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Abstract. Current chart-based parsers of Minimalist Grammars exhibit
prohibitively high polynomial complexity that makes them unusable in
practice. This paper presents a transition-based parser for Minimalist
Grammars that approximately searches through the space of possible
derivations by means of beam search, and does so very efficiently: the
worst case complexity of building one derivation is O(n2) and the best
case complexity is O(n). This approximated inference can be guided
by a trained probabilistic model that can condition on larger context
than standard chart-based parsers. The transitions of the parser are very
similar to the transitions of bottom-up shift-reduce parsers for Context-
Free Grammars, with additional transitions for online reordering of words
during parsing in order to make non-projective derivations projective.

Keywords: Minimalist Grammars · Shift-reduce parsing · Transition-
based parsing · Swap transition · Two-stack automata

1 Introduction

Minimalist Grammar (MG) [14] is a formalization of Chomsky’s Minimalist Pro-
gram (MP) [4]. MG is one of the several grammar formalisms that go beyond
Context-Free Grammars (CFG) in their expressive power (both in terms of weak
and strong generative capacity). The main characteristic of MG is that con-
stituents do not only combine to make bigger constituents, but they also can
move during the course of derivation.

A standard derivation in Minimalist Program (and Minimalist Grammar)
roughly looks like this: first we enumerate the words that are going to be used
in the sentence with operation select; second, we combine operations merge
and move in building the derivation bottom-up. The operation merge (some-
times called external merge) takes two constituents and puts them together. The
move operation (sometimes called internal merge) takes a subtree and moves it
upwards to the specifier position. So even though the words enter the derivation
process in one order, by the end of the derivation they might form a completely
different word order. This resembles the distinction between deep structure and
surface structure from the early days of Generative Grammar [3]. The distinction
between deep word order and surface word order does not exist in the Minimal-
ist approach, but we will nevertheless adopt it here because it simplifies talking
about some concepts.
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Even though intuitively it might sound simple to build a recognizer (or
parser) for a formalism that contains only two simple functions such as merge
and move it turned out to be quite a difficult task. Early approaches [6,16] are
based on bottom-up chart parsing which does an exhaustive search trough the
space of all possible derivations. Because chart parsing is based on dynamic pro-
gramming, such search is formally tractable in the sense of being polynomial.
However, the polynomial complexity of chart parsing is still too high–O(n4m+4)
where n is the number of words in the sentence and m is the number of unique
movement licensees present in the lexicon.

Transition-based parsers are an alternative to chart-based parsers.
Transition-based parsers build the derivation step by step by using a set of well
defined transitions that lead from one parsing state to the next one. Because they
usually do not use dynamic programming, they cannot explore the full search
space and that is why only approximate inference is possible. However, this did
not stop transition-based parsers from matching and outperforming their chart-
based counterparts in the area of CFG, CCG and dependency parsing both in
terms of accuracy and in terms of speed [2,11,20]. Part of the reason for that is
that dynamic programming in chart-based parsers requires from the probabilistic
scoring model to condition only on the local context, while the transition-based
parsers allow conditioning on any part of the derivation that was built. So giving
up on exact inference allows us not only to gain in terms of speed but also it
allows replacing weak probabilistic models with a much more powerful ones.

The top-down MG parser of Stabler [9,15] can be considered as an instantia-
tion of transition-based parsing. It builds a minimalist derivation from top clause
node c by un-merging and un-moving the nodes in the derivation recursively.
Adding new operations to this parser requires finding a top-down equivalent of
the minimalist operations that are traditionally defined in a bottom-up manner.

This paper presents a transition-based parser that is bottom-up, thus it does
not require any changes in the definition or order of application of MG opera-
tions. It is similar to shift-reduce transition-based parsers, especially those that
use a swap transition [8,11]. Just like majority of transition-based parsers, it
employs no dynamic programming and employs approximate beam search of the
space of derivations.

The main idea that motivates creation of this parser is based on observing
that all MG derivation trees are projective trees with respect to the “deep word
order”. The displacement in the surface word order is a result of applying move
operation. So if we would reorder the words in “the right way” then parsing
should be projective and almost as easy as CFG parsing.

In the next three sections we present some background material for the
transition-based bottom-up MG parser which covers definition of Minimalist
Grammars, description of the existing chart parser for MGs and description
of transition-based shift-reduce bottom-up parser for Context-Free Grammars.
After that we fully specify the deductive system of the transition-based bottom-
up minimalist parser and show some formal properties of it.



Minimalist Grammar Transition-Based Parsing 275

2 Minimalist Grammars

Here we describe a simple version of Minimalist Grammar as presented in [18]
and [7]. This simple version does not deal with adjunction and head movement,
but these extensions can easily be added to our parser and they do not influence
the weak generative capacity of the MG [17].

A minimalist grammar G is a tuple (Σ,Sel, Lic, Types, Lex, c,F ), where

Σ �= ∅ is an alphabet

Sel are “selecting features”

Lic are “licensing features”

Syn are “syntactic features” defined using Sel and Lic as a union of:
selectors = {=f |f ∈ Sel}
selectees = { f |f ∈ Sel}
licensors = {+f |f ∈ Lic}
licensees = {−f |f ∈ Lic}

Types = {::, :} are the lexical type and the derived/phrasal type

C = Σ∗ × Types × Syn∗ are “chains”

Lex ⊆ C+ is a finite subset of chains with form Σ∗ × {::} ×
(selectors ∪ licensors)∗ × selectees × licensees∗

E = C+ are expressions

c ∈ Sel is the feature used to define the complete expression s : c

F = {merge,move} are partial generating functions from E∗ to E

merge: (E×E) → E is a union of the following three functions, for s, t ∈ Σ∗, · ∈
{:, ::}, f ∈ Sel , γ ∈ Syn∗, δ ∈ licensees+, and chains α1, . . . , αk, ι1, . . . , ιl(0 ≤
k, l):

merge1
s :: =f γ t · f, α1, . . . , αk

st : γ, α1, . . . , αk

merge2
s : =f γ, α1, . . . , αk t · f, ι1, . . . , ιl

ts : γ, α1, . . . , αk, ι1, . . . , ιl

merge3
s ·=f γ, α1, . . . , αk t · f δ, ι1, . . . , ιl

s : γ, α1, . . . , αk, t : δ, ι1, . . . , ιl

An illustration of these functions is presented in Fig. 1. In the figure expres-
sions are represented as tree structures and on top of them is the list of unchecked
features of the first chain. Chains that are waiting to move are represented as
subtrees.



276 M. Stanojević
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Fig. 1. Illustrations of Minimalist Grammar generating functions.
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merge1 is combining the lexical head and its complement. The result is a
new string in which string of the head s and the string of the complement t are
concatenated and represented with st.

merge2 is combining a phrase that contains the head with the phrase that
will be its specifier. Since specifier always comes on the left side, the resulting
string is ts.

merge3 is combining phrases whose strings are not concatenated because the
licensees δ will cause the phrase to move in the later steps of the derivation.

move: E → E is the union of the following two functions, for s, t ∈ Σ∗,
f ∈ Lic, γ ∈ Syn∗, δ ∈ licensees+, and chains α1, . . . , αk, ι1, . . . , ιl(0 ≤ k, l) and
SMC constraint defined bellow:

move1
s : +f γ, α1, . . . , αi−1, t : −f, αi+1, . . . , αk

ts : γ, α1, . . . , αi−1, αi+1, . . . , αk

move2
s : +f γ, α1, . . . , αi−1, t : −f δ, αi+1, . . . , αk

s : γ, α1, . . . , αi−1, t : δ, αi+1, . . . , αk

SMC is a simple version of “shortest move condition” [4]. It constrains the
domain of move by not allowing any of α1, . . . , αi−1, αi+1, . . . , αk to have licensee
−f as its first feature.

move1 is handling the movement of a subtree with yield t into a specifier of
the current tree. Because move1 moves subtree that is landing (it is not going
to move any more) we can safely concatenate strings into ts.

move2 is handling the movement of a subtree that will continue moving in
the later steps of the derivation because it has unchecked licensees δ, thus there
is no need for concatenating strings s and t.

CL(G) is a set of expressions generated by taking the closure over Lex and
generating functions in F .

yield(e) is defined only over complete expressions (s · c) and is an alphabet
component of the only chain in the expression e.

The language defined by the grammar G is L(G) = {s | ∃e ∈ CL(G)∧e is s·c}.
In other words, a language defined by G is the set of yields of all complete
expressions that are part of the closure of G.

3 Chart-Based Parser for MG

The first recognizers for MG were chart-based recognizers of Harkema [6] and
Stabler [16]. The parsing strategy is presented in the form of deductive rules.
These rules could be used as part of some closure computation engine, such as
the ones based on “parsing as deduction” [13], in order to get efficient inference
by using dynamic programming.

The general idea of “parsing as deduction” [13] is that we are trying to
prove that the sentence that is parsed is part of the language defined by the
grammar. We start with some claims that do not require proving i.e. axioms (for
example “from position i till position i+1 there is a word wi), and after that we
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apply deductive rules recursively until we prove the goal statement (for example
“sentence with words w0, . . . , wn−1 has only c as an unchecked feature”) or until
we exhaust all possibilities without managing to prove that the sentence is part
of the language.

The statements that the deduction engine is working with are encoded in the
form of “items”. At any step of the parsing process, all the items can be divided
in two groups: items that can trigger further deduction and items that are proved
but they do not trigger future deduction. Items of the first group are stored in
a queue called agenda and the items of the second group are stored in a data
structure for efficient retrieval that is called chart. With this terminology we can
say that the parsing process starts with putting axiomatic items in agenda and
applying deduction rules on all of them in order. If the result of a deduction rule
can trigger future deduction, it is added both to the chart and to the agenda,
otherwise it is added only to the chart.

Items of the minimalist chart parser are essentially encodings of MG expres-
sions which instead of using strings of alphabet use ranges of covered words in
the sentence. So for example, item (2, 5) :=n v can be read as “this is a phrase
with features =n and v and it covers continuous span of words from positions 2
until position 5 in the observed word order”.

With that interpretation the following deduction rules have been proven to
be sound and complete [6], where n is the length of the sentence, wi is word at
position i and i can go between 0 and n:

axiom (i, i + 1) :: α s.t. wi :: α ∈ Lex

axiomEpsilon (i, i) :: α s.t. ε :: α ∈ Lex

goal (0, n) · c

merge1
(a, b) :: =f γ (b, c) · f, α1, . . . , αk

(a, c) : γ, α1, . . . , αk

merge2
(b, c) : =f γ, α1, . . . , αk (a, b) · f, ι1, . . . , ιl

(a, c) : γ, α1, . . . , αk, ι1, . . . , ιl

merge3
(a, b) · =f γ, α1, . . . , αk (c, d) · fδ, ι1, . . . , ιl

(a, b) : γ, α1, . . . , αk, (c, d) : δ, ι1, . . . , ιl

move1
(b, c) : +f γ, α1, . . . , αi−1, (a, b) : −f, αi+1, . . . , αk

(a, c) : γ, α1, . . . , αi−1, αi+1, . . . , αk

move2
(a, b) : +f γ, α1, . . . , αi−1, (c, d) : −f δ, αi+1, . . . , αk

(a, b) : γ, α1, . . . , αi−1, (c, d) : δ, αi+1, . . . , αk

Naturally, move is subject to SMC constraint.

4 Transition-Based Bottom-Up Parser for CFG

Before we move to the formal description of the transition-based Minimal-
ist parser, we will make a small digression and informally present a type of
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shift-reduce parser for CFG in Chomsky Normal Form (CNF) similar to the one
presented in [10,12]. This algorithm is used as a basis on which the Minimalist
transition-based parser is built.

The state of the transition based parser is usually called configuration. A
configuration consists of two data structures: stack σ and buffer (usually imple-
mented as a queue) β. For CFG in CNF the initial configuration is an empty
stack and the buffer filled with words of the sentence that is parsed. Shift action
removes the first word in the current buffer and puts its POS tag on top of
the stack. Reduce operation takes the two elements from top of the stack and
produces a new element that goes back to the stack if there is a grammar rule
that allows that.

The deduction rules are shown bellow, where [ ] represents an empty stack or
an empty buffer, σ represents a stack, σ|x represents a stack that is the result of
pushing element x on top of stack σ, β represents buffer, x|β represents a buffer
(queue) with head x and tail β, G represents a CFG in CNF, w is a variable
representing any word, X,Y,Z are variables representing any non-terminal, and
S is the root non-terminal of the grammar G.

axiom
〈
[], [w1, . . . , wn]

〉

goal
〈
[S], []

〉

shift{X}
〈
σ,w|β〉

〈
σ|X,β

〉 X→w ∈ G

reduce

〈
σ|X|Y, β

〉
〈
σ|Z, β

〉 Z→XY ∈ G

Deriving the goal configuration can be done in several ways. One of them
is by using a chart-based algorithm that would compute a full closure of these
deduction rules over the axiomatic configuration. Another is a transition-based
approach where the algorithm would treat each deduction rule as a transition
and only a predefined number of high probability sequence of transitions will
be explored. The computational complexity of the transition-based algorithm is
O(n) because the number of shift transitions is not bigger than the number of
words in the sentence, and the same holds for the number of reduce transitions.
This nice property of transition-based shift-reduce parsing has caused its wide
adoption in the natural language processing community which produced many
extensions and implementations of the transition systems for semantic parsing
[19], CCG parsing [2], non-projective constituency parsing [8] and non-projective
dependency parsing [11].

5 Transition-Based Bottom-Up Parser for MG

It is striking how many of the operations and structures from transition-based
shift-reduce parsing have their counterparts in Minimalist Syntax, as described in
[4] and formalized in [5]. The stack plays a similar role to a minimalist workspace,
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a buffer looks similar to a lexical array, a configuration is like a stage in the
minimalist derivation, shift behaves as a select operation and reduce behaves
like merge.

A big part of Shift-Reduce parser can easily be modified to give support
for Minimalist Grammars. Out of 5 rules of Minimalist Grammars, 4 are triv-
ial to integrate: move1 and move2 are essentially unary feature simplification
transitions, and merge1 and merge2 are operations that put two consecutive con-
stituents together in almost the same way as CFG does. The only complicated
cases are merge3 and empty string terminals.

5.1 Handling Discontinuities with Online Reordering

Operation merge3 causes complications because it merges discontinuous ele-
ments. To account for that, we introduce the possibility to reorder the elements
on the stack so that the constituents that are not neighbouring can be merged.
However, that is not enough because the non-head argument of merge3 will later
trigger one of the move operations that needs to satisfy neighbouring conditions.
To be able to easily check if the moving constituent satisfies this constraint, the
representations of the constituent that is used is the same as the representation
of the constituent in the chart parser: spans and their associated chains.

5.2 Explicit Generation of Empty Strings

The problem of empty strings is mostly specific to Minimalist Grammars, since
many grammar formalisms that do not have empty categories, for example CCG,
do not need to account for it. Empty string terminals are introduced just like the
non-empty string terminals by using an operation similar to shift, except that
the buffer is not influenced by the transition. The representation of the shifted
empty terminal is similar to the one in chart based parser, except that for the
span we use wildcard symbols (∗, ∗) – what that means is that the constituent
with this span is not a subject to the linear ordering constraints imposed by
merge1 , merge2 and move1 , but only to the feature matching constraints. The
interpretation of the wildcard (∗, ∗) can depend on the operation that is being
used in. For example, if we have a head with span (2, 5) and it selects the
empty constituent with span (∗, ∗) by using merge1 then we can treat the empty
constituent as if it is positioned at (5, 5) (in the gap between 4th and 5th word).
Note that the size of the span (∗, ∗) can never be bigger than 0 because it
represents only empty elements.

Being able to explicitly generate empty strings can also cause the parser to
generate empty strings ad infinitum, casing the parser to get stuck in the infinite
loop. To prevent that we can define upper number of empty strings that can be
generated for the sentence of length n which we allow to be any linear function
of n. Knowing ahead of time which linear function correctly predicts the number
of empty elements in a sentence is impossible because there might be no function
that does that (there can be infinite number of empty strings). However, for the
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actual natural languages the number of empty strings is not infinite. A heuristic
that can be used to determine the maximal number of empty strings is the one
which assumes that: (1) empty strings appear only with function words, (2) there
is a some constant of maximal number of function projections per clause (for
example based on hierarchy of projections [1]) and (3) every clause contains at
least one pronounced word. In that case the maximal number of empty strings is
the product of the maximal number of clauses (which is the number of observed)
and the maximal number of function projections per clause. Clearly this method
is too conservative about the upper bound of the number of empty strings, so
in practice maybe a better approach would be to estimate the number on a
treebank on which the parser is trained.

5.3 Parser Description

The basic units of the minimalist transition based parser are lexical items (LI)
and minimalist items (MI). Lexical items are just indices of the words in the
sentence that is being parsed. Minimalist items are the same as the items in
the chart-based parser that was presented in Sect. 3. For clarity we surround
minimalist items with braces.

The main control structures are two stacks σ1 and σ2 and one buffer β (imple-
mented as a queue). Buffer β represents the sequence of lexical items waiting
to be selected for building the derivation. Stacks are sequences of already built
syntactic objects i.e. minimalist items. The first stack σ1 is the main stack that
is used for actual building of syntactic objects by application of merge, move and

Fig. 2. Deduction system for MG transition-based parser
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variants of select operations. The second stack σ2 is the auxiliary stack that is
used for reordering minimalist items in σ1 (it will be explained later how). The
configuration (parser state) consists of σ1, σ2, β and an integer k that represents
the count of ε transitions (transitions that generate empty strings) that led to
that configuration.

The deduction system of the minimalist transition based parser is shown in
Fig. 2. The starting configuration of the parser is a configuration with empty
stacks (no syntactic object is built so far), buffer filled with indices of words in
the sentence and the count of ε transitions set to 0. The goal configuration that
the parser tries to get to is the one in which all elements of the buffer would be
used, there would be no elements on hold in the auxiliary stack and the main
stack has only one MI which is the complete MI (as defined for the chart parser).

The select{γ} transition takes the first LI in the buffer and puts it on top
of the main stack in the form of MI with γ chain. That happens iff there is an
entry in the lexicon where word represented by LI has chain γ. That can be done
only for non-ε entries in the lexicon because these are the only entries that can
be directly observed in the buffer. The ε entries in the lexicon are handled by
selectEpsilon{γ} transition which does not influence the buffer, but does increase
the count of the empty strings and must respect the constraint that count should
not be above some prespecified number e.

Naturally, we need a transition tmerge that uses minimalist operation merge
and transition tmove that uses the minimalist operation move. These transitions
are applied only if the logical expressions represented by the MI on top of the
main stack fall in the domain of the functions merge and move (as defined in
the chart-based parser).

Discontinuity can be achieved by reordering the words in the sentence in
such a way that the sentence becomes contiguous. We illustrate this with the
derivations of the sentence “Phong likes what Roki draws” with the following
Minimalist Grammar:

ε :: = vc

ε :: = v + whc

likes :: = c = d v

draws :: = d = d v

Phong :: d

Roki :: d

what :: d − wh

The derived tree for this sentence is shown in Fig. 3a. The leaf nodes in this tree
are ordered in the same way as is the surface word order of the sentence. The
head for each constituent is marked with an arrow-like label, which points to
the constituent which contains the head. In this derived tree it is not possible to
see in which order and where the operations merge and move were applied. In
order to see this we need a derivation tree like the one presented in Fig. 3b. In
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Fig. 3. Trees for sentence “Phong likes what Roki draws”

this tree, the merge operation is marked with • and the move operation with ◦.
The derivation tree is a rooted unordered binary branching tree. The ordering of
nodes does not matter because merge is a commutative operation. Hence, both
Fig. 3b and c represent the same derivation tree which produces the derived tree
in Fig. 3a.

If the words in the sentence that is being parsed were ordered the way leaves
are ordered in Fig. 3b or c then parsing would be projective and the deduction
rules we defined so far would suffice. There can be exponentially many permu-
tations of the words that would make the parsing projective and it is enough if
the parser finds only one of them. We call these orderings “deep word orders”.

To achieve this reordering of the elements that are participating in parsing
we introduce two transitions to the parser: swap and takeBack . The transition
swap takes the 2nd top MI from the σ1 and puts it on top of the auxiliary σ2.
The transition takeBack returns these MI back to the main stack. By combining
swap and takeBack we can derive any permutation of the minimalist items of
the main stack. To prevent cycles of swap and takeBack there is a constraint
that starting positions of the MIs that are being swapped are in the original
word order.

A full transition sequence for the example sentence and example grammar is
given in Fig. 4. This is only one of the possible transition sequences. We could
have chosen some other sequence of swap and takeBack transitions that would
produce the same derivation tree. The key part of this example are transitions
swap and takeBack . These two transitions swap the order of minimalist items
for the words “what” and “Roki” and in this way make parsing projective.
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Fig. 5. Part 2 of example transition sequence
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6 Soundness, Completeness and Complexity

Here we give sketches of the proofs for soundness, completeness and complex-
ity of the transition-based algorithm. The proofs rely in big part on proofs of
soundness and complexity of Harkema’s Minimalist chart parser [6] (presented
in Sect. 3) because the transition-based parser and Harkema’s parser have iso-
morphic structure of items and operations over them.

6.1 Soundness

Proving soundness is trivial. The only part of our system that gives logical
claims about the sentence are minimalist items and they have the same form and
semantics as items in Harkema’s chart parser. All the transitions that modify
these MIs have their equivalent in Harkema’s parser. The transitions select{γ}
and selectEpsilon{γ} bijectivelly map to axiomatic rules of Harkema’s parser
while transitions tmerge and tmove directly call the corresponding Harkema’s
definitions of merge and move that were presented in Sect. 3. The transitions
swap and takeBack do not modify the mini-items so they do not influence the
soundness of the algorithm.

The deduction system presented in this paper is isomorphic to that of
Harkema’s parser. Consequently, every item reachable by the transition-based
parser is also reachable by Harkema’s parser. Since all items generated by
Harkema’s parser are sound, it follows that all of the items generated by the
transition-based parser are sound too.

6.2 Completeness and Construction of an Oracle

Even though the deduction systems are isomorphic in terms of items and opera-
tions over them, that does not entail that the set of items that can be generated
is equivalent. Harkema’s parser is proven to be complete – it can generate all the
possible sound items by starting with the axiom and then applying the deduc-
tion rules until no new items can be generated. However, the transition-based
parser has three major constraints.

The first one is that it is approximate – it will explore only the part of
the search space that is considered the most probable by the scoring model.
Obviously, this depends on the quality of the scoring model, thus for the sake
of the proof, we will assume the parser has a beam of unbounded size. In other
words, let us assume an exhaustive search where no item is pruned however
poorly scored. Our goal is to prove that with the perfect scoring model the right
derivation will be found by the transition system.

The second main difference is that operations can be applied only to the top
elements of the main stack, unlike Harkema’s parser which can apply operations
to any two items that have been derived (it has global access to its “workspace”,
which is a chart). The main question is then whether this limits the set of items
that can be deduced using the transition-based system. Given that Harkema’s
parser is complete and that all functions of Harkema’s parser are present in
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the transition-based parser, we just need to show that for any derivation tree
there is a sequence of transitions that would derive it. This conversion of a MG
derivation to the sequence of transitions can be interpreted as a construction of
the oracle sequence of transitions. The oracle is used often in transition-based
parsing as a sequence of transitions on which the probabilistic parsing model is
trained. There are many possible oracles for any MG tree so in the probabilistic
setting all these oracles should ideally be treated as latent variables. However,
experience from other grammar formalisms shows that using just one oracle
seems to be good enough for most of the parsers.

The third difference is that all empty strings are explicitly generated in the
transition-based parser while in the chart-based parser infinite number of empty
strings can be compactly represented thanks to the dynamic programming. Since
the maximal number of empty strings that can be generated is limited by some
predefined constant e, any proof of completeness is limited to the trees that have
less than e empty strings. Here we will assume that e is infinite. In other words,
we show that for a sufficiently large e any MG derivation can be generated.

First, we cover the case in which the words of the sentence are in one of the
many possible “deep word orders” (word orders in which the derivation tree is
projective). In this case extracting the sequence of transitions is easy: we just
need to traverse the derivation tree in the post-order traversal (the “order” of the
subtrees is based on the deep order of words). Every time we encounter a leaf in
the derivation tree, it will cause a select{γ} or selectEpsilon{γ} transition. Every
time we encounter a binary branching node, it will be a tmerge transition and
every time we encounter a unary branching node, it will be a tmove transition.
So, if the words are processed in the projective “deep order” there is always a
transition sequence that will produce any projective derivation tree.

Now we show that even if the words are in non-projective word order that
they could still be processed in a projective order. Let us say that the next LI
that should come on the main stack is on the mth position in the buffer. What
we need to do is m select{γ} transitions, followed by m − 1 swap transitions.
The alternative situation is that the next element is on the mth positions in the
auxiliary stack σ2. The process is the same except that instead of invoking m
select{γ} transitions we invoke m takeBack transitions, followed by m − 1 swap
transitions.

Given that we can find transitions for any derivation in projective word order,
and that any non-projective derivation can be traversed in projective order, it
follows that we can find a transition sequence for any non-projective derivation.
This, together with Harkema’s proof of the completeness of the basic functions
merge and move that the transition-based parser uses, makes the transition-
based parser complete.

6.3 Computational Complexity

Because the transition-based parser does not pack its derivations by using
dynamic programming, its complexity with unbounded beam will be exponen-
tial in sentence length. However, since transition-based parsers are never used
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to search trough the full space of derivations, but always with a limited beam,
we will here focus on the complexity of constructing a single derivation.

The complexity can be determined by estimating the maximal number of
times each transition type will be used. The number of transitions select{γ} is n
because it will be used only once and for each of the observed words. By design,
the transition selectEpsilon{γ} will be used maximally e times which is a linear
function of n. The maximal number of tmerge transitions is equivalent to the
maximal number of binary nodes in a binary branching tree over a n + e words
which is n+e−1. The maximal number of tmove operations is equivalent to the
number of all the licensees in the sentence. If the maximal number of licensees
that the lexicon has per entry is some constant m, then the maximal number
of licensees in the sentence is m ∗ (n + e). The number of swap operations is
equivalent to the number of takeBack operations. In the best case there will
be no swapping (all the words are in one of the possible deep word orders),
and in the worst case there will be in, asymptotic notations, O(n2) swaps and
takeBacks. Since m is constants we can say that for all operations the asymptotic
complexity is O(n), except for swapping transitions that can be between O(n)
and O(n2). So, the total complexity of building one derivation is dependent on
the swap and takeBack transitions making this parser’s worst case complexity
O(n2) and best case complexity O(n).1

7 Parsing of Finite-State Automaton

The minimalist transition-based parser can easily be extended to parse not only
sentences, but also regular sets of sentences encoded in a finite-state automa-
ton (FSA). All that needs to be modified are representations of buffer and the
select{γ} transition since it is the only transition that changes the buffer. The
buffer would now instead of a queue be an FSA that is being parsed and it would
additionally contain the pointer to the current state up until which the input
was consumed. The new select{γ} transition would pick one of the outgoing arcs
of the current state, consume the arc’s label (the same way it used to consume
the word in the buffer) and change the current state to the target state of the
selected arc. The initial (axiom) configuration would be with empty stacks and
with buffer FSA that has its current state set to its initial state. The goal config-
uration would be the same as before, except for having the additional condition
that the current state in an FSA is the final state of an FSA.

The simplicity of doing discontinuous parsing of FSAs can be crucial is some
cases when the input is ambiguous. Take for instance morphologically rich lan-
guages: doing morphological segmentation in these languages is difficult and the
selection of the right segmentation can be done only during the syntactic process-
ing because of different forms of agreement. Now instead of parsing a potentially
bad 1-best guess of the morphological analyser, we can take a full lattice that
1 Interestingly, Nivre shows that the number of swap transitions in the real dataset

for dependency parsing is very small which makes the transition-based parser run in
expected linear time [11]. Hopefully, this will also be true for Minimalist Grammars.
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would encode many hypotheses of the possible segmentation and then let the
parser decide which one is the best. Another use case of FSA parsing is process-
ing the ambiguous output of the speech recognizer which is often encoded in
lattices.

8 Conclusion and Future Work

The transition-based parser presented in this paper, if supported by a good prob-
abilistic scoring model, could handle even the longest sentences very efficiently.
The very small computational complexity of building one derivation makes the
transition-based parser for Minimalist Grammars as fast as its counterparts for
CCG, dependency and constituency parsing.

The usual motivation for using simpler formalisms such as dependency and
context-free grammars is their efficiency. However, given that the presented
parser is asymptotically as fast as the approximate parsers for the simpler for-
malisms, the natural language processing community can start considering Min-
imalist Grammars as a possible more expressive alternative. In order for this
transition to become a reality, a necessary next step is creation of the scoring
model, as well as the creation of a Minimalist treebank on which the scoring
model would be trained.

Acknowledgments. I would like to thank Raquel G. Alhama, Joachim Daiber, Phong
Le, Wilker Aziz and Khalil Sima’an for useful discussions and comments on the early
versions of this paper. I am also grateful to the three anonymous reviewers for their
insightful comments. This work was supported by STW grant nr. 12271.

References

1. Adger, D.: Core Syntax: a Minimalist Approach, vol. 33. Oxford University Press,
Oxford (2003)

2. Ambati, B.R., Deoskar, T., Johnson, M., Steedman, M.: An incremental algorithm
for transition-based CCG parsing. In: Proceedings of 2015 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Lan-
guage Technologies. Association for Computational Linguistics (2015)

3. Chomsky, N.: Syntactic Structures. Mouton & Co., The Hague (1957)
4. Chomsky, N.: The Minimalist Program, vol. 1765. Cambridge University Press,

Cambridge (1995)
5. Collins, C., Stabler, E.: A formalization of minimalist syntax. Syntax 19(1), 43–78

(2016)
6. Harkema, H.: A recognizer for minimalist languages. In: Bunt, H., Carroll, J.,

Satta, G. (eds.) New Developments in Parsing Technology. TSLT, vol. 23, pp.
251–268. Springer, Dordrecht (2005)

7. Hunter, T., Dyer, C.: Distributions on Minimalist Grammar derivations. In: Pro-
ceedings of 13th Meeting on the Mathematics of Language (MoL 2013), pp. 1–11.
Association for Computational Linguistics, Sofia, August 2013



290 M. Stanojević
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