requested informa-
tion immediately or give control back to the protocol/functionality imme-
diately after having received some information. However, in none of the
existing models for universal composability is this guaranteed. We call
this the non-responsiveness problem. As we will discuss in the paper,
while formally non-responsiveness does not invalidate any of the universal
composability models, it has many disadvantages, such as unnecessarily
complex specifications and less expressivity. Also, this problem has often
been ignored in the literature, leading to ill-defined and flawed specifica-
tions. Protocol designers really should not have to care about this prob-
lem at all, but currently they have to: giving the adversary/environment
the option to not respond immediately to modeling-related requests does
not translate to any real attack scenario.

This paper solves the non-responsiveness problem and its negative
consequences completely, by avoiding this artificial modeling problem
altogether. We propose the new concepts of responsive environments
and adversaries. Such environments and adversaries must provide a
valid response to modeling-related requests before any other proto-
col/functionality is activated. Hence, protocol designers do no longer
have to worry about artifacts resulting from such requests not being
answered promptly. Our concepts apply to all existing models for univer-
sal composability, as exemplified for the UC, GNUC, and IITM models,
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with full definitions and proofs (simulation relations, transitivity, equiva-
lence of various simulation notions, and composition theorems) provided
for the IITM model.

Keywords: Universal composability · Protocol design · Cryptographic
security proofs · Responsive environments

1 Introduction

One of the most demanding tasks when designing a cryptographic protocol is
to define its intended security guarantees, and to then prove that it indeed
satisfies them. In the best case, these proofs should guarantee the security of the
protocol in arbitrary contexts, i.e., also when composed with other, potentially
insecure, protocols. This would allow one to split complex protocols into smaller
components, which can then be separately analyzed one by one and once and
for all, thus allowing a modular security analysis. Over the past two decades,
many models to achieve this goal have been proposed [3,8–10,19,22,24,27–29],
with Canetti’s UC model being one of the first and most prominent ones.

All these models have in common that the designer first needs to specify an
ideal functionality F defining the intended security and functional properties of
the protocol. Informally, a real protocol realizes F if no efficient distinguisher (the
environment) can decide whether it is interacting with the ideal functionality
and a simulator, or with the real world protocol and an adversary.

Urgent requests/messages. In the specifications of such real protocols and
ideal functionalities, it is often required for the adversary (and the environ-
ment) to provide some meta-information via the network interface to the pro-
tocol or the functionality, such as cryptographic algorithms, cryptographic
values of signatures, ciphertexts, and keys, or corruption-related messages. Con-
versely, protocols/functionalities often have to provide the adversary with meta-
information, for example, signaling information (e.g., the existence of machines)
or again corruption-related messages. Such meta-information does not corre-
spond to any real network messages, but is merely used for modeling pur-
poses. Typically, giving the adversary/environment the option to not respond
immediately to such modeling-specific messages does not translate to any real
attack scenario. Hence, often it is natural for protocol designers to expect that
the adversary/environment (answers and) returns control back to the proto-
col/functionality immediately when the adversary is requested to provide meta-
information or when the adversary receives meta-information from the proto-
col/functionality. In the following, we call such messages from protocols/ideal
functionalities on the network interface urgent messages or urgent requests.

Urgent requests occur in many functionalities and protocols from the lit-
erature, see, e.g., [1,4,5,8,11–13,15,16,21,25,26,31]. This is not surprising as
the exchange of meta-information between the adversary/environment and the
protocols/functionalities is an important mechanism for protocol designs in any
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UC-like model. For example, one can specify the behaviour of cryptographic val-
ues or algorithms by an ideal functionality in a natural manner without having
to worry about how these values are generated or the parameters for the algo-
rithms are set up, e.g., using a CRS. Also, protocols should be able to provide
the adversary with meta-information in situations where it is not intended to
give control to the adversary, such as certain information leaks (e.g., honest-
but-curious corruption) or signaling messages. In general, it seems impossible to
dispense with urgent requests altogether, and certainly, such requests are very
convenient and widely used in the literature (see also Sect. 3).

The non-responsiveness problem. In the existing universal composability
models, it currently is not guaranteed that urgent requests are answered imme-
diately by the adversary: when receiving an urgent request on the network
interface, adversaries and environments can freely activate protocols and ideal
functionalities in between, on network and I/O interfaces, without answering
the request. In what follows, we refer to this problem as the problem of non-
responsive adversaries/environments or the non-responsiveness problem.

This problem formally does not invalidate any of the UC-style models. It,
however, often makes the specification of protocols and functionalities much
harder and the models less expressive (see below). Most disturbingly, as men-
tioned, the non-responsiveness problem is really an artificial problem: urgent
requests do not correspond to any real messages, and the adversary not respond-
ing promptly to such requests does not reflect any real attack scenario. Hence,
non-responsiveness forces protocol designers to take care of artificial adversarial
behavior that was unintended in the first place and is merely a modeling artifact.

In particular, protocol designers currently have to deal with various delicate
problems: (i) While waiting for a response to an urgent request, a protocol/ideal
functionality might receive other requests, and hence, protocol designers have
to take care of interleaving and dangling requests. (ii) While a protocol/ideal
functionality is waiting for an answer from the adversary to an urgent request,
other parties and parts of the protocol/ideal functionality can be activated in the
meantime (via the network or the I/O interface), which might change their state,
even their corruption status, and which in turn might lead to race conditions
(see Sect. 3 for examples from the literature).

This, as further discussed in the paper, makes it difficult to deal with the
non-responsiveness problem and results in unnecessarily complex and artificial
specifications of protocols and ideal functionalities, which, in addition, are then
hard to re-use. In some cases, one might not even be able to express certain
desired properties. As explained in Sect. 3, there is no generic and generally
applicable way to deal with the non-responsiveness problem, and hence, one has
to resort to solutions specifically tailored to the protocols at hand.

Importantly, the non-responsiveness problem propagates to higher-level pro-
tocols as they might not get responses from their subprotocols as expected. The
security proofs also become more complex because one, again, has to deal with
runs having various dangling and interleaving requests as well as unexpected
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and unintuitive state changes, which do not translate into anything in the real
world, but are just an artifact of the modeling.

Clearly, in the context of actual network messages, one has to deal with
many of the above problems in the specifications of protocols and ideal func-
tionalities too. But, in contrast to the non-responsiveness problem, dealing with
the asynchronous nature of networks has a real counterpart, and these two types
of interactions with the adversary should not be confused.

In the literature, urgent requests and the non-responsiveness problem occur
in many protocols and functionalities. Nevertheless, protocol designers frequently
ignore this problem (see, e.g., [1,4,5,13,14,18,21,25,26,30,31]), i.e., they seem
to implicitly assume that urgent request are answered immediately, probably,
at least as far as ideal functionalities are concerned, because their simulators
promptly respond to these kinds of requests. As a result, protocols and ideal
functionalities are underspecified and/or expose unexpected behavior, and thus,
are not usable in other (hybrid) protocols, or security proofs of hybrid protocols
are flawed (see Sect. 3).

Our contribution. In this paper, we propose a universal composability frame-
work with the new concept of responsive environments and adversaries, which
should be applicable to all existing UC-style models (see below). This frame-
work completely avoids and, by this, solves the non-responsiveness problem as
it guarantees that urgent requests are answered immediately. This really is the
most obvious and most natural solution to the problem: there is no reason that
protocol designers should have to take care of the non-responsiveness problem
and its many negative consequences.

More specifically, the main idea behind our framework is as follows. When a
protocol/ideal functionality sends what we call a restricting message to the adver-
sary/environment on the network interface, then the adversary/environment is
forced to be responsive, i.e., to reply with a valid response before sending any other
message to the protocol. This requires careful definitions and non-trivial proofs to
ensure that all properties and features that are expected in models for universal
composition are lifted to the setting with responsive environments and adversaries.

By using our framework and concepts, protocols and ideal functionalities can
be modeled in a very natural way: protocol designers can simply declare urgent
requests to be restricting messages, which hence have to be answered immedi-
ately. This elegantly and completely solves the non-responsiveness problem. In
particular, protocol designers no longer have to worry about this problem, and
specifications of protocols and ideal functionalities are greatly simplified, as one
can dispense with artificial solutions. In fact, as illustrated in Sect. 6, with our
concepts we can easily fix existing specifications from the literature in which
the non-responsiveness problem has not been dealt with properly or has simply
been ignored as protocol designers often implicitly assumed responsiveness for
urgent messages. In some cases, we can now even express certain functionalities
in a natural and elegant way that could not be expressed before (see Sects. 3.2.2
and 6). Of course, with simplified and more natural functionalities and protocols,
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also security proofs become easier because the protocol designer does not have
to consider irrelevant and unrealistic adversarial behavior and execution orders.

We emphasize that protocol designers must exercise discretion when using
restricting messages: such messages should be employed for meta-information
used for modeling purposes only, and not for real network traffic, where imme-
diate answers cannot be guaranteed in reality.

We illustrate that our framework and concepts apply to existing models for
universal composability. This is exemplified for three prominent models: UC [8],
GNUC [19], and IITM [22,24]. In the full version of this paper [6], we provide
full proofs for the IITM model. In particular, we define all common notions
of simulatability, including UC, dummy UC, strong simulatability, and blackbox
simulatability with respect to responsive environments and adversaries, and show
that all of these notions are equivalent. This result can be seen as a sanity check
of our concepts, as it has been a challenge in previous models (see, e.g., the
discussions in [20,24]). We also prove in detail that all composition theorems
from the original IITM model carry over to the IITM model with our concepts.

Related work. The concept of responsive adversary and environments is new
and has not been considered before.

In [2], composition for restricted classes of environments is studied, motivated
by impossibility results in UC frameworks and to weaken the requirements on
realizations of ideal functionalities. In this setting, environments are restricted
in that they may send only certain sequences of messages to the I/O interfaces
of protocols and functionalities. These restrictions cannot express that urgent
requests are answered immediately and also do not restrict adversaries in any
way. Hence, this approach cannot be used to solve the non-responsiveness prob-
lem, which anyway was not the intention of the work in [2].

In the first version of his seminal work [8], Canetti introduced immediate
functionalities. According to the definition (cf. page 35 of the 2001 version), an
immediate functionality uses an immediate adversary to guarantee that mes-
sages are delivered immediately between the functionality and its dummy. To
be more precise, an immediate functionality may force an immediate adversary
to deliver a message to a specific dummy party within a single activation. This
construct was necessary as in the initial version of Canetti’s model, the ideal
functionality could not directly pass an output to its dummy but had to rely
on the adversary instead. In current versions of UC, the problem addressed by
immediate adversaries has vanished completely because ideal functionalities can
directly communicate with their dummies. Clearly, immediate adversaries do not
address, let alone solve, the non/responsiveness problem, which is about imme-
diate answers for certain request to the adversary on the network interface rather
than between a functionality and its dummies.

Outline. In Sect. 2, we briefly recall basic terminology and notation. We observe
in Sect. 3 that the non-responsiveness problem affects many protocols from the
literature, with many papers ignoring the problem altogether, resulting in under-
specified and ill-specified protocols and functionalities, that are thus hard to
re-use. Furthermore, that section shows that properly taking this problem into
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consideration is quite difficult and does not have a simple and generally applica-
ble solution. Our universal composability framework with responsive environ-
ments and adversaries is then presented in Sect. 4. This section is kept quite
model independent to highlight the main new concepts and the fact that these
concepts are not restricted to specific models. Section 5 then illustrates how our
concepts can be implemented in the UC, GNUC, and IITM models. Section 6
shows how the problems with non-responsive environment and adversaries dis-
cussed in Sect. 3 can be avoided elegantly with our restricting messages and
responsive environments/adversaries. We conclude in Sect. 7. Further details can
be found in the full version of this paper [6]. In particular, as mentioned before,
we provide full details for the IITM model with responsive environments and
adversaries in the full version.

2 Preliminaries

In this section, we briefly recap the basic concepts of universal composability and
fix some notation and terminology. The description is independent of the model
being used and can easily be mapped to any concrete model, such as UC, GNUC,
or IITM. For now, we ignore runtime issues as they are handled differently in
the models and only implicitly assume that all systems run in polynomial time
in the security parameter and the length of the external input (if any). Runtime
issues are discussed in detail in Sect. 5.

Universal composability models use machines to model programs. Each
machine may have I/O and network tapes/interfaces. These machines are then
used as blueprints to create instances which execute the machine code while hav-
ing their own local state. Machines can be combined into a system S. In a run
of S, multiple instances of machines may be generated and different instances
can communicate by sending messages via I/O or network interfaces. Given two
systems R and Q, we define the system {R,Q} which contains all machines from
R and Q.

There are three different kinds of entities, which can themselves be considered
as systems and which can be combined to one system: protocols, adversaries, and
environments. One distinguishes real and ideal protocols, where ideal protocols
are often called ideal functionalities. An ideal protocol can be thought of as the
specification of a task, whereas a real protocol models an actual protocol that is
supposed to realize the ideal protocol (cf. Definition 2.1). These protocols have
an I/O interface to communicate with the environment and a network interface
to communicate with the adversary. An adversary controls the network commu-
nication of protocols and can also interact with the environment. Environments
connect to the I/O interface of protocols and may communicate with the adver-
sary, cf. Fig. 1 for an illustration of how environments, adversaries, and protocols
are connected.

Environments try to distinguish whether they run with a real protocol and
an adversary or an ideal protocol and an adversary (then often called a simulator
or ideal adversary). An environment may get some external input to start a run.
It is expected to end the run by outputting a single bit.
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Fig. 1. A real protocol P realizing an ideal functionality F ; AD denotes the dummy
adversary which just forwards messages to and from the environment E .

Given an environment E , an adversary A, and a protocol P, we denote
both the combined system and the output distribution of the environment by
{E ,A,P}. We use the binary operator ≡ to denote two output distributions that
are negligibly close in the security parameter η (and the external input, if any).

Now, in models for universal composability, the realization of an ideal pro-
tocol by a real protocol is defined as follows.

Definition 2.1 (Realization Relation). Let P and F be protocols, the real
and ideal protocol, respectively. Then, P realizes F (P ≤ F) if for every adver-
sary A, there exists an ideal adversary S such that {E ,A,P} ≡ {E ,S,F} for
every environment E.

We note that, in the definition above and in all reasonable models, instead of
quantifying over all adversaries, it suffices to consider only the dummy adversary
AD which forwards all network messages between P and E . Intuitively, this is
true because A can be subsumed by E . Hence, we have that P ≤ F iff there exists
an ideal adversary S such that {E ,AD,P} ≡ {E ,S,F} for every environment E .

The main result in any universal composability model is a composition the-
orem. Informally, once a protocol P has been proven to realize an ideal protocol
F , one can securely replace (all instances of) F by P in arbitrary higher-level
systems without affecting the security of the higher-level system.

3 The Non-responsiveness Problem and Its
Consequences: Examples from the Literature

We have already introduced and discussed the non-responsiveness problem and
sketched its consequences in Sect. 1. In this section, we illustrate this problem
and its consequences by examples from the literature. We also point to concrete
cases in which this problem has been ignored (i.e., immediate answers to urgent
requests were assumed implicitly) and where this has led to ill-defined protocols
and functionalities as well as invalid proofs and statements.

3.1 Underspecified and Ill-Defined Protocols and Functionalities

In many papers, the non-responsiveness problem is ignored in the specifications
of both ideal functionalities and (higher-level) protocols (see, e.g., [1,4,5,13,14,
18,21,25,26,30,31]). We discuss a number of typical cases in the following.
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Ideal Functionalities. An example of a statement that one often finds in specifi-
cations of ideal functionalities is one like the following (see, e.g., [1,4,13,18,21,
25,26]):

“send <some message> to the adversary;
upon receiving <some answer> from the adversary do <something>”, (1)

where the message sent to the adversary, in our terminology, is an urgent request,
i.e., as explained in Sect. 1, some meta-information provided to the adversary
or a request for some meta-information the adversary is supposed to provide.
For example, ideal functionalities might ask for cryptographic material (crypto-
graphic algorithms and keys, ciphertexts, or signatures), ask whether the adver-
sary wants to corrupt a party, or simply signal their existence.

In specifications containing formulations as in (1) it is not specified what
happens if the adversary does not respond immediately, but, for example,
other requests on the I/O interface are received; intermediate state changes in
other parts might also occur, which might require different actions. There does
not seem to exist a generic solution to handle such problems (see Sects. 3.2.1
and 3.2.3). It rather seems to be necessary to find solutions tailored to the spe-
cific protocol and ideal functionality at hand, making it even more important to
precisely specify the behavior in case the adversary does not respond immedi-
ately to urgent requests.

Many research papers on universal composability focus on proposing new
functionalities and realizations thereof, including proofs that a realization actu-
ally realizes a functionality; to a lesser extent the functionalities are then used in
higher-level protocols. In realization proofs, one might not notice that formula-
tions as that in (1) are problematic because for such proofs an ideal functionality
F runs alongside a (friendly) simulator and this simulator might provide answers
to urgent requests immediately (see also Fig. 1). However, if used in a hybrid
protocol (see Fig. 2), an ideal functionality F runs alongside a (hostile) adver-
sary/environment. In this case, it is important that specifications capture the
case that urgent requests are not answered immediately. If this is ignored or not
handled correctly, it yields (i) underspecified protocols, with the problem that
they cannot be re-used in hybrid protocols, which in turn defeats the purpose of
universal composability frameworks, and (ii) possibly false statements.

To illustrate these points by a concrete example, we consider the “signature
of knowledge” functionality Fsok(L) proposed by Chase and Lysyanskaya [14].
This functionality contains a Setup instruction (reproduced in Fig. 3), where
the adversary provides the keys and algorithms, and signing and verification
instructions that then use those keys and algorithms without requiring inter-
action with the adversary - a very common mechanism in the literature (see,
e.g., [1,5,12,15,16,30]). This functionality is explicitly intended to be used in a
hybrid setting to realize delegatable credentials.

If the adversary does not respond to the first (Setup, sid) request, all subse-
quent requests (e.g., a Setup request by a different party) will cause the func-
tionality to use or output the undefined Sign and Verify algorithms, which is a
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Fig. 2. An F-hybrid protocol P ′ realizing some ideal functionality F ′.

Fig. 3. The Setup instruction of Fsok(L) from [14].

problem: Chase and Lysyanskaya provide a protocol in the Fsok(L)-hybrid model
that can be used for realizing delegated credentials, i.e., an ideal functionality
for signatures on a signature. They then prove that this protocol realizes the
functionality. They, however, missed the fact that Fsok(L) may interact with
a non-responsive adversary in the hybrid world. Such an adversary can force
Fsok(L) to use undefined algorithms, and their simulator does not handle that
situation in the ideal world. It is thus easy to distinguish the real from the ideal
world. Hence, their proof is flawed, and in fact it seems that the statement cannot
be proven.

(Higher-Level) Protocols. As already mentioned in the introduction, real pro-
tocols often also send urgent requests to the adversary (e.g., signaling their
existence or asking whether the adversary wants to corrupt). In addition, one
often finds protocol specifications containing formulations of the following form
to make requests to subprotocols (see, e.g., [5,14,30,31]):

“send <some message> to F ;
upon receiving <some answer> from F do <something>.” (2)

Intuitively, F might indeed model some non-interactive functionality, such as
signature functionalities. However, because of the use of urgent requests in such
functionalities, even when completely uncorrupted, F might not return answers
right away. So, again, formulations as the one in (2) are greatly underspecified.
What happens if other requests are received at the network or I/O interface?
Should they be ignored? Or may they be queued somehow? Also, the state and
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status (such as corruption) of other parts of the protocol or subprotocols might
change while waiting for answers from F . Again, as illustrated in the following
subsections, dealing with this is not easy and often requires solutions tailored
to the specific protocol and functionality at hand, making a full specification of
the behavior particularly important.

3.2 Problems Resulting from Non-responsiveness

We now discuss challenges resulting from the non-responsiveness problem (when
actually taken into account, rather than ignored) and illustrate them by examples
from the literature.

3.2.1 Unintended State Changes and Race Conditions
As mentioned before, a general problem one has to take care of when dealing with
the non-responsiveness problem is that while a protocol is waiting for answers
to urgent requests, the adversary might cause changes in the state of other parts
of the protocol/functionality and of subprotocols, which in turn influences the
behavior of the protocol. Keeping track of the actual current overall state might
be tricky, and race conditions are possible.

The following is a simple example which illustrates that the problem can
occur already locally within a single functionality. It can often become even
trickier in higher-level protocols which use urgent requests themselves and where
possibly several subroutines use urgent requests.

We consider the dual-authentication certification functionality FD-Cert [31].
In this functionality, the adversary needs to be contacted when verifying a sig-
nature (a common mechanism to verify cryptographic values that is also used
in many other functionalities [7,13,21]). Such requests are urgent as this is sup-
posed to model local computations. However, the adversary may not answer
immediately.

More specifically, Fig. 4 shows the Verify instruction of FD-Cert. Assume now
that S′ has received a message m and a signature σ for this message, which
supposedly was created by an honest party P with SID sid. Now, if the sig-
nature actually was not created by P , the verification should fail as P is not

Fig. 4. The Verify instruction of FD-Cert from [31].
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corrupted. However, as the adversary gets activated during this allegedly local
task, it could corrupt the signer during the verification process, return φ = 1, and
therefore let the functionality accept σ. This behavior is certainly unexpected
and counterintuitive.

Such a functionality also considerably complicates the security analysis of
any higher-level application that uses FD-Cert as a subroutine, as one has to
also consider the possibility of a party getting corrupted during the invocation
of a subroutine modeling a local task, which, even worse, in that case returns
unexpected answers.

3.2.2 Problems Expressing the Desired Properties
The following is an example where the authors struggled with the non-
responsiveness problem in that it finally led to a functionality that, as the authors
acknowledge, is not completely satisfying. This functionality, denoted FNIKE, is
supposed to model a non-interactive key exchange and was proposed by Freire
et al. [17]. Figure 5 shows a central part of this functionality, namely, the actual
key exchange. A party Pi may ask for the key that is shared between the parties
Pi and Pj . If this session of Pi and Pj is considered corrupted, namely, because
one of the parties is corrupted, and no key has been recorded for this session yet,
the adversary is allowed to freely choose the key that is shared between the two
parties. The functionality uses an urgent request to model this, i.e., it directly
sends a message to the adversary if she is allowed to choose a key.

Fig. 5. The init instruction of FNIKE from [17].

As the authors state, they would have liked to also model “immediateness” of
the functionality, i.e., a higher-level protocol that requests a key should be able to
expect an answer without the adversary being able to interfere with the protocol
in the meantime. This indeed would be expected and natural because FNIKE

models a non-interactive key exchange. However, this is in conflict with allowing
the adversary to choose the key of a corrupted session. The authors suggest that
one option to also model immediateness might be to let the adversary choose an
algorithm upon setup, which is then used to compute the keys for corrupt parties.
Nevertheless, they chose the non-immediate modeling because the other solution
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would lead to “technical complications”; it would also limit the adaptiveness of
the adversary and might add other problems. Indeed, code upload constructs
(see also Sect. 3.2.3), in general, do not solve the non-responsiveness problem.

As a consequence of the formulation chosen in FNIKE, the adversary can
now, e.g., block requests, which again also needs to be considered in any higher-
level protocol using FNIKE as a subroutine, even though in the real world the
honest party would always obtain some key because of the non-interactivity of
the primitive.

More generally, ideal functionalities that use urgent messages (which in cur-
rent models are not answered immediately) might have weaker security guaran-
tees than their realizations, in particular when the functionality is supposed to
model a non-interactive task, because the realization might not give control to
the adversary. So for hybrid protocols one might not be able to prove certain
properties when using an ideal functionality, whereas the same protocol using
the realization of the ideal functionality instead might enjoy such properties.

This is in contrast to one of the goals of universal composability models,
namely, reducing the complexity of security analyses by enabling the use of
conceptually simpler ideal functionalities as subroutines.

3.2.3 The Reentrance Problem
As already mentioned in Sect. 1, a protocol designer has to specify the behavior
of protocols and ideal functionalities upon receiving another input (on the I/O
interface) while they are waiting for a response to an urgent request on the
network. In other words, protocols and ideal functionalities have to be reentrant.
Note that, as pointed out, a protocol has to be reentrant not only when it uses
urgent requests itself, but also if a subroutine uses such messages.

As explained next, dealing with the reentrance problem can be difficult.
Approaches to solve this problem complicate the specifications of protocols and
ideal functionalities, and none of them is sufficiently general to be applicable in
every case.

We now illustrate this by an example ideal functionality. However, similar
issues occur in specifications for real and hybrid protocols. Let F be any ideal
functionality which sends an urgent request to the adversary upon its first cre-
ation, say, to retrieve some modeling-related information. This is a common
situation. For example, ideal functionalities often require some cryptographic
material such as keys and algorithms from the adversary before they can con-
tinue their execution (e.g., functionalities for digital signatures or public-key
encryption). We also assume that F is meant to be realized by a real protocol
consisting of two independent parties/roles A and B (e.g., signer and verifier).
We further assume that both of these parties also send an urgent request to
the adversary upon their first activation and expect an answer before they can
continue with their computation. Again, this is a common situation as, for exam-
ple, real protocols often ask for their corruption status or notify the adversary
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of their creation.1 While the above is only one illustrative example, it already
describes a large and common class of real and ideal protocols often encountered
in the literature.

We now present several approaches to make F reentrant in the above sense,
i.e., to deal with I/O requests while waiting for a response to an urgent request on
the network. We show that the obvious approaches in general cannot be used.
In particular, with most of these approaches F cannot even be realized by A
and B in the setting outlined above. This in turn shows that solutions that are
tailored to the specific functionality at hand and even the envisioned realization
are required, which is very unsatisfactory, as this leads to more complex and yet
less general functionalities and protocols.

Ignore Requests. After sending an urgent request to the adversary, the most
straightforward approach would be to ignore all incoming messages until a
response from the adversary is received.2 This, however, is not only an unex-
pected behavior in many cases – for example, why should a request silently fail
if the ideal functionality models a local computation? – but the ideal function-
ality in fact might no longer be realizable by some real protocols:

If F , in our example functionality, would simply ignore incoming messages,
an environment can distinguish F (with a simulator) from the realization A
and B (with the dummy adversary). It first sends a message to A which, as
we assume, then in turn sends an urgent request to the dummy adversary and
hence to the environment. Now the environment, which does not have to respond
to urgent requests immediately, sends a message to B which in turn also sends
an urgent request to the adversary and hence to the environment. Consider the
behavior of the ideal world in this case: After receiving the message for A, F will
send an urgent request to the simulator. The simulator, however, cannot answer
this urgent request because it has to simulate A by sending an urgent request
to the environment. (This might be the case because the simulator first has to
consult the environment before answering the urgent request by F or because F
does not return control to the simulator after receiving an answer to the urgent
request.) The environment then sends the second message (for B) to F , which is
ignored because F still waits for an answer to its urgent request. This behavior
is different from the real world, and thus, the environment can distinguish the
real world from the ideal one.

This illustrates that an ideal functionality that simply blocks all requests
while waiting for a response to an urgent request can in general not be realized by
two or more independent parties that also send urgent requests to the adversary.
Instead one needs to adjust the blocking approach to the specific protocols at
1 The latter is, for example, required by the definition of “subroutine respecting pro-

tocols” in the 2013 version of UC [8]. While prompt responses by the adversary are
formally not required, they would be very convenient for all of the reasons discussed
in Sect. 3.2.

2 Alternatively, one could send error messages as response to intermediate requests.
However, the exact same problems discussed for the approach of ignoring requests
occur.
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hand. For example, often it might be possible to block messages that would be
processed by a single party in the real protocol, while messages for other parties
are still processed. But this does not work if, for instance, F cannot process
messages for any party before receiving a response to its urgent requests, e.g.,
because F first needs to receive cryptographic material (algorithms, keys, etc.).
Thus, in this case yet another workaround is required.

Queuing of Intermediate Requests. Another potential general approach to deal
with the reentrance problem is to store all incoming messages to process them
later on. The simplest implementation of this approach would be the following:
Upon receiving another input while still waiting for a response to an urgent
request, the ideal functionality stores the input in a queue and then ends its
activation. After receiving a response from the adversary, the ideal functionality
processes the messages stored in the queue.

This approach is vulnerable to the same attack as the previous approaches: if
the environment executes this attack in the real world, it will eventually receive
an urgent request from B. This, however, cannot be simulated in the ideal world.
The simulator does not get control when B is activated as the ideal functionality
simply ends its activation after queuing the input for B.

Another problem with this approach is that in all current universal compos-
ability models, a machine is allowed to send only one message per activation.
Hence, the ideal functionality will never be able to catch up with the inputs that
have been stored. Every time it is activated by another input, it will have to
process both the new input and several older inputs that are still stored in the
queue. But it can only answer one of these messages at a time. This observation
leads to another approach based on the queuing of unanswered requests which
we discuss in the full version of this paper [6]. This approach, which does not
seem to have been used in the literature so far, is, however, very complex and
weakens the security of the ideal functionality to an extent that for some tasks
is unacceptable: it allows the adversary to determine the order in which requests
are processed by an ideal functionality.

Further Approaches. In the full version of this paper [6], we discuss several alter-
native approaches, namely, default answers and code uploads, which, however,
can merely help reduce the use of urgent requests, but do not solve the reentrance
problem, let alone the general non-responsiveness problem.

3.2.4 Unnatural Specifications of Higher-Level Protocols
Higher-level protocols have to deal with the non-responsiveness problem for two
reasons. First, they might use urgent requests themselves. Second, subprotocols
might use urgent requests, and hence, if requests are sent to subprotocols (even
for those that intuitively should model non-interactive primitives), the adversary
might get control. In both cases, higher-level protocols have to deal with the
problem that while waiting for answers, the state of other parts of them and
of any of their subprotocols might change and new requests (from the network



Universal Composition with Responsive Environments 821

or I/O interface) might have to be processed. This can lead to unnecessarily
complex and often unnatural specifications, if the non-responsiveness problem
is actually taken into account rather than being ignored (which in turn would
result in underspecified, and hence, unusable protocols).

We illustrate this by a joint state realization, which represents one form
of a higher-level protocol: Consider a digital signature functionality Fsig. Let
us assume that Fsig is specified in such a way that at the beginning it asks the
adversary for signing and verification algorithms and keys before it answers other
requests; as already mentioned, this is a very common design pattern. Because
the adversary might not answer requests for the cryptographic material right
away (non-responsiveness), Fsig might receive further requests while waiting for
the answer. Let us assume that Fsig ignores/drops all such requests (this seems
to be the option mainly used in the literature, see, e.g., [4,23]).3

Fig. 6. Joint state realization.

In a joint state realization of Fsig, one instance of Fsig (per party) is used to
realize all sessions of Fsig (for one party) in the ideal world (see also Fig. 6). The
idea behind the joint state realization is that if in session sid a message m is to
be signed/verified, then one would instead sign/verify the message (sid ,m). In
this way, messages of different sessions cannot interfere. In the realization proof,
a simulator would provide an instance Fsig in session sid with a signing and
verification algorithm that exactly mimics the behavior of Fsig in session sid (i.e.,
signing/verifying prefix messages with sid). Unfortunately, because of the non-
responsiveness problem, the joint state realization is more complex than that,
even if, for the purpose of the discussion, we ignore the handling of corruption. To
see this, assume that the environment sends a signing request for some message
m in session sid . The joint state realization would now invoke Fsig with (sid ,m).
Before Fsig can answer, Fsig asks the adversary for the cryptographic material.
Hence, the adversary/environment gets activated again, and the environment can
send a new, say, signing request for message m′ in session sid ′. As Fsig is still
waiting for the adversary to provide the cryptographic material, this later request
3 As explained in Sect. 3.2.3, this approach, just as all other approaches discussed in

Sect. 3.2.3, does not work in general, e.g., when the signer and verifier are inde-
pendent and send urgent requests to the adversary upon first activation. It really
depends on the details of Fsig and its realization.
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will be ignored by Fsig and hence will never be answered. To mimic this behavior
in the ideal world, the simulator should not provide the cryptographic material
to the instance of Fsig in session sid ′ (otherwise, Fsig in session sid ′ would return
a signature for m′). But then, this instance of Fsig is blocked completely. Hence,
in turn, the joint state realization also has to block all further requests for session
sid ′. That is, it has to store all SIDs for which it received requests while waiting
for Fsig to respond, and all future requests for all such SIDs have to be dropped.

This is very unnatural and certainly would not correspond to anything one
would do in actual implementations: there one would simply prefix messages
with SIDs, but one would never block requests for certain SIDs. This is just an
artifact of the non-responsiveness problem, i.e., the fact that, in current models,
urgent requests (in this case the request for cryptographic material by Fsig)
might not be answered immediately.

4 Universal Composability with Responsive
Environments

The non-responsiveness problem and the resulting complications shown in Sect. 3
are artificial problems. As urgent requests exist only for modeling purposes but
do not model any real network traffic, a real adversary would not be able to use
them to carry out attacks. Still, in all current universal composability models,
the non-responsiveness of adversaries enables attacks that do not correspond to
anything in reality. If we could force the adversary to answer urgent requests
immediately, which, as already mentioned before, would be the natural and
expected behavior, there would not be any need for coming up with workarounds
that try to solve the non-responsiveness problem in the specifications of protocols
and functionalities and one would not have to consider such artificial attacks in
security proofs.

In this section, we present our framework which extends universal compos-
ability models by allowing protocol designers to specify messages that have to
be answered immediately by (responsive) environments and adversaries. We first
give a brief overview of our approach, then define in more detail responsive envi-
ronments, responsive adversaries and the realization relation in this setting, and
finally prove that the composition theorems still hold for our extension. As our
framework and concepts can be used by any universal composability model and
to highlight the new concepts, we keep this section independent of specific mod-
els. In particular, we mostly ignore runtime considerations. In Sect. 5, we then
discuss in detail how our framework can be adapted to specific models.

4.1 Overview

To avoid the non-responsiveness problem altogether, we introduce the concept of
responsive environments and responsive adversaries. In a nutshell, when these
environments and adversaries receive specific messages from the network (we
call these messages restricting) then they have to respond to these messages
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immediately, i.e., without activating other parts of the protocol before sending
an answer. Furthermore, depending on the restricting message, they may send an
answer from a specific set of messages only. Restricting messages and the possible
answers can be specified by the protocol designer; they are not hardwired into
the framework. More specifically, restricting messages and the possible responses
are specified by a binary relation R ⊆ {0, 1}+×{0, 1}+ over non-empty messages,
called a restriction. If (m,m′) ∈ R, then m is a restricting message and m′ a
possible answer to m. That is, if an environment/adversary receives m on its
network interface, then it has to answer immediately with some m′ such that
(m,m′) ∈ R.

This allows a protocol designer to specify all urgent requests as restrict-
ing messages by defining a restriction R appropriately; such requests are then
answered not only immediately but also with an expected answer. Therefore the
adversary can no longer interfere with the protocol run in an unintended way
by activating other parts of the protocol or sending unexpected inputs before
answering an urgent request.

Note that this concept is very powerful and needs to be handled with care:
While, as motivated above, it does not weaken security results if one models
urgent requests as restricting messages, one must not use such messages when
modeling real network traffic, as real network messages are not guaranteed to be
answered immediately in reality.

4.2 Defining Responsiveness

To define responsive environments and responsive adversaries, we first precisely
define the notion of a restriction. As mentioned, restrictions are used to define
both restricting messages, which have to be answered immediately by the envi-
ronment/adversary, and possible answers to each restricting message.

Definition 4.1. A restriction R is a set of pairs of non-empty messages, i.e.,
R ⊆ {0, 1}+×{0, 1}+, such that, given a pair of messages (m,m′), it is efficiently
decidable whether R allows m′ as an answer to m. We define R[0] := {m|∃m′ :
(m,m′) ∈ R}. A message m ∈ R[0] is called a restricting message.

The idea is that if an environment/adversary receives m on the network
interface, there are two cases: If m is not a restricting message, i.e., m �∈ R[0],
then the environment/adversary is not restricted in any way. Otherwise, if m ∈
R[0], then the first message (if any) sent back to the protocol (both on the
network and I/O interface of the protocol) has to be some message m′ with
(m,m′) ∈ R. This message has to be sent on the network interface of the same
machine that issued the request m, without any other message being sent to
another machine of the protocol (see also Definition 4.2).

By requiring efficient decidability we ensure that environments are able to
check whether some answer is allowed by the restriction; this is necessary, e.g., for
Lemma 4.4. We refer to Sect. 5 for the exact definitions of “efficiently decidable”,
which depend on the runtime definitions of the underlying models.
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As mentioned in Sect. 4.1, only urgent requests should be defined as restrict-
ing messages via a restriction. For example, upon creation of a new instance by
receiving a message m, instances of protocols are often expected to first ask the
adversary whether they are corrupted before they process the message m. An
adversary can be forced to answer such a request immediately by the following
restriction:

R := {(m,m′)|m = AmICorrupted?,m′ = (Corruption, b), b ∈ {false, true}}.

We now formalize the responsiveness property of environments and adversaries.

Definition 4.2 (Responsive Environments). An environment E is called
responsive for a system of machines Q with respect to a restriction R if in
an overwhelming set of runs of {E ,Q} every restricting message from Q on the
network is answered correctly, i.e., for any restricting message m ∈ R[0] sent
by Q on the network, the first message m′ that Q receives afterwards (be it on
the network interface or the I/O interface of Q), if any, is sent by E on the
network interface of Q to the same machine of Q that sent m and m′ satisfies
(m,m′) ∈ R. By EnvR(Q) we denote the set of responsive environments for Q.

In the above definition, “same machine” typically means the same instance
of a machine. So if an instance of a machine of Q sent a restricting message m on
the network interface to the environment, the first message m′ received by any
instance of Q (on the network or I/O interface), including all currently running
instances of Q and an instance that might be created as a result of m′, has to be
sent back on the network interface to the same instance of Q which sent m, and
m′ has to satisfy (m,m′) ∈ R. The exact definition of “same machine” depends
on the model under consideration (see Sect. 5).

The system Q usually is either {AD,P}, where P is a real protocol and AD

is the dummy adversary, or {S,F}, where S is an ideal adversary and F is an
ideal protocol.

Responsive adversaries have to provide the same guarantees as responsive
environments; however, they have to do so only when running in combination
with a responsive environment. In other words, they can use the responsiveness
property of the environment to ensure their own responsiveness property.

Definition 4.3 (Responsive Adversaries). Let Q be a system and let A be an
adversary that controls the network interface of Q. Then, A is called a respon-
sive adversary if, for all E ∈ EnvR({A,Q}), in an overwhelming set of runs
of {E ,A,Q} every restricting message from Q on the network is immediately
answered (in the sense of Definition 4.2). We denote the set of all such adver-
saries for a protocol Q by AdvR(Q).

We note that the dummy adversary AD is responsive.
Also note that the definitions of both responsive environments and responsive

adversaries depend on a specific system, i.e., an environment which is responsive
for a system Q is not necessarily responsive for a system Q′. If we required envi-
ronments to be responsive for every system, we would also have to require this
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from simulators (ideal adversaries). This in turn would needlessly complicate
security proofs. Let us elaborate on this. Many theorems and lemmas in UC-like
models, such as transitivity of the realization relation (cf. Lemma 4.7) and the
composition theorems (cf. Theorems 4.8 and 4.9), are proven by simulating (some
instances of) adversaries/simulators and protocols within the environment. In
such proofs, we need to make sure that if an environment is responsive, then
it is still responsive if we move a simulator (ideal adversary) into the environ-
ment, i.e., run the simulator within the environment. Now, if we require strong
responsiveness (i.e., responsiveness for all systems), then moving a simulator
into a responsive environment might result in an environment that is no longer
responsive (in the strong sense), unless we require from the simulator that it is
responsive in the strong sense as well. However, imposing such a strong require-
ment on simulators seems unreasonable. Simulators are constructed in security
proofs to work with exactly one protocol. So a protocol designer should only
have to care about runs with this specific protocol, not with arbitrary systems
that might try to actively violate the responsiveness property of the simulator.
This is why we require responsiveness for specific systems only and this indeed
is sufficient.

In fact, for security proofs, there are two important properties that should be
fulfilled and for which we now show that they are. The first says that if an envi-
ronment is responsive for one system, then it is also responsive for any system
indistinguishable from that system. The second property says that a responsive
environment can internally simulate a responsive adversary/simulator without
losing its responsiveness property. In other words, we can move a responsive
adversary/simulator into a responsive environment without losing the respon-
siveness property of the environment. As mentioned before, this is necessary,
for example, for the transitivity of the realization relation and the composition
theorems.

Lemma 4.4. Let R be a restriction. Let Q and Q′ be two systems of machines
such that {E ,Q} ≡ {E ,Q′} for all E ∈ EnvR(Q). Then, EnvR(Q) = EnvR(Q′).

For the proof of this lemma, we refer the reader to the full version of this
paper [6].

Lemma 4.5. Let R be a restriction. Let Q be a system, A ∈ AdvR(Q) be a
responsive adversary, and E ∈ EnvR({A,Q}) be a responsive environment. Let
E ′ denote the environment that internally simulates the system {E ,A}. Then,
E ′ ∈ EnvR(Q).

For the proof of this lemma, we refer the reader to the full version of this
paper [6].

4.3 Realization Relation for Responsive Environments

We can now define the realization relation for responsive environments. The
definition is analogous to the one for general environments and adversaries (see
Definition 2.1), but restricts these entities to being responsive.
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Definition 4.6 (Realizing Protocols with Responsive Environments).
Let P and F be protocols, the real and ideal protocol, respectively, and R
be a restriction. Then, P realizes F with respect to responsive environments
(P ≤R F) if for every responsive adversary A ∈ AdvR(P), there exists an
(ideal) responsive adversary S ∈ AdvR(F) such that {E ,A,P} ≡ {E ,S,F} for
every environment E ∈ EnvR({A,P}).

Just as in the case of Definition 2.1, we have that instead of quantifying over
all responsive adversaries, it suffices to consider only the dummy adversary AD,
which forwards all network messages between P and E (we provide a formal
proof in the full version of this paper [6]). As already mentioned, AD is always
responsive. This means that in security proofs, one has to construct only one
responsive simulator S for AD.

As mentioned before Lemma 4.5, the responsiveness of S is necessary for
the transitivity of ≤R. While the responsiveness of S is a property a proto-
col designer has to ensure, this property is easy to check and guarantee: upon
receiving a restricting message from the protocol, it either answers immediately
and correctly or sends only restricting messages to the environment until it can
provide a correct answer to the original restricting message from the protocol.
In such a situation, the simulator should not send a non-restricting message to
the environment because, if it does so, it cannot make sure that it gets back an
answer immediately from the environment and that the environment does not
invoke the protocol in between. In the full version of this paper [6], we specify
and provide a formal proof of this intuition.

We also note that Definition 4.6 is a generalization of Definition 2.1: with
R := ∅, we obtain Definition 2.1.

We now prove that the realization relation with responsive environments is
reflexive and transitive. This is crucial for the modular and step-wise design of
protocols: once we have proven P ≤R P ′ and P ′ ≤R P ′′, we want to conclude
immediately that P ≤R P ′′.

Lemma 4.7. The ≤R relation is reflexive and transitive.

For the proof of this lemma, we refer the reader to the full version of this
paper [6].

4.4 Composition Theorems

The core of every universal composability model is the composition theorems.
We now present a first composition theorem that handles concurrent composition
of any (fixed) number of potentially different protocols.

Theorem 4.8. Let R be a restriction. Let k ≥ 1, Q be a protocol, and
P1, . . . ,Pk, F1, . . . ,Fk be protocols such that for all j ≤ k it holds true that
Pj ≤R Fj.

Then, {Q,P1, . . .,Pk} ≤R {Q,F1, . . .,Fk}.
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Proof. In what follows, we take the (equivalent) formulation of ≤R with the
dummy adversary AD.

It suffices to prove the theorem for the case k = 1. The argument can then
be iterated to obtain the theorem for k > 1 using transitivity of the ≤R relation.
Let S ∈ AdvR(F1) be the simulator from the definition of P1 ≤R F1. Define
the simulator S ′ to forward messages between the environment and Q, while
internally simulating S for messages between the environment and F1. Now let
E ∈ EnvR({AD,Q,P1}). For convenience, in what follows, we split AD into AQ

D

and AP1
D where AQ

D forwards all communication betweeen E and Q and AP1
D

forwards all communication betweeen E and P1.
We first prove that {E ,AD,Q,P1} ≡ {E ,S ′,Q,F1}. Suppose that this is not

the case. Then we can define a new environment E ′ that distinguishes {AP1
D ,P1}

from {S,F1}. The environment E ′ internally simulates {E ,AQ
D,Q}, and hence,

distinguishes with the same probability as E . Now observe that E ′ is respon-
sive for {AP1

D ,P1}: All network messages from {AP1
D ,P1} in {E ,AD,Q,P1} are

handled by E only, not by Q. Moreover, as E is responsive for {AD,Q,P1}, we
have that these messages are answered correctly (in the sense of Definition 4.2),
implying the responsiveness of E ′ for {AP1

D ,P1}. This contradicts the assumption
that P1 ≤R F1, and hence {E ,AD,Q,P1} ≡ {E ,S ′,Q,F1} must be true.

We still have to show the responsiveness property of S ′, that is, S ′ ∈
AdvR({Q,F1}). Let E ∈ EnvR({S ′,Q,F1}). We have to show that all restrict-
ing network messages from Q and F1 to E and S ′ are answered correctly (in
the sense of Definition 4.2). Suppose that there is a non-negligible set of runs
of {E ,S ′,Q,F1} in which a restricting network message from {Q,F1} is not
answered correctly. As S ′ only forwards network messages from Q to the envi-
ronment and the environment is responsive for {S ′,Q,F1}, we have that with
overwhelming probability these messages are answered correctly. Hence, there
must be a non-negligible set of runs in which network messages from F1 are
not answered correctly. Now consider E ′ from above. Then there also is a non-
negligible set of runs of {E ′,S,F1} in which restricting messages on the network
from F1 are answered incorrectly because, by construction of E ′, the behav-
ior of the system {E ′,S,F1} coincides with {E ,S ′,Q,F1}. We already know
that E ′ ∈ EnvR({AP1

D ,P1}) from above. Also, by assumption, we have that
{E ′′,AP1

D ,P1} ≡ {E ′′,S,F1} for all E ′′ ∈ EnvR({AP1
D ,P1}). Now, by Lemma 4.4,

it follows that EnvR({AD,P1}) = EnvR({S,F1}), and hence E ′ ∈ EnvR({S,F1}).
This contradicts the responsiveness property of S. 
�
The following composition theorem guarantees the secure composition of an
unbounded number of instances of the same protocol system. To state this the-
orem, we consider single-session (responsive) environments, i.e., environments
that invoke a single session of a protocol only. In universal composability mod-
els, instances of protocol machines have IDs that consist of party IDs and session
IDs. Instances with the same session ID form a session. Instances from different
sessions may not directly interact with each other. A single-session environ-
ment may invoke machines with the same session ID only. We denote the set
of single-session environments for a system Q by EnvR,single(Q). We say that P
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single-session realizes F (P ≤R,single F) if there exists a simulator S ∈ AdvR(F)
such that {E ,AD,P} ≡ {E ,S,F} for all E ∈ EnvR,single({AD,P}). Now, the
composition theorem states that if a single session of a real protocol P realizes a
single session of an ideal protocol F , then multiple sessions of P realize multiple
sessions of F .

Theorem 4.9. Let R be a restriction, and let P and F be protocols. Then,
P ≤R,single F implies P ≤R F .

Proof. Let S be the simulator for P ≤R,single F . A new simulator S ′ for arbi-
trary responsive environments can be constructed just as in the original (non-
responsive) composition theorem, i.e., S ′ internally keeps one copy of S per
session and uses these copies to answer messages from/to the corresponding
sessions.

The proof has two main steps: The first step shows indistinguishability of
{AD,P} and {S ′,F} for every responsive environment E ∈ EnvR({AD,P}).
The second step shows the responsiveness property of the simulator.

The first part uses a hybrid argument in which one builds a series of single-
session environments Ei, i ≥ 1, which internally simulate E such that all mes-
sages to the first i − 1 sessions are sent to internally simulated instances of
{S,F}, messages to the i-th session are sent to the (external) system {AD,P} or
{S,F}, respectively, and the remaining messages are sent to internally simulated
instances of {AD,P}. As different sessions of a protocol do not directly interact
with each other, it is easy to see that {E1,AD,P} behaves just as {E ,AD,P}
(*), and {En,S,F} behaves just as {E ,S ′,F}, where n ∈ N is an upper bound
of the number of sessions created by E (note that n is a polynomial in the secu-
rity parameter and the length of the external input given to the environment,
if any). Hence, the distinguishing advantage of E is bounded by the sum of
the advantages of E1, . . . , En, i.e., it is sufficient to show that the advantages of
E1, . . . , En are bounded by the same negligible function4 to show that E cannot
distinguish {AD,P} from {S ′,F}. In what follows, to show the existence of a
single negligible function, we consider environments with external input because
the argument is simpler in that case. Nevertheless, using sampling of runs, the
argument also works without external input, i.e., in the uniform case (see the
full version of this paper [6] for details).

To show that such a bound exists, it is first necessary to prove that there is
a (single) negligible function f that, for every i ≤ n, bounds the probability of
Ei of violating the responsiveness property in runs of {AD,P} or {S,F}, respec-
tively. Let Ĉ

{AD,P}
i be the event that in runs of {Ei,AD,P} the environment E ,

which is internally simulated by Ei, answers a restricting message of the external
system {AD,P} or one of the internally simulated instances of {AD,P} and
{S,F} incorrectly; Ĉ

{S,F}
i is defined analogously. Because E ∈ EnvR({AD,P})

4 It is not sufficient to show that the advantage of every environment Ei is bounded by a
negligible function fi, which is actually rather easy to show. The negligible functions
fi might be different and then their sum f1 + · · · + fn might not be negligible.
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and because of (*), we have that Ĉ
{AD,P}
1 is negligible. It also holds true that (**)

there exists a single negligible function that bounds |Pr
[
Ĉ{AD,P}
i

]
−Pr

[
Ĉ{S,F}
i

]
|

for all i ≥ 1. This is because one can define a single-session responsive environ-
ment E ′ that gets i as external input and then simulates Ei; E ′ aborts and
outputs 1 as soon as a restricting message is about to be answered incorrectly,
and 0 otherwise. Note that because the restriction R can be decided efficiently,
E ′ can perform the task described. Also, by construction, E ′ is a single-session
environment (it invokes a single external session only) and it is responsive (it
stops the execution before the responsiveness requirement would be violated).
As E ′ distinguishes {AD,P} and {S,F} only based on the events Ĉ

{AD,P}
i and

Ĉ
{S,F}
i , and both systems are indistinguishable for every single session respon-

sive environment, statement (**) holds true. Finally, observe that, for all i ≥ 2,
the systems {Ei−1,S,F} and {Ei,AD,P} behave exactly the same, and hence
Pr

[
Ĉ{AD,P}
i

]
−Pr

[
Ĉ{S,F}
i

]
. This implies that there is a single negligible function

that bounds Pr
[
Ĉ{AD,P}
i

]
for all 1 ≤ i ≤ n (here we need that n is polynomially

bounded).5 In particular, we have that the probability that Ei is not responsive
for the system {AD,P} is bounded by a single negligible function independently
of i ≤ n.

We can now conclude the indistinguishability argument by showing that the
advantages of Ei, 1 ≤ i ≤ n, in distinguishing {AD,P} from {S,F} are bounded
by the same negligible function. For this, we construct another single-session
responsive environment E ′′ analogously to E ′. The system E ′′ expects 1 ≤ i ≤ n
as external input (and otherwise stops) and then exactly simulates Ei. Impor-
tantly, E ′′ is responsive for {AD,P} because we have shown that every Ei violates
responsiveness with at most the same negligible probability, i.e., the same bound
also holds for E ′′ for every input. As E ′′ is a single-session responsive environment,
its distinguishing advantage for the systems {AD,P} or {S,F} is negligible for
every possible input. Moreover, with external input i, its distinguishing advan-
tage is the same as that for Ei. Hence, the same negligible function that bounds
the advantage of E ′′ also bounds all advantages of Ei, i ≤ n. As mentioned at the
beginning of the proof, this implies indistinguishability of {AD,P} and {S ′,F}
for every responsive environment E ∈ EnvR({AD,P}).

Having proved indistinguishability, it remains to show that S ′ is responsive,
i.e., S ′ ∈ AdvR(F). Let E ∈ EnvR({S ′,F}). We have to show that the probability
that all restricted messages from F in runs of {E ,S ′,F} are answered correctly
(in the sense of Definition 4.2) is overwhelming. For this, consider the following
single-session environment E ′ that is meant to run with {S,F}: The system E ′

first flips r ≤ n, with n as above, and then internally simulates E and several
sessions of {S,F} such that messages from E to the r-th session are sent to
the external session, whereas all other messages are processed by the internally
simulated sessions. Note that {E ′,S,F} behaves just as {E ,S ′,F}, and hence,

5 Note that it also follows that Pr
[
Ĉ{S,F}
i

]
is bounded for all 1 ≤ i ≤ n. However, we

do not need this result in the following.



830 J. Camenisch et al.

because E ∈ EnvR({S ′,F}), by Lemma 4.4 we have that E ′ is responsive for
{S,F}. Because S is a responsive adversary, this implies that there is only
a negligible set of runs of {E ′,S,F} in which a restricting message of F is
answered incorrectly (by E ′ or S). Hence, the probability for this to happen is
bounded by some negligible function f . From this and the fact that there are
only polynomially many sessions, it follows that the probability that a restricting
message from some session of F is answered incorrectly is negligible. Hence, S ′

is a responsive adversary. 
�
We note that Theorems 4.8 and 4.9 can be combined to obtain increasingly
complex protocols. For example, one can first show that a single session of a
real protocol P realizes a single session of an ideal protocol F . Using the two
theorems, it then follows, for example, that a protocol Q using multiple sessions
of P realizes Q using multiple sessions of F .

To conclude this section, we note that all of our lemmas and theorems have
been proven using a single restriction R. Hence, formally, a protocol designer
would have to use the same restriction in all of her security proofs in order to
be able to use our results. However, as we show in the full version of this paper
[6], this is actually not the case because it is very easy to extend and combine
different restrictions while still retaining all security results. Also, as discussed in
Sect. 6, there is in fact one generic restriction that would suffice for all purposes.

5 Responsive Environments in Concrete Models

In the preceding section, we have presented our universal composability frame-
work with responsive environments in a rather model-independent way. In this
section, we outline how to implement this framework in the prominent UC,
GNUC, and IITM models to exemplify that our framework and concepts are suf-
ficiently general to be applicable to any universal composability model. While
these three models follow the same general idea, they differ in several details
which affect the concrete implementation of our concepts in these models (see,
e.g., [19,24] for a discussion of these differences). The main differences and details
to be considered concern runtime definitions and the mechanism for addressing
(instances of) machines.

To instantiate our universal composability framework with responsive envi-
ronments for the models mentioned, we mainly have to concretize the definitions
in Sect. 4.2 for these models, that is, the definitions of restrictions as well as of
the responsive environments and adversaries. For some models we also have to
adjust their runtime notions slightly. Before presenting the details for the specific
models, let us briefly explain the central points to be taken care of:

Runtime. In the GNUC and IITM models, the runtime of systems/protocols is
required to be polynomially bounded only for a certain class of environments.
As we now want to consider responsive environments, we should restrict the
class of environments considered in the GNUC and IITM models to those
that are responsive. This also has some technical advantages. To see this,
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let R and R′ be two systems/protocols. For example, R and R′ could be
the systems {E ,AD,Q,P} and {E ,S,Q, I} as considered in the composition
theorem (Theorem 4.8) when we want to prove that {Q,P} realizes {Q, I}.
We often face the situation that we know that, say, R satisfies the model’s
runtime bound for all environments in a certain class and that R and R′

are indistinguishable for every responsive environment E (in this class). This
implies that R′ also has to satisfy the runtime notion, but only for all respon-
sive environments of the class. Hence, one cannot necessarily use R′, with
any environment, in another system as it does not satisfy the model’s run-
time notion (for non-responsive environments E , the runtime of R′ might
not be polynomial). Hence, also from a technical point of view, it makes
sense to relax the runtime notions in these models in that the runtime of
systems/protocols should only be required to be polynomially bounded for
responsive environments.

Definition of restrictions. According to Definition 4.1, we require that restrictions
are “efficiently decidable”. As mentioned, the exact definition depends on the
model at hand. The important property this definition should satisfy is the
following: An environment E ′ which internally simulates another environment
E should be able to decide whether the output E produces is a correct answer
(according to the restriction) when receiving some message as input. That is,
E ′ must be able to check whether the input message was restricting at all, and
if it was, E ′ must be able to check whether the response was valid. We often
use such simulations in proofs. Depending on the model under consideration,
we might not yet (at this point of the proof) have guarantees about the
length of the restricting message sent to E . A model-dependent definition of
an efficiently decidable restriction should take this into account.

Definition of responsive environments. In the definition of responsive environ-
ments (Definition 4.2), we require that an answer to a restricting message be
sent back to the same machine and we already explained that “same machine”
typically means the same instance from which the restricting message has
been received. This has to be specified for the different models.

Definition of responsive adversaries. Depending on the restriction R consid-
ered, in some models, in particular UC and GNUC, Definition 4.3 can be too
restrictive, and, for example, the dummy adversary in these models might
not satisfy the definition. The dummy adversary in these models is required
to perform multiplexing. When it receives a message from an instance of the
protocol and forwards this message to the environment, it has to prefix the
message with the ID of that instance to tell the environment where the mes-
sage came from. This alters the message, and the resulting message might no
longer be restricting, depending on the definition of the restriction R. Hence,
the environment would no longer be obliged to answer directly, and thus
the (dummy) adversary would not be responsive. One way to fix this is to
require a certain closure property of restrictions, namely that adding IDs at
the beginning of restricting messages still yields restricting messages and that
these message permit the same answers. But this is quite cumbersome. For
example, by recursively applying this constraint one would have to require
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that R be closed under arbitrarily long prefixes of sequences of IDs. A more
elegant solution that would still allow simple and natural restrictions would
redefine what it means for a message from an adversary to the environment
to be restricting. This is what we suggest for the UC and GNUC models (see
below).

In what follows, we sketch how to adjust and concretize the runtime notions
and the definitions for the UC, GNUC, and IITM models. As mentioned in the
introduction, we have carried out the implementation of responsive environments
in this model in full detail for the IITM model.

5.1 UC

For the UC model, we do not have to change the runtime definition because the
runtime of a protocol is not defined w.r.t. a class of environments, but simply
bounded by a fixed polynomial (see also below).

Definition of Restrictions. For UC we require both R and R[0] to be decidable
in polynomial time in the length of the input. Because of UC’s strict runtime
definition, this is sufficient to satisfy the requirement mentioned above, namely,
that an environment E ′ simulating another environment E can check whether a
restricting message received by E is answered correctly by E . To see this, recall
that every machine in UC is required to be parameterized with a polynomial. At
every point in the run, the runtime of every instance of a machine is bounded
by this polynomial, where the polynomial is in n := nI − nO, with nI being the
number of bits received so far on the I/O interface from higher-level machines and
nO being the number of bits sent on the I/O interface to lower level machines.
Environment machines have to satisfy this condition as well, where nI is the
number of bits of the external input (which contains the security parameter η).
Hence, as protocols will receive only a polynomial number of input bits from the
environment, they can send messages of polynomial length in the length of the
external input plus η only. Therefore, given some message m that was received
by an environment and a response m′ to this message, the message pair (m,m′)
has at most polynomial length in the external input plus η, and an environment
is able to decide within its runtime bound whether m′ is a correct answer to m
if we use the above definition of effectively decidable restrictions.

Definition of Responsive Environments. We require that a response to a restrict-
ing message be sent back to the instance of the machine that sent the restrict-
ing message. This is possible because every instance in UC is assigned a glob-
ally unique ID, which is then used to specify the sender and the recipient of a
message.

Definition of Responsive Adversaries. As explained above, messages from the
adversary to the environment and vice versa may contain a prefix (typically an
ID). For reasons explained above, we say in UC that such a prefix is ignored for
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the sake of checking whether a message is restricting and whether the answer is
correct. To be more specific, a message m = (pre, m̄) from the adversary to the
environment is restricting iff m̄ ∈ R[0]. Also, if m is restricting (in this sense),
an answer m′ = (pre′, m̄′) from the environment is allowed if (m̄, m̄′) ∈ R and
pre′ = pre. Using this definition, it is easy to see that the dummy adversary
in UC, which adds some prefix to messages from a protocol to the environment
and strips off a prefix from messages from the environment to a protocol, is
responsive.

5.2 GNUC

The changes necessary for the GNUC model are similar to those for the UC
model. However, the runtime notion has to be modified:

Runtime. Let us first recall the relevant parts of the runtime definition of
GNUC.6 In this model, the runtime definition depends on the entity consid-
ered. For an environment E , there has to exist a polynomial p that bounds the
runtime of the environment in runs with every system where p gets as input
the number of bits of all messages that have been received by the environment
during the run, including the external input, plus the security parameter η. For
a protocol P, there has to exist a polynomial q such that the runtime of P is
bounded by q in runs with any environment and the dummy adversary where q
gets as input the number of bits that are output by the environment (to both
the adversary and the protocol). This definition has to be changed such that
the runtime of a protocol needs to be bounded only for all environments (in the
sense of GNUC) that in addition are responsive.

Definition of Restrictions. Analogously to UC, we require R and R[0] to be
decidable in polynomial time in the length of the input. This is sufficient to satisfy
the described requirement (E ′ simulating E) as the runtime of environments
in GNUC depends on the number of bits received from a protocol. Hence, an
environment is always able to read a potentially restricting message m entirely,
whereas the length of an answer m′ is bounded by the runtime bound of the
environment.

Definition of Responsive Environments. Just as for UC, we require that
responses to restricting messages be sent to the same instance of a machine.
This is possible in GNUC because, again, all machines have globally unique IDs
to address instances.

Definition of Responsive Adversaries. Just as for UC, the adversary in GNUC
might (have to) add IDs as prefixes or remove such prefixes, therefore these
prefixes are ignored in the definition of responsive adversaries.
6 Note that there are several additional requirements, such as bounds on the number

of bits that are sent by the environment as well as so-called invited messages. These
details, however, are not relevant here.
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5.3 IITM

Just as for the other models, we now outline how to adjust and concretize the
runtime notion and the definitions from Sect. 4 for the IITM model. As men-
tioned, in the full version of this paper [6], we provide full details for the IITM
model with responsive environments, with a brief summary of the results pre-
sented at the end of this subsection.

Runtime. In the IITM model, the runtime depends on the type of entity. For
an environment E , it is required that there exists a polynomial p (in the length
of the external input, if any, plus the security parameter) such that for every
system running with E the runtime of E with this system is bounded by p. For
a protocol P, it is merely required that it be environmentally bounded, i.e.,
for every environment E there is a polynomial q (again, in the length of the
external input plus the security parameter) that bounds the overall runtime of
runs of {E ,P} (except for at most a negligible set of runs).7 Given a protocol
P, for an adversary A for P it is required only that {A,P} be environmentally
bounded. (Clearly, the dummy adversary is environmentally bounded.) To adjust
the runtime notions for the setting with responsive environments, instead of
quantifying over all environments in the definition of environmentally bounded
protocols/adversaries, one should now quantify over responsive environments
only, as motivated at the beginning of Sect. 5.

Definition of Restrictions. We require that a restriction R is efficiently decid-
able in the second component, i.e., there is an algorithm A which expects pairs
(m,m′) of messages as input and which runs in polynomial time in |m′| in order
to decide whether m′ is a correct answer to m according to R (see the full version
of this paper [6] for a formal definition). This stronger definition is necessary to
obtain the property described, namely, that an environment E ′ internally simu-
lating another environment E can check that answers of E to restricting messages
are correct. Owing to the very liberal runtime notion for protocols used in the
IITM model, in proofs (e.g., of the composition theorem) we sometimes have to
establish that a system is environmentally bounded. Therefore, we do not know
a priori that the length of the message m is polynomially bounded. Hence, the
environment might not be able to read m completely. Conversely, the length of
m′ is guaranteed to be polynomially bounded as it is output by the environ-
ment E , which, by definition, is polynomially bounded. With R being efficiently
decidable in the second component, E ′ can then efficiently decide whether m′

is a correct answer to m. Compared with the definition of restrictions for the
UC and GNUC models presented above, this formally is more restricted. It is,
however, sufficient for all practical purposed, as discussed in Sect. 6, as one has
to consider one generic restriction only and this restriction is efficiently decidable
in the second component.

7 Here E may directly connect to P’s network interface. Equivalently one could have
E communicate with P on the network interface via a dummy adversary.
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Definition of Responsive Environments. Unlike the UC and GNUC models, the
IITM model does not hardwire a specific addressing mechanism for instances of
machines and specific IDs for such instances into the model. Instead, it supports
a flexible addressing mechanism which allows a protocol designer to specify how
machine instances are addressed and what they consider to be their ID. More
specifically, the IITM model allows a protocol designer to specify an algorithm
run by machine instances that decides whether the message received is accepted
by the instance or not. Therefore, in the IITM model, we can require only that
responses to restricting messages be sent to the same machine, but not neces-
sarily the same machine instance. This, however, is indeed sufficient. A protocol
designer, can specify that a (protocol) machine accepts a message iff it is pre-
fixed by a certain ID (the one seen in the first activation of the instance) as
typically done in the IITM model. This ID can then be considered to be the
ID of this machine instance, and messages output by this machine would also
be prefixed by this ID. Now, a protocol designer can use restrictions to manu-
ally enforce that the same instance receives a response. Such a restriction would
contain message pairs of the form ((id,m), (id,m′)). By this, it is guaranteed
that if a restricting message has been sent by a protocol machine instance with
ID id, then the response is returned to this instance, as the response is prefixed
with id.

Definition of Responsive Adversaries. For the IITM model, we do not have to
change the definition of responsive adversaries. Adversaries in the IITM model do
not have to add prefixes to messages, and hence, do not have to modify restricting
messages. In particular, the dummy adversary simply forwards messages between
the environment and the protocol without changing messages.

Detailed Results for the IITM Model. In the full version of this paper [6] we pro-
vide full details of the IITM model with responsive environments. That is, we
adjust the runtime notion of the IITM model accordingly, and provide full defi-
nitions of restrictions, responsive environments and adversaries. Based on these
definitions we define the various security notions for realization relations con-
sidered in the literature (now with responsive environments), namely, (dummy)
UC, black-box simulatability, strong simulatability, and reactive simulatability.
These new and adjusted notions have been carefully developed in order to be
general and to preserve central properties. In particular, we show that all the
notions mentioned for realization relations are equivalent (for reactive simulata-
bility, this requires environments with external input). We also prove that these
relations are reflexive and transitive. We finally prove the composition theo-
rems for responsive environments. As should be clear from the proof sketches
in Sect. 4, the proofs are more involved than those without responsive environ-
ments because one always has to ensure that the constructed environments and
simulators are responsive. The full proofs are even more intricate and non-trivial
because they take all model-specific details, such as the liberal runtime notions,
into account. We note, however, that this is a once and for all effort. Proto-
col designers no longer have to perform such proofs. They can simply use the
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results. That is, responsive environments do not put any burden on the protocol
designer. On the contrary, as explained, they greatly simplify the specification
and analysis of protocols.

6 Applying Our Concepts to the Literature

Our new concepts of restricting messages and responsive environments and
adversaries allow protocol designers to avoid the non-responsiveness problem
elegantly and completely. As mentioned, urgent requests can simply be declared
to be restricting messages, causing the adversary/environment to reply with a
valid response before sending any other message to the protocol. This indeed
seems to be the most reasonable and natural solution to the non-responsiveness
problem. We now show that our approach indeed easily solves all the problems
mentioned in Sects. 1 and 3.

The frequently encountered formulations of the form (1) mentioned
in Sect. 3.1 can now actually be used without causing confusion and flawed spec-
ifications, if the message sent to the adversary is declared to be restricting: there
will now in fact be an immediate answer to this message. Similarly, ideal function-
alities which are intended to be non-interactive can now be made non-interactive
(at least if uncorrupted; but, if desired and realistic, also in the corrupted case)
just like their realizations, which solves the problems discussed in Sect. 3.2.2 (lack
of expressivity), and also makes it possible to use the, again, often encountered
specifications of the form (2): if such ideal functionalities have to send urgent
requests to the adversary, such requests can be made restricting, and hence,
prompt replies are guaranteed, i.e., if the (responsive) adversary/environment
contacts the protocol at all again, it first has to answer the request. Clearly,
the other problems caused by urgent requests not being answered immediately
discussed in Sect. 3.2, namely, unintended state changes and race conditions,
the reentrance problem, and unnatural specifications of higher-level protocols,
vanish also; again, because urgent request now are answered immediately.

Two ways of defining restrictions. We note that there are two approaches
to define restrictions R.

Tailored Restrictions. One approach is to define restrictions tailored to specific
protocols and functionalities. For example, for FD-Cert the restriction could be
defined as follows:

{(
(Verify, sid ,m, σ), (Verified, sid ,m, φ)

)
: sid ,m, σ ∈ {0, 1}∗, φ ∈ {0, 1}}

Now, whenever the adversary is asked to verify some σ, the next message sent to
the ideal functionality is guaranteed to be the expected response. This directly
resolves the issues discussed in Sect. 3.2.1. Similarly, one could, for example,
define restrictions for FNIKE and Fsok.8

8 Note that to show that the respective real protocols realize their ideal functionali-
ties, according to Definition 4.6, one needs to prove that there exists a responsive



Universal Composition with Responsive Environments 837

We note that the above approach of defining a separate restriction for each
protocol is general in the sense that it can be used independently of the under-
lying model for universal composition, and is thus applicable, e.g., to the UC,
GNUC, and IITM models. Furthermore, this solution allows one to fix many ideal
functionalities and their realizations found in the literature without any modifi-
cations to the specifications, including all examples mentioned in this document.
However, since the composition theorems and the transitivity property assume
one restriction, different restrictions have to be combined into a single one. This
is always possible as shown in the full version of this paper [6]. Nevertheless, the
following solution seems preferable.

Generic Restriction. Alternatively to employing tailored restrictions, one can
use the following generic restriction:

RG := {(m,m′) | m = (Respond,m′′),m′,m′′ ∈ {0, 1}∗}.

This means that messages prefixed with Respond are considered to be restrict-
ing, and hence protocol designers can declare a message to be restricting by
simply prefixing it by Respond. According to the definition of RG, the adver-
sary/environment can respond with any message to these messages, but proto-
cols or ideal functionalities can be defined in such a way that they repeat their
requests until they receive the expected answer: for instance, in the case of Fsok,
it can repeatedly send m′′ = (Setup, sid) to the adversary until it receives the
expected algorithms. In this way, the adversary is forced to eventually provide
an expected answer (if she wants the protocol to proceed).

Using this fixed multi-purpose restriction has the advantage that, in contrast
to the former approach, there is no need to combine different restrictions. Also,
in protocol specifications, the prefixing immediately makes clear which messages
are considered to be restricting.

The main reasons we did not hardwire the generic restriction into our frame-
work are twofold. First, this is not required to prove our results, but makes our
framework only more general, and the flexibility might become useful in some
situations. Second, as protocols and ideal functionalities have to send several
requests until they get the expected answer, depending on the runtime notions
used, they might run out of resources. In the IITM model, however, this is not
an issue, and hence the generic restriction can be used.

7 Conclusion

In this paper, we highlighted the non-responsiveness problem, the fact that it
has often been ignored in the literature, and its many negative consequences.

simulator. However, it is easy to verify that the simulators constructed in [14,17,31]
for the functionalities mentioned already are responsive, and thus these realizations
can be used unalteredly also in a responsive setting.
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We have proposed a framework that completely avoids this problem. It
enables protocol designers to declare urgent requests to be restricting mes-
sages, causing such requests to be answered immediately by (responsive) environ-
ments/adversaries. This, in particular, allows protocols and ideal functionalities
to be defined in the expected and natural way. It also avoids unnecessarily com-
plex and artificial specifications, unintended state changes and race conditions
while waiting for responses to urgent requests, the reentrance problem, the lack
of expressivity when modeling non-interactive tasks, and the propagation of such
problems to higher-level protocols and proofs. We discussed how our concepts
can be adopted by existing models for universal composition, as exemplified in
this work for the UC, GNUC, and IITM models. In the full version of this paper
[6], we also provide full details for the IITM model, showing that our concepts
can seamlessly be integrated into the existing model without losing any of the
properties of the setting without responsive environments: all security notions
for the realization relations are formulated, shown to (still) be equivalent, and
enjoy reflexivity and transitivity; the composition theorems also carry over to
the setting with responsive environments.
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