
Context Update for Lambdas and Vectors

Reinhard Muskens1(B) and Mehrnoosh Sadrzadeh2

1 Department of Philosophy, Tilburg University, Tilburg, The Netherlands
r.a.muskens@gmail.com

2 School of Electronic Engineering and Computer Science,
Queen Mary University of London, London, UK

mehrnoosh.sadrzadeh@qmul.ac.uk

Abstract. Vector models of language are based on the contextual
aspects of words and how they co-occur in text. Truth conditional mod-
els focus on the logical aspects of language, the denotations of phrases,
and their compositional properties. In the latter approach the denota-
tion of a sentence determines its truth conditions and can be taken to
be a truth value, a set of possible worlds, a context change potential, or
similar. In this short paper, we develop a vector semantics for language
based on the simply typed lambda calculus. Our semantics uses tech-
niques familiar from the truth conditional tradition and is based on a
form of dynamic interpretation inspired by Heim’s context updates.

Keywords: Vector semantics · Simply typed lambda calculus · Context
update · Context change potential · Compositionality

1 Introduction

Vector semantic models, otherwise known as distributional models, are based on
the contextual aspects of language, the company each word keeps, and patterns
of use in corpora of documents. Truth conditional models focus on the logical
and denotational aspects of language, sets of objects with certain properties and
application and composition of functions. Vector semantics and truth conditional
models are based on different philosophies; in recent years there has been much
effort to bring them together under one umbrella, see for example [1–3,8,9].

In a recent abstract [14], we sketched an approach to semantics that assigned
vector meanings to linguistic phrases using a simply typed lambda calculus in
the tradition of [10]. Our previous system was guided by a truth conditional
interpretation and provided vector semantics very similar to the approaches of
[1–3,8,9]. The difference was that the starting points of these latter approaches
are categorial logics such as Pregroup Grammars and Combinatorial Categorial
Grammar (CCG). Our reasoning for the use of lambda calculus was that it
directly relates our semantics to higher order logic and makes standard ways of

Support by EPSRC for Career Acceleration Fellowship EP/J002607/1 is gratefully
acknowledged by M. Sadrzadeh.

c© Springer-Verlag GmbH Germany 2016
M. Amblard et al. (Eds.): LACL 2016, LNCS 10054, pp. 247–254, 2016.
DOI: 10.1007/978-3-662-53826-5 15



248 R. Muskens and M. Sadrzadeh

treating long distance dependencies and coordination accessible to vector-based
semantics. In this short account, we follow the same lines as in our previous
work. But whereas in previous work we worked with a static interpretation of
distributions, here, we focus on a dynamic interpretation.

The lambda calculus approach we use is based on the Lambda Grammars
of [11,12], which were independently introduced as Abstract Categorial Gram-
mars (ACGs) in [5]. The theory developed here, however, can be based on any
syntax-semantics interface that works with a lambda calculus based semantics.
Our approach is agnostic as to the choice of a syntactic theory. Lambda Gram-
mars/ACGs are just a framework for thinking about type and term homomor-
phisms and we are using them entirely in semantics here. In a longer paper we
will show in more detail how lambda logical forms (the abstract terms) can be
obtained: (1) from standard linguistic trees with the help of a procedure that
is essentially that of Heim and Kratzer [7]; (2) from LFG f-structures by means
of a ‘glue logic’; (3) from Lambek proofs by means of semantic recipes; (4) and
from CCG derivations by means of using the combinators associated with CCG
rules.

The dynamic interpretation we work with here is the “context change poten-
tial” of [6]. We believe other dynamic approaches, such the update semantics of
[16] and the continuation-based semantics of [4], can also be used; we aim to do
these in future.

2 Heim’s Files and Distributional Contexts

Heim describes her contexts as files that have some kind of information written
on (or in) them. Context changes are operations that update these files, e.g. by
adding or deleting information from the files. Formally, a context is taken to be
a set of sequence-world pairs, in which the sequences come from some domain
DI of individuals, as follows:

ctx ⊆ {(g, w) | g : N → DI , w a possible world}

(We follow Heim [6] here in letting the sequences in her sequence-world-pairs be
infinite, although they are best thought of as finite.)

Sentence meanings are context change potentials (CCPs) in Heim’s work,
functions from contexts to contexts. A sentence S comes provided with a
sequence of instructions that, given any context ctx, updates its information
so that a new context denoted as

ctx + S

results. The sequence of instructions that brings about this update is derived
compositionally from the constituents of S.

In distributional semantics, contexts are words somehow related to each other
via their patterns of use, e.g. by co-occurring in a neighbourhood word window
of a fixed size or via a dependency relation. In practice, one builds a context



Context Update for Lambdas and Vectors 249

matrix M over R
2, with rows and columns labeled by words from a vocabulary

Σ and with entries taking values from R, for a full description see [15]. M can
be seen as the set of its vectors:

{−→v | −→v : Σ → R}

where each −→v is a row or column in M .
If we take Heim’s domain of individuals DI be the vocabulary of a distribu-

tional model of meaning, that is DI := Σ, then a context matrix can be seen as
a so-called quantized version of a Heim context:

{(−→g , w) | −→g : Σ → R, w a possible world}

Thus a distributional context matrix is obtainable by endowing Heim’s contexts
with R. In other words, we are assuming that not only a file has a set of indi-
viduals, but also that these individuals take some kind of values, e.g. from reals.

The role of possible worlds in a distributional semantics is arguable, as vec-
tors retrieved from a corpus are not naturally truth conditional. Keeping the
possible worlds in the picture provides a machinery to assign a proposition to
a distributional vector by other means and can become very useful. But for the
rest of this abstract, we shall deprive ourselves from this advantage and only
work with the following set as our context:

{−→g | −→g : Σ → R,−→g ∈ M}

Distributional versions of Heim’s CCP’s can be defined based on the intuitions
and definitions of Heim. In what follows we pan out how these instructions let
contexts thread through vectorial semantics in a compositional manner.

3 Vectors, Matrices, Lambdas

Lambda Grammars of [11,12] were independently introduced as Abstract Cate-
gorial Grammars (ACGs) in [5]. An ACG generates two languages, an abstract
language and an object language. The abstract language will simply consist of
all linear lambda terms (each lambda binder binds exactly one variable occur-
rence) over a given vocabulary typed with abstract types. The object language
has its own vocabulary and its own types. It results from (1) specifying a type
homomorphism from abstract types to object types and (2) specifying a term
homomorphism from abstract terms to object terms. The term homomorphism
must respect the type homomorphism. For more information about the proce-
dure of obtaining an object language from an abstract language, see the papers
mentioned or the explanation in [13].

Let the basic abstract types of our setting be D (for determiner phrases), S
(for sentences), and N (for nominal phrases). Let the basic object types be I
and R. The domain DI corresponding to I can be thought of as a vocabulary,
DR models the set of reals R. The usual operations on R can be defined using



250 R. Muskens and M. Sadrzadeh

Tarski’s axioms (in full models that satisfy these axioms DR = R will hold; in
generalised models we get what boils down to a first-order approximation of R).
Objects of type I → R are abbreviated to IR; these are identified with vectors
with a fixed basis.

We will associate simple words like names, nouns and verbs with vectors, i.e.
with objects of type IR and will denote these with constants like −−−−→woman,

−−−→
smoke,

etc. The typed lambda calculus will be used to build certain functions with the
help of these vectors that will then function as the meanings of those words. The
meanings of content words will typically be functions that are completely given
by some vector, but they will not (necessarily) be identified with vectors (see
also Table 1 below).

Sentences will be context change potentials. A context for us is a matrix, thus
it has type I2R. A sentence takes the type (I2R)(I2R). We abbreviate IR as V ,
I2R as M and the sentence type MM as U (for ‘update’). Verbs take a vector
for each of their arguments, plus an input context, and return a context as their
output. For instance, an intransitive verb takes a vector for its subject plus a
context and returns a modified context. Thus it takes type V MM = V U . A
transitive verb takes a vector for its subject, a vector for its object and a context
and returns a context. Thus it has type V V U . Nouns are essentially treated as
vectors (V ), but, since they must be made capable of dynamic behaviour, they
are ‘lifted’ to the higher type (V U)U . Our dynamic type homomorphism ρ is
defined by letting ρ(N) = (V U)U , ρ(D) = V and ρ(S) = U . Some consequences
of this definition can be found in Table 1.

Table 1. Some abstract constants a typed with abstract types τ and their term
homomorphic images H(a) typed by ρ(τ) (where ρ is a type homomorphism, i.e.
ρ(AB) = ρ(A)ρ(B)). Here Z is a variable of type V U , Q is of type (V U)U , v of type
V , c of type M , and p and q are of type U . The functions F , G, I, and J are explained
in the main text. In the schematic entry for and, we write ρ(α) for ρ(α1) · · · ρ(αn), if
α = α1 · · · αn.

a τ H(a) ρ(τ)

Anna (DS)S λZ.Z−−→anna (V U)U

woman N λZ.Z−−−−→woman (V U)U

tall NN λQZ.Q(λvc.ZvF (
−→
tall, v, c)) ((V U)U)(V U)U

smokes DS λvc.G(
−−−→
smoke, v, c) V U

loves DDS λuvc.I(
−−→
love, u, v, c) V V U

knows SDS λpvc.pJ(
−−−→
know, v, c) UV U

every N(DS)S λQ.Q ((V U)U)(V U)U

who (DS)NN λZ′QZ.Q(λvc.Zv(QZ′c)) (V U)((V U)U)(V U)U

and (αS)(αS)(αS) λR′λRλXλc.R′X(RXc) (ρ(α)U)(ρ(α)U)(ρ(α)U)



Context Update for Lambdas and Vectors 251

4 Context Update for Lambda Binders

Object terms corresponding to a content word a may update a context matrix
c with the information in −→a and the information in the vectors of arguments of
a. The result is a new context matrix c′, with different value entries.

⎛
⎜⎜⎜⎝

m11 · · · m1k

m21 · · · m2k

...
mn1 · · · mnk

⎞
⎟⎟⎟⎠+ −→a , u, v, · · · =

⎛
⎜⎜⎜⎝

m′
11 · · · m′

1k

m′
21 · · · m′

2k

...
m′

n1 · · · m′
nk

⎞
⎟⎟⎟⎠

An example of a set of elementary update instructions may be as follows.

– The function denoted by λvc.G(
−−−→
smoke, v, c) increases the value entry of mij

of c, for i and j indices of smoke and its subject v.
– The function denoted by λuv.λc.I(

−−→
love, u, v, c) increases the value entries of mij ,

mjk, and mik of c, for i, j, k indices of loves, its subject u and its object v.
– The function denoted by λvc.F (

−→
tall, v, c) increases the value entry of mij of c,

for i and j indices of tall and its modified noun v. The entry for tall in Table 1
uses this function, but allows for further update of context.

– The function denoted by λvc.J(
−−−→
know, v, c) increases the value entry of mij of

c, for i and j indices of know and its subject v. The updated matrix is made
the input for further update (by the context change potential of the sentence
that is known) in Table 1.

Logical words such as every and and are often treated as noise in distributional
semantics and not included in the context matrix. We have partly followed this
approach here by treating every as the identity function (the noun already has
the required ‘quantifier’ type (V U)U). To see this, note that the entry for ‘every’,
λQ.Q, is the identity function; it takes a Q and then spits it out again. The
alternative would be to have an entry along the lines of that of ‘tall’, but this
would not make a lot of sense. It is the content words that seem to be important
in a distributional setting, not the function words.

The word and does have a function here though—it is treated as a generalised
form of function composition. The entry for the word in Table 1 is schematic,
as and does not only conjoin sentences, but also other phrases of any category.
So, the type of the abstract constant connected with the word is (αS)(αS)(αS),
in which α can be any sequence of abstract types. Ignoring this generalisation
for the moment, we obtain SSS as the abstract type for sentence conjunction,
with a corresponding object type UUU , and meaning λpqc.p(qc), which is just
function composition. This is defined in a way such that the context updated
by and ’s left argument will be further updated by its right argument. So ‘Sally
smokes and John eats bananas’ will, given an initial matrix c, first update c to
G(Sally, smoke, c), which is a matrix, and then update this further with ‘John
eats bananas’ to I(eat, John, bananas, G(smoke,Sally, c)).



252 R. Muskens and M. Sadrzadeh

This treatment is easily extended to coordination in all categories. For exam-
ple, the reader may check that and admires loves (which corresponds to loves and
admires) has λuvc.I(

−−−−→
admire, u, v, I(

−−→
love, u, v, c)) as its homomorphic image.

The update instructions fall through the semantics of phrases and sentences
compositionally. The sentence every tall woman smokes, for example, will be
associated with the following lambda expression:

(every tall woman)λζ.(smokes ζ)

This in its turn has a term homomorphic image that is β-equivalent with the
following:

λc.G
(−−−→
smoke,−−−−→woman, F (

−→
tall,−−−−→woman, c)

)

which describes a distributional context update for it. This term describes a
first update of the context c according to the rule for the constant tall, and then
a second update according to the rule for the constant smokes. As a result of
these, the value entries at the crossings of 〈tall, woman〉 and 〈woman, smokes〉 get
increased. Much longer chains of context updates can be ‘threaded’ in this way.

In the following we give some examples. In each case the a. sentence is fol-
lowed by an abstract term in b. which captures its syntactic structure. The
update potential that follows in c. is the homomorphic image of this abstract
term.

(1) a. Sue loves and admires a stockbroker
b. (a stockbroker)λξ.Sue(and admires loves ξ)

c. λc.I(
−−−−→
admire,

−−−−−−−→
stockbroker,−→sue, I(

−−→
love,

−−−−−−−→
stockbroker,−→sue, c))

(2) a. Bill admires but Anna despises every cop
b. (every cop)λξ.and(Anna(despise ξ))(Bill(admire ξ))

c. λc.I(
−−−−→
despise,−→cop,−−→anna, I(

−−−−→
admire,−→cop,−→bill, c))

(3) a. The witch who Bill claims Anna saw disappeared
b. the(who(λξ.Bill(claims(Anna(saw ξ))))witch)disappears

c. λc.G(
−−−−−−→
disappear,

−−−→
witch, I(−→see,−−−→

witch,−−→anna, J(
−−−→
claim,

−→
bill, c)))

5 Conclusion and Future Directions

In previous work, we showed how a static interpretation of the lambdas will
provide vectors for phrases and sentences of language. There, the object type of
the vector of a word depended on its abstract type and could be an atomic vector,
a matrix, or a cube, or a tensor of higher rank. Means of combinations thereof
then varied based on the tensor rank of the type of each word. For instance one
could take the matrix multiplication of the matrix of an intransitive verb with
the vector of its subject, whereas for a transitive verb the sequence of operations
were a contraction between the cube of the verb and the vector of its object
followed by a matrix multiplication between the resulting matrix and the vector



Context Update for Lambdas and Vectors 253

of the subject. A toolkit of functions needed to perform these operations was
defined in previous work. That toolkit can be restated here for the type I2R,
rather than the previous IR, to provide means of combining matrices and their
updates, if needed.

In this work, we show how a dynamic interpretation of the lambdas will
also provide vectors for phrases and sentences of language. Truth conditional
and vector models of language follow two very different philosophies. The vector
models are based on contexts, the truth models on denotations. The dynamic
interpretations of language, e.g. the approach of Heim, are also based on context
update, hence these seem a more appropriate choice. In this paper, we showed
how Heim’s files can be turned into vector contexts and how her context change
potentials can be used to provide vector interpretations for phrases and sen-
tences. Our context update instructions were defined such that they would let
contexts thread through vector semantics in a compositional manner.

Amongst the things that remain to be done in a long paper is to develop a
vector semantics for the lambda terms obtained via other syntactic models, e.g.
CCG, LFG, and Lambek Grammars, as listed at the end of the introduction
section. We also aim to work with other update semantics, such as continuation-
based approaches. One could also have a general formalisation wherein both the
static approach of previous work and the dynamic one of this work cohabit. This
can be done by working out a second pair of type-term homomorphisms that
will also work with Heim’s possible world part of the contexts. In this setting,
the two concepts of meaning: truth theoretic and contextual, each with its own
uses and possibilities, can work in tandem.

Acknowledgements. We wish to thank the anonymous referees for excellent
feedback.

References

1. Baroni, M., Bernardi, R., Zamparelli, R.: Frege in space: a program for composi-
tional distributional semantics. Linguist. Issues Lang. Technol. 9, 5–110 (2014)

2. Coecke, B., Sadrzadeh, M., Clark, S.: Mathematical foundations for distributed
compositional model of meaning. Lambek Festschrift. Linguist. Anal. 36, 345–384
(2010)

3. Grefenstette, E., Sadrzadeh, M.: Concrete models and empirical evaluations for
the categorical compositional distributional model of meaning. Comput. Linguist.
41, 71–118 (2015)

4. de Groote, P.: Towards a Montagovian account of dynamics. In: Proceedings of
16th Semantics and Linguistic Theory Conference (SALT 2016), pp. 1–16 (2006)

5. de Groote, P.: Towards abstract categorial grammars. association for computa-
tional linguistics. In: Proceedings of the Conference on 39th Annual Meeting and
10th Conference of the European Chapter, pp. 148–155. ACL, Toulouse (2001)

6. Heim, I.: On the projection problem for presuppositions. In: Portner, P., Partee,
B.H. (eds.) Formal Semantics - The Essential Readings, pp. 249–260. Blackwell,
Hoboken (1983)



254 R. Muskens and M. Sadrzadeh

7. Heim, I., Kratzer, A.: Semantics in Generative Grammar. Blackwell Textbooks in
Linguistics. Blackwell Publishers, Cambridge (1998)

8. Krishnamurthy, J., Mitchell, T.M.: Vector space semantic parsing: a framework
for compositional vector space models. In: Proceedings of 2013 ACL Workshop on
Continuous Vector Space Models and their Compositionality (2013)

9. Maillard, J., Clark, S., Grefenstette, E.: A type-driven tensor-based semantics for
CCG. In: Proceedings of EACL 2014 Type Theory and Natural Language Seman-
tics Workshop (2014)

10. Montague, R.: The proper treatment of quantification in ordinary English. In:
Thomason, R. (ed.) Formal Philosophy. Selected Papers of Richard Montague, pp.
247–270. Yale University Press, New Haven (1974)

11. Muskens, R.A.: Categorial grammar and lexical-functional grammar. In: Butt, M.,
King, T.H. (eds.) Proceedings of LFG 2001 Conference, University of Hong Kong,
pp. 259–279. CSLI Publications, Stanford (2001). http://tinyurl.com/jrc3nnw

12. Muskens, R.A.: Language, lambdas, and logic. In: Kruijff, G.J., Oehrle, R. (eds.)
Resource Sensitivity in Binding and Anaphora. Kluwer, Studies in Linguistics and
Philosophy, vol. 80, pp. 23–54. Springer, Dordrecht (2003)

13. Muskens, R.: New directions in type-theoretic grammars. J. Log. Lang. Inf. 19(2),
129–136 (2010)

14. Muskens, R., Sadrzadeh, M.: Lambdas and vectors. In: Workshop on Distributional
Semantics and Linguistic Theory (DSALT), 28th European Summer School in
Logic, Language and Information (ESSLLI). Free University of Bozen, Bolzano,
August 2016

15. Rubenstein, H., Goodenough, J.: Contextual correlates of synonymy. Commun.
ACM 8(10), 627–633 (1965)

16. Veltman, F.: Defaults in update semantics. J. Philos. Log. 25(3), 221–261 (1996)

http://tinyurl.com/jrc3nnw

	Context Update for Lambdas and Vectors
	1 Introduction
	2 Heim's Files and Distributional Contexts
	3 Vectors, Matrices, Lambdas
	4 Context Update for Lambda Binders
	5 Conclusion and Future Directions
	References


