Skip to main content

Acute Kidney Injury: Prevention and Diagnosis

  • Chapter
  • First Online:

Abstract

Acute kidney injury (AKI) is an increasingly common problem afflicting all ages, the leading reason to seek in-patient nephrology consultation, and associated with serious consequences and unsatisfactory therapeutic options. The etiology of AKI varies widely according to age, geographical region, and clinical setting. Functional AKI induced by dehydration is usually reversible with early fluid therapy. However, the prognosis for patients with structural AKI in the setting of critical illness remains guarded. Recent clinical advances have highlighted the roles of fluid overload and continuous renal replacement therapies in human AKI. Additionally, newly discovered pathogenetic pathways are yielding novel early biomarkers for the prediction of AKI and its consequences, as well as innovative strategies for the pro-active treatment and prevention of AKI. A judicious combination of clinical judgment, established functional markers, novel structural markers, and technical advances in therapies holds the greatest promise for progress in human intrinsic AKI.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Devarajan P. Pediatric acute kidney injury: different from acute renal failure, but how and why? Case Pediatr Rep. 2013;1(1):34–40.

    Article  Google Scholar 

  2. Kidney Disease: Improving Global Outcomes (KDIGO) Acute Kidney Injury Work Group. KDIGO clinical practice guideline for acute kidney injury. Kidney Int Suppl. 2012;2:1–138.

    Article  Google Scholar 

  3. Askenazi D. Evaluation and management of critically ill children with acute kidney injury. Curr Opin Pediatr. 2011;23(2):201–7.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Goldstein SL, Devarajan P. Acute kidney injury in childhood: should we be worried about progression to CKD? Pediatr Nephrol. 2011;26(4):509–22.

    Article  PubMed  Google Scholar 

  5. Singbartl K, Kellum JA. AKI in the ICU: definition, epidemiology, risk stratification, and outcomes. Kidney Int. 2012;81(9):819–25.

    Article  CAS  PubMed  Google Scholar 

  6. Akcan-Arikan A, Zappitelli M, Loftis LL, Washburn KK, Jefferson LS, Goldstein SL. Modified RIFLE criteria in critically ill children with acute kidney injury. Kidney Int. 2007;71(10):1028–35.

    Article  CAS  PubMed  Google Scholar 

  7. Bagga A, Bakkaloglu A, Devarajan P, Mehta RL, Kellum JA, Shah SV, Molitoris BA, Ronco C, Warnock DG, Joannidis M, Levin A, Acute Kidney Injury Network. Improving outcomes from acute kidney injury: report of an initiative. Pediatr Nephrol. 2007;22(10):1655–8.

    Article  PubMed  Google Scholar 

  8. Price JF, Mott AR, Dickerson HA, Jefferies JL, Nelson DP, Chang AC, O’Brian Smith E, Towbin JA, Dreyer WJ, Denfield SW, Goldstein SL. Worsening renal function in children hospitalized with decompensated heart failure: evidence for a pediatric cardiorenal syndrome? Pediatr Crit Care Med. 2008;9(3):279–84.

    Article  PubMed  Google Scholar 

  9. Slater MB, Anand V, Uleryk EM, Parshuram CS. A systematic review of RIFLE criteria in children, and its application and association with measures of mortality and morbidity. Kidney Int. 2012;81(8):791–8.

    Article  PubMed  Google Scholar 

  10. Sutherland SM, Ji J, Sheikhi FH, Widen E, Tian L, Alexander SR, Ling XB. AKI in hospitalized children: epidemiology and clinical associations in a national cohort. Clin J Am Soc Nephrol. 2013;8(10):1661–9.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Aggarwal A, Kumar P, Chowdhary G, Majumdar S, Narang A. Evaluation of renal functions in asphyxiated newborns. J Trop Pediatr. 2005;51(5):295–9.

    Article  PubMed  Google Scholar 

  12. Mishra J, Dent C, Tarabishi R, Mitsnefes MM, Ma Q, Kelly C, Ruff SM, Zahedi K, Shao M, Bean J, Mori K, Barasch J, Devarajan P. Neutrophil gelatinase-associated lipocalin (NGAL) as a biomarker for acute renal injury after cardiac surgery. Lancet. 2005;365(9466):1231–8.

    Article  CAS  PubMed  Google Scholar 

  13. Dent CL, Ma Q, Dastrala S, Bennett M, Mitsnefes MM, Barasch J, Devarajan P. Plasma neutrophil gelatinase-associated lipocalin predicts acute kidney injury, morbidity and mortality after pediatric cardiac surgery: a prospective uncontrolled cohort study. Crit Care. 2007;11(6):R127.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Bennett M, Dent CL, Ma Q, Dastrala S, Grenier F, Workman R, Syed H, Ali S, Barasch J, Devarajan P. Urine NGAL predicts severity of acute kldney injury after cardiac surgery: a prospective study. Clin J Am Soc Nephrol. 2008;3(3):665–73.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Krawczeski CD, Woo JG, Wang Y, Bennett MR, Ma Q, Devarajan P. Neutrophil gelatinase-associated lipocalin concentrations predict development of acute kidney injury in neonates and children after cardiopulmonary bypass. J Pediatr. 2011;158(6):1009–515.

    Article  CAS  PubMed  Google Scholar 

  16. Krawczeski CD, Goldstein SL, Woo JG, Wang Y, Piyaphanee N, Ma Q, Bennett M, Devarajan P. Temporal relationship and predictive value of urinary acute kidney injury biomarkers after pediatric cardiopulmonary bypass. J Am Coll Cardiol. 2011;58(22):2301–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Li S, Krawczeski CD, Zappitelli M, Devarajan P, Thiessen-Philbrook H, Coca SG, Kim RW, Parikh CR, TRIBE-AKI Consortium. Incidence, risk factors, and outcomes of acute kidney injury after pediatric cardiac surgery: a prospective multicenter study. Crit Care Med. 2011;39(6):1493–9.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Fadel FI, Abdel Rahman AMO, Mohamed MF, et al. Plasma neutrophil gelatinase-associated lipocalin as an early biomarker for prediction of acute kidney injury after cardio-pulmonary bypass in pediatric cardiac surgery. Arch Med Sci. 2012;8(2):250–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Blinder JJ, Goldstein SL, Lee VV, Baycroft A, Fraser CD, Nelson D, Jefferies JL. Congenital heart surgery in infants: effects of acute kidney injury on outcomes. J Thorac Cardiovasc Surg. 2012;143(2):368–74.

    Article  PubMed  Google Scholar 

  20. Toth R, Breuer T, Cserep Z, Lex D, Fazekas L, Sápi E, Szatmári A, Gál J, Székely A. Acute kidney injury is associated with higher morbidity and resource utilization in pediatric patients undergoing heart surgery. Ann Thorac Surg. 2012;93(6):1984–90.

    Article  PubMed  Google Scholar 

  21. Aydin SI, Seiden HS, Blaufox AD, Parnell VA, Choudhury T, Punnoose A, Schneider J. Acute kidney injury after surgery for congenital heart disease. Ann Thorac Surg. 2012;94(5):1589–95.

    Article  PubMed  Google Scholar 

  22. Schneider J, Khemani R, Grushkin C, Bart R. Serum creatinine as stratified in the RIFLE score for acute kidney injury is associated with mortality and length of stay for children in the pediatric intensive care unit. Crit Care Med. 2010;38(3):933–9.

    Article  CAS  PubMed  Google Scholar 

  23. Alkandari O, Eddington KA, Hyder A, Gauvin F, Ducruet T, Gottesman R, Phan V, Zappitelli M. Acute kidney injury is an independent risk factor for pediatric intensive care unit mortality, longer length of stay and prolonged mechanical ventilation in critically ill children: a two-center retrospective cohort study. Crit Care. 2011;15(3):R146.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Kavaz A, Ozcakar ZB, Kendirli T, Oztürk BB, Ekim M, Yalçinkaya F. Acute kidney injury in a paediatric intensive care unit: comparison of the pRIFLE and AKIN criteria. Acta Paediatr. 2012;101(3):e126–9.

    Article  PubMed  Google Scholar 

  25. Prodhan P, McCage LS, Stroud MH, Gossett J, Garcia X, Bhutta AT, Schexnayder S, Maxson RT, Blaszak RT. Acute kidney injury is associated with increased in-hospital mortality in mechanically ventilated children with trauma. J Trauma Acute Care Surg. 2012;73(4):832–7.

    Article  PubMed  Google Scholar 

  26. Moffett BS, Goldstein SL. Acute kidney injury and increasing nephrotoxic-medication exposure in noncritically-ill children. Clin J Am Soc Nephrol. 2011;6(4):856–63.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Goldstein SL, Kirkendall E, Nguyen H, Schaffzin JK, Bucuvalas J, Bracke T, Seid M, Ashby M, Foertmeyer N, Brunner L, Lesko A, Barclay C, Lannon C, Muething S. Electronic health record identification of nephrotoxin exposure and associated acute kidney injury. Pediatrics. 2013;132(3):e756–67.

    Article  PubMed  Google Scholar 

  28. Hui-Stickle S, Brewer ED, Goldstein SL. Pediatric ARF epidemiology at a tertiary care center from 1999 to 2001. Am J Kidney Dis. 2005;45(1):96–101.

    Article  PubMed  Google Scholar 

  29. Duzova A, Bakkaloglu A, Kalyoncu M, Poyrazoglu H, Delibas A, Ozkaya O, Peru H, Alpay H, Soylemezoglu O, Gur-Guven A, Bak M, Bircan Z, Cengiz N, Akil I, Ozcakar B, Uncu N, Karabay-Bayazit A, Sonmez F, Turkish Society for Pediatric Nephrology Acute Kidney Injury Study Group. Etiology and outcome of acute kidney injury in children. Pediatr Nephrol. 2010;25(8):1453–61.

    Article  PubMed  Google Scholar 

  30. Symons JM, Chua AN, Somers MJ, Baum MA, Bunchman TE, Benfield MR, Brophy PD, Blowey D, Fortenberry JD, Chand D, Flores FX, Hackbarth R, Alexander SR, Mahan J, McBryde KD, Goldstein SL. Demographic characteristics of pediatric continuous renal replacement therapy: a report of the prospective pediatric continuous renal replacement therapy registry. Clin J Am Soc Nephrol. 2007;2(4):732–8.

    Article  PubMed  Google Scholar 

  31. Vachvanichsanong P, Dissaneewate P, Lim A, McNeil E. Childhood acute renal failure: 22-year experience in a university hospital in southern Thailand. Pediatrics. 2006;118(3):e786–91.

    Article  PubMed  Google Scholar 

  32. Van Biljon G. Causes, prognostic factors and treatment results of acute renal failure in chidren treated in a tertiary hospital in South Africa. J Trop Pediatr. 2008;54(4):233–7.

    Article  PubMed  Google Scholar 

  33. McCullough PA, Bouchard J, Waikar SS, Siew ED, Endre ZH, Goldstein SL, Koyner JL, Macedo E, Doi K, Di Somma S, Lewington A, Thadhani R, Chakravarthi R, Ice C, Okusa MD, Duranteau J, Doran P, Yang L, Jaber BL, Meehan S, Kellum JA, Haase M, Murray PT, Cruz D, Maisel A, Bagshaw SM, Chawla LS, Mehta RL, Shaw AD, Ronco C. Implementation of novel biomarkers in the diagnosis, prognosis, and management of acute kidney injury: executive summary from the tenth consensus conference of the Acute Dialysis Quality Initiative (ADQI). Contrib Nephrol. 2013;182:5–12.

    Article  PubMed  Google Scholar 

  34. Endre ZH, Kellum JA, Di Somma S, Doi K, Goldstein SL, Koyner JL, Macedo E, Mehta RL, Murray PT. Differential diagnosis of AKI in clinical practice by functional and damage biomarkers: workgroup statements from the tenth acute dialysis quality initiative consensus conference. Contrib Nephrol. 2013;182:30–44.

    Article  PubMed  Google Scholar 

  35. Harris RC, Zhang MC. Cyclooxygenase metabolites in the kidney. Compr Physiol. 2011;1(4):1729–58.

    PubMed  Google Scholar 

  36. Perazella MA. Renal vulnerability to drug toxicity. Clin J Am Soc Nephrol. 2009;4(7):1275–83.

    Article  CAS  PubMed  Google Scholar 

  37. Misurac JM, Knoderer CA, Leiser JD, Nailescu C, Wilson AC, Andreoli SP. Nonsteroidal anti-inflammatory drugs are an important cause of acute kidney injury in children. J Pediatr. 2013;162(6):1153–9.

    Article  CAS  PubMed  Google Scholar 

  38. Chappell MC. Non-classical renin-angiotensin system and renal function. Compr Physiol. 2012;2(4):2733–52.

    PubMed  PubMed Central  Google Scholar 

  39. Arora P, Rajagopalam S, Ranjan R, Kolli H, Singh M, Venuto R, Lohr J. Preoperative use of angiotensin-converting enzyme inhibitors/angiotensin receptor blockers is associated with increased risk for acute kidney injury after cardiovascular surgery. Clin J Am Soc Nephrol. 2008;3(5):1266–73.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Moffett BS, Goldstein SL, Adusei M, Kuzin J, Mohan P, Mott AR. Risk factors for postoperative acute kidney injury in pediatric cardiac surgery patients receiving angiotensin-converting enzyme inhibitors. Pediatr Crit Care Med. 2011;12(5):555–9.

    Article  PubMed  Google Scholar 

  41. Nejat M, Pickering JW, Devarajan P, Bonventre JV, Edelstein CL, Walker RJ, Endre ZH. Some biomarkers of acute kidney injury are increased in pre-renal acute injury. Kidney Int. 2012;81(12):1254–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Blantz RC, Singh P. Analysis of the prerenal contributions to acute kidney injury. Contrib Nephrol. 2011;174:4–11.

    Article  PubMed  Google Scholar 

  43. Schrier RW. ARF, AKI, or ATN? Nat Rev Nephrol. 2010;6(3):125.

    Article  PubMed  Google Scholar 

  44. Langenberg C, Bagshaw SM, May CN, Bellomo R. The histopathology of septic acute kidney injury: a systematic review. Crit Care. 2008;12(2):R38.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Rosen S, Stillman IE. Acute tubular necrosis is a syndrome of physiologic and pathologic dissociation. J Am Soc Nephrol. 2008;19(5):871–5.

    Article  PubMed  Google Scholar 

  46. Castaneda MP, Swiatecka-Urban A, Mitsnefes MM, Feuerstein D, Kaskel FJ, Tellis V, Devarajan P. Activation of mitochondrial apoptotic pathways in human renal allografts after ischemiareperfusion injury. Transplantation. 2003;76(1):50–4.

    Article  CAS  PubMed  Google Scholar 

  47. Devarajan P. The strong silent type: the distal tubule to the rescue. Crit Care Med. 2009;37(6):2129–30.

    Article  PubMed  Google Scholar 

  48. Devarajan P. Update on mechanisms of ischemic acute kidney injury. J Am Soc Nephrol. 2006;17(6):1503–20.

    Article  CAS  PubMed  Google Scholar 

  49. Sharfuddin AA, Molitoris BA. Pathophysiology of ischemic acute kidney injury. Nat Rev Nephrol. 2011;7(4):189–200.

    Article  CAS  PubMed  Google Scholar 

  50. Bonventre JV, Yang L. Cellular pathophysiology of ischemic acute kidney injury. J Clin Invest. 2011;121(11):4210–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Heyman SN, Evans RG, Rosen S, Rosenberger C. Cellular adaptive changes in AKI: mitigating renal hypoxic injury. Nephrol Dial Transplant. 2012;27(5):1721–8.

    Article  CAS  PubMed  Google Scholar 

  52. Kinsey GR, Sharma R, Okusa MD. Regulatory T cells in AKI. J Am Soc Nephrol. 2013;24(11):1720–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Schrier RW, Wang W, Poole B, Mitra A. Acute renal failure: definitions, diagnosis, pathogenesis, and therapy. J Clin Invest. 2004;114(1):5–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Sadik NA, Mohamed WA, Ahmed MI. The association of receptor of advanced glycated end products and inflammatory mediators contributes to endothelial dysfunction in a prospective study of acute kidney injury patients with sepsis. Mol Cell Biochem. 2012;359(1–2):73–81.

    Article  CAS  PubMed  Google Scholar 

  55. Wang A, Holcslaw T, Bashore TM, Freed MI, Miller D, Rudnick MR, Szerlip H, Thames MD, Davidson CJ, Shusterman N, Schwab SJ. Exacerbation of radiocontrast nephrotoxicity by endothelin receptor antagonism. Kidney Int. 2000;57(4):1675–80.

    Article  CAS  PubMed  Google Scholar 

  56. Meyers KE, Sethna C. Endothelin antagonists in hypertension and kidney disease. Pediatr Nephrol. 2013;28(5):711–20.

    Article  PubMed  Google Scholar 

  57. Devarajan P. Cellular and molecular derangements in acute tubular necrosis. Curr Opin Pediatr. 2005;17(2):193–9.

    Article  PubMed  Google Scholar 

  58. Bagshaw SM, Bellomo R, Kellum JA. Oliguria, volume overload, and loop diuretics. Crit Care Med. 2008;36:S172–8.

    Article  PubMed  Google Scholar 

  59. Nigwekar SU, Waikar SS. Diuretics in acute kidney injury. Semin Nephrol. 2011;31(6):523–34.

    Article  CAS  PubMed  Google Scholar 

  60. Schnermann J. Homer W Smith Award lecture. The juxtaglomerular apparatus: from anatomical peculiarity to physiological relevance. J Am Soc Nephrol. 2003;14:1681–94.

    Article  PubMed  Google Scholar 

  61. Lee HT, Xu H, Nasr SH, et al. A1 adenosine receptor knockout mice exhibit increased renal injury following ischemia and reperfusion. Am J Physiol Ren Physiol. 2004;286:F298–306.

    Article  CAS  Google Scholar 

  62. Laubach VE, French BA, Okusa MD. Targeting of adenosine receptors in ischemia-reperfusion injury. Expert Opin Ther Targets. 2011;15:103–18.

    Article  CAS  PubMed  Google Scholar 

  63. Nigwekar SU, Strippoli GF, Navaneethan SD. Thyroid hormones for acute kidney injury. Cochrane Database Syst Rev. 2013;1, CD006740.

    Google Scholar 

  64. Shilliday IR, Sherif M. Calcium channel blockers for preventing acute tubular necrosis in kidney transplant recipients. Cochrane Database Syst Rev 2004:CD003421.

    Google Scholar 

  65. Himmelfarb J, McMonagle E, Freedman S, et al. Oxidative stress is increased in critically ill patients with acute renal failure. J Am Soc Nephrol. 2004;15:2449–56.

    Article  CAS  PubMed  Google Scholar 

  66. Alsabbagh MM, Asmar A, Ejaz NI, Aiyer RK, Kambhampati G, Ejaz AA. Update on clinical trials for the prevention of acute kidney injury in patients undergoing cardiac surgery. Am J Surg. 2013;206(1):86–95.

    Article  PubMed  Google Scholar 

  67. Hosseinjani H, Moghaddas A, Khalili H. N-acetylcysteine for the prevention of non-contrast media agent-induced kidney injury: from preclinical data to clinical evidence. Eur J Clin Pharmacol. 2013;69(7):1375–90.

    Article  CAS  PubMed  Google Scholar 

  68. Mishra J, Ma Q, Prada A, et al. Identification of neutrophil gelatinase-associated lipocalin as a novel early urinary biomarker for ischemic renal injury. J Am Soc Nephrol. 2003;14:2534–43.

    Article  CAS  PubMed  Google Scholar 

  69. Mishra J, Mori K, Ma Q, et al. Amelioration of ischemic acute renal injury by neutrophil gelatinase-associated lipocalin. J Am Soc Nephrol. 2004;15:3073–82.

    Article  PubMed  Google Scholar 

  70. Molitoris BA. Actin cytoskeleton in ischemic acute renal failure. Kidney Int. 2004;66:871–83.

    Article  PubMed  Google Scholar 

  71. Woroniecki R, Ferdinand JR, Morrow JS, et al. Dissociation of spectrin-ankyrin complex as a basis for loss of Na-K-ATPase polarity after ischemia. Am J Physiol Ren Physiol. 2003;284:F358–64.

    Article  CAS  Google Scholar 

  72. Pozzi A, Zent R. Integrins in kidney disease. J Am Soc Nephrol. 2013;24(7):1034–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Havasi A, Borkan SC. Apoptosis and acute kidney injury. Kidney Int. 2011;80(1):29–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Devarajan P. Apoptosis and necrosis. In: Ronco C, Bellomo R, Kellum JA, editors. Critical care nephrology. Philadelphia: Saunders Elsevier; 2009.

    Google Scholar 

  75. Supavekin S, Zhang W, Kucherlapati R, et al. Differential gene expression following early renal ischemia/reperfusion. Kidney Int. 2003;63:1714–24.

    Article  CAS  PubMed  Google Scholar 

  76. Kelly KJ, Plotkin Z, Vulgamott SL, et al. P53 mediates the apoptotic response to GTP depletion after renal ischemia-reperfusion: protective role of a p53 inhibitor. J Am Soc Nephrol. 2003;14:128–38.

    Article  CAS  PubMed  Google Scholar 

  77. Del Rio M, Imam A, DeLeon M, et al. The death domain of kidney ankyrin interacts with Fas and promotes Fas-mediated cell death in renal epithelia. J Am Soc Nephrol. 2004;15:41–51.

    Article  PubMed  Google Scholar 

  78. Burns AT, Davies DR, McLaren AJ, et al. Apoptosis in ischemia/reperfusion injury of human renal allografts. Transplantation. 1998;66:872–6.

    Article  CAS  PubMed  Google Scholar 

  79. Oberbauer R, Rohrmoser M, Regele H, et al. Apoptosis of tubular epithelial cells in donor kidney biopsies predicts early renal allograft function. J Am Soc Nephrol. 1999;10:2006–13.

    CAS  PubMed  Google Scholar 

  80. Schwarz C, Hauser P, Steininger R, et al. Failure of BCL-2 up-regulation in proximal tubular epithelial cells of donor kidney biopsy specimens is associated with apoptosis and delayed graft function. Lab Invest. 2002;82:941–8.

    Article  CAS  PubMed  Google Scholar 

  81. Hoffmann SC, Kampen RL, Amur S, et al. Molecular and immunohistochemical characterization of the onset and resolution of human renal allograft ischemia-reperfusion injury. Transplantation. 2002;74:916–23.

    Article  CAS  PubMed  Google Scholar 

  82. Hauser P, Schwarz C, Mitterbauer C, et al. Genome-wide gene-expression patterns of donor kidney biopsies distinguish primary allograft function. Lab Invest. 2004;84:353–61.

    Article  CAS  PubMed  Google Scholar 

  83. Devarajan P, Mishra J, Supavekin S, et al. Gene expression in early ischemic renal injury: clues towards pathogenesis, biomarker discovery, and novel therapeutics. Mol Genet Metab. 2003;80:365–76.

    Article  CAS  PubMed  Google Scholar 

  84. Molitoris BA, Dagher PC, Sandoval RM, et al. siRNA targeted to p53 attenuates ischemic and cisplatin-induced acute kidney injury. J Am Soc Nephrol. 2009;20:1754–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Yang L, Humphreys BD, Bonventre JV. Pathophysiology of acute kidney injury to chronic kidney disease: maladaptive repair. Contrib Nephrol. 2011;174:149–55.

    Article  PubMed  Google Scholar 

  86. Kusaba T, Humphreys BD. Controversies on the origin of proliferating epithelial cells after kidney injury. Pediatr Nephrol. 2014;29(4):673–9.

    Article  PubMed  Google Scholar 

  87. Humphreys BD, Czerniak S, Dirocco DP, Hasnain W, Cheema R, Bonventre JV. Repair of injured proximal tubule does not involve specialized progenitors. Proc Natl Acad Sci U S A. 2011;108:9226–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Humphreys BD, Valerius MT, Kobayashi A, Mugford JW, Soeung S, Duffield JS, McMahon AP, Bonventre JV. Intrinsic epithelial cells repair the kidney after injury. Cell Stem Cell. 2008;2:284–91.

    Article  CAS  PubMed  Google Scholar 

  89. Tögel FE, Westenfelder C. Mesenchymal stem cells: a new therapeutic tool for AKI. Nat Rev Nephrol. 2010;6(3):179–83.

    Article  PubMed  Google Scholar 

  90. Tögel FE, Westenfelder C. Kidney protection and regeneration following acute injury: progress through stem cell therapy. Am J Kidney Dis. 2012;60(6):1012–22.

    Article  PubMed  Google Scholar 

  91. Salmela K, Wramner L, Ekberg H, et al. A randomized multicenter trial of the anti-ICAM-1 monoclonal antibody (enlimomab) for the prevention of acute rejection and delayed onset of graft function in cadaveric renal transplantation: a report of the European Anti-ICAM-1 Renal Transplant Study Group. Transplantation. 1999;67:729–36.

    Article  CAS  PubMed  Google Scholar 

  92. Simmons EM, Himmelfarb J, Sezer MT, et al. Plasma cytokine levels predict mortality in patients with acute renal failure. Kidney Int. 2004;65:1357–65.

    Article  CAS  PubMed  Google Scholar 

  93. Doi K, Hu X, Yuen PS, et al. AP214, an analogue of alpha-melanocyte-stimulating hormone, ameliorates sepsis-induced acute kidney injury and mortality. Kidney Int. 2008;73:1266–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Peng Q, Li K, Smyth LA, et al. C3a and C5a promote renal ischemia-reperfusion injury. J Am Soc Nephrol. 2012;23:1474–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Lewis AG, Kohl G, Ma Q, et al. Pharmacological targeting of C5a receptors during organ preservation improves kidney graft survival. Clin Exp Immunol. 2008;153:117–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Zarjou A, Agarwal A. Sepsis and acute kidney injury. J Am Soc Nephrol. 2011;22:999–1006.

    Article  PubMed  Google Scholar 

  97. Wan L, Bagshaw SM, Langenberg C, et al. Pathophysiology of septic acute kidney injury: what do we really know? Crit Care Med. 2008;36:S198–203.

    Article  PubMed  Google Scholar 

  98. Schinstock CA, Semret MH, Wagner SJ, Borland TM, Bryant SC, Kashani KB, Larson TS, Lieske JC. Urinalysis is more specific and urinary neutrophil gelatinase-associated lipocalin is more sensitive for early detection of acute kidney injury. Nephrol Dial Transplant. 2013;28(5):1175–85.

    Article  CAS  PubMed  Google Scholar 

  99. Bagshaw SM, Haase M, Haase-Fielitz A, Bennett M, Devarajan P, Bellomo R. A prospective evaluation of urine microscopy in septic and non-septic acute kidney injury. Nephrol Dial Transplant. 2012;27(2):582–8.

    Article  CAS  PubMed  Google Scholar 

  100. Perazella MA, Coca SG, Hall IE, Iyanam U, Koraishy M, Parikh CR. Urine microscopy is associated with severity and worsening of acute kidney injury in hospitalized patients. Clin J Am Soc Nephrol. 2010;5(3):402–8.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Fahimi D, Mohajeri S, Hajizadeh N, et al. Comparison between fractional excretions of urea and sodium in children with acute kidney injury. Pediatr Nephrol. 2009;24:2409–12.

    Article  PubMed  Google Scholar 

  102. Dewitte A, Biais M, Petit L, Cochard JF, Hilbert G, Combe C, Sztark F. Fractional excretion of urea as a diagnostic index in acute kidney injury in intensive care patients. J Crit Care. 2012;27(5):505–10.

    Article  PubMed  Google Scholar 

  103. Pons B, Lautrette A, Oziel J, Dellamonica J, Vermesch R, Ezingeard E, Mariat C, Bernardin G, Zeni F, Cohen Y, Tardy B, Souweine B, Vincent F, Darmon M. Diagnostic accuracy of early urinary index changes in differentiating transient from persistent acute kidney injury in critically ill patients: multicenter cohort study. Crit Care. 2013;17(2):R56.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Schneider AG, Bellomo R. Urinalysis and pre-renal acute kidney injury: time to move on. Crit Care. 2013;17(3):141.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Rachoin JS, Daher R, Moussallem C, Milcarek B, Hunter K, Schorr C, Abboud M, Henry P, Weisberg LS. The fallacy of the BUN:creatinine ratio in critically ill patients. Nephrol Dial Transplant. 2012;27(6):2248–54.

    Article  CAS  PubMed  Google Scholar 

  106. Doi K, Yuen PS, Eisner C, Hu X, Leelahavanichkul A, Schnermann J, Star RA. Reduced production of creatinine limits its use as marker of kidney injury in sepsis. J Am Soc Nephrol. 2009;20(6):1217–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Schwartz GJ, Munoz A, Schneider MF, et al. New equations to estimate GFR in children with CKD. J Am Soc Nephrol. 2009;20:629–37.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Foland JA, Fortenberry JD, Warshaw BL, et al. Fluid overload before continuous hemofiltration and survival in critically ill children: a retrospective analysis. Crit Care Med. 2004;32:1771–6.

    Article  PubMed  Google Scholar 

  109. Goldstein SL, Somers MJ, Baum MA, et al. Pediatric patients with multi-organ dysfunction syndrome receiving continuous renal replacement therapy. Kidney Int. 2005;67:653–8.

    Article  PubMed  Google Scholar 

  110. Sutherland SM, Zappitelli M, Alexander SR, et al. Fluid overload and mortality in children receiving continuous renal replacement therapy: the prospective pediatric continuous renal replacement therapy registry. Am J Kidney Dis. 2010;55:316–25.

    Article  PubMed  Google Scholar 

  111. Devarajan P. Biomarkers for the early detection of acute kidney injury. Curr Opin Pediatr. 2011;23:194–200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Schwartz GJ, Work DF. Measurement and estimation of GFR in children and adolescents. Clin J Am Soc Nephrol. 2009;4:1832–43.

    Article  PubMed  Google Scholar 

  113. Krawczeski CD, Vandevoorde RG, Kathman T, Bennett MR, Woo JG, Wang Y, Griffiths RE, Devarajan P. Serum cystatin C is an early predictive biomarker of acute kidney injury after pediatric cardiopulmonary bypass. Clin J Am Soc Nephrol. 2010;5(9):1552–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Soto K, Coelho S, Rodrigues B, Martins H, Frade F, Lopes S, Cunha L, Papoila AL, Devarajan P. Cystatin C as a marker of acute kidney injury in the emergency department. Clin J Am Soc Nephrol. 2010;5(10):1745–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Nejat M, Pickering JW, Walker RJ, Endre ZH. Rapid detection of acute kidney injury by plasma cystatin C in the intensive care unit. Nephrol Dial Transplant. 2010;25(10):3283–9.

    Article  CAS  PubMed  Google Scholar 

  116. Zhang Z, Lu B, Sheng X, Jin N. Cystatin C in prediction of acute kidney injury: a systematic review and meta-analysis. Am J Kidney Dis. 2011;58(3):356–65.

    Article  CAS  PubMed  Google Scholar 

  117. Devarajan P. Neutrophil gelatinase-associated lipocalin: a promising biomarker for human acute kidney injury. Biomark Med. 2010;4:265–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Parikh CR, Devarajan P, Zappitelli M, et al. Postoperative biomarkers predict acute kidney injury and poor outcomes after pediatric cardiac surgery. J Am Soc Nephrol. 2011;22:1737–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Zappitelli M, Washburn KK, Arikan AA, et al. Urine NGAL is an early marker of acute kidney injury in critically ill children. Crit Care. 2007;11(4):R84.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Wheeler DS, Devarajan P, Ma Q, et al. Serum neutrophil gelatinase-associated lipocalin (NGAL) as a marker of acute kidney injury in critically ill children with septic shock. Crit Care Med. 2008;36(4):1297–303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Du Y, Zappitelli M, Mian A, et al. Urinary biomarkers to detect acute kidney injury in the pediatric emergency center. Pediatr Nephrol. 2011;26(2):267–74.

    Article  PubMed  Google Scholar 

  122. Haase M, Devarajan P, Haase-Fielitz A, et al. The outcome of neutrophil gelatinase-associated lipocalin-positive subclinical acute kidney injury: a multicenter pooled analysis of prospective studies. J Am Coll Cardiol. 2011;57:1752–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Haase-Fielitz A, Haase M, Devarajan P. Neutrophil gelatinase-associated lipocalin as a biomarker of acute kidney injury – a critical evaluation of current status. Ann Clin Biochem. 2014;51(Pt 3):335–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Nickolas TL, Schmidt-Ott KM, Canetta P, et al. Diagnostic and prognostic stratification in the emergency department using urinary biomarkers of nephron damage: a multicenter prospective cohort study. J Am Coll Cardiol. 2012;59:246–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Brienza N, Giglio MT, Marucci M, et al. Does perioperative hemodynamic optimization protect renal function in surgical patients? A meta-analytic study. Crit Care Med. 2009;37:2079–90.

    Article  PubMed  Google Scholar 

  126. Brierley J, Carcillo JA, Choong K, et al. Clinical practice parameters for hemodynamic support of pediatric and neonatal septic shock: 2007 update from the American College of Critical Care Medicine. Crit Care Med. 2009;37:666–88.

    Article  PubMed  PubMed Central  Google Scholar 

  127. Chawla LS, Davison DL, Brasha-Mitchell E, et al. Development and standardization of a furosemide stress test to predict the severity of acute kidney injury. Crit Care. 2013;17:R207.

    Article  PubMed  PubMed Central  Google Scholar 

  128. Lauschke A, Teichgraber UK, Frei U, et al. ‘Low-dose’ dopamine worsens renal perfusion in patients with acute renal failure. Kidney Int. 2006;69:1669–74.

    Article  CAS  PubMed  Google Scholar 

  129. Landoni G, Biondi-Zoccai GG, Tumlin JA, et al. Beneficial impact of fenoldopam in critically ill patients with or at risk for acute renal failure: a meta-analysis of randomized clinical trials. Am J Kidney Dis. 2007;49:56–68.

    Article  CAS  PubMed  Google Scholar 

  130. Ricci Z, Luciano R, Favia I, et al. High-dose fenoldopam reduces postoperative neutrophil gelatinase-associated lipocaline and cystatin C levels in pediatric cardiac surgery. Crit Care. 2011;15:R160.

    Article  PubMed  PubMed Central  Google Scholar 

  131. Gottlieb SS, Stebbins A, Voors AA, et al. Effects of nesiritide and predictors of urine output in acute decompensated heart failure: results from ASCEND-HF (Acute Study of Clinical Effectiveness of Nesiritide and Decompensated Heart Failure). J Am Coll Cardiol. 2013;62:1177–83.

    Article  CAS  PubMed  Google Scholar 

  132. Yancy CW, Krum H, Massie BM, et al. Safety and efficacy of outpatient nesiritide in patients with advanced heart failure: results of the Second Follow-Up Serial Infusions of Nesiritide (FUSION II) trial. Circ Heart Fail. 2008;1:9–16.

    Article  CAS  PubMed  Google Scholar 

  133. Jefferies JL, Price JF, Denfield SW, et al. Safety and efficacy of nesiritide in pediatric heart failure. J Card Fail. 2007;13:541–8.

    Article  CAS  PubMed  Google Scholar 

  134. Brezolin N, Silva, Hallal A, Toporovski J, Fernandes V, Góes J, Carvalho FL. Prognosis for children with acute kidney injury in the intensive care unit. Pediatr Nephrol. 2009;24(3):537–44.

    Article  Google Scholar 

  135. Garg AX, Suri RS, Barrowman N, et al. Long-term renal prognosis of diarrhea-associated hemolytic uremic syndrome: a systematic review, meta-analysis, and meta-regression. JAMA. 2003;290:1360–70.

    Article  CAS  PubMed  Google Scholar 

  136. Abitbol CL, Bauer CR, Montane B, et al. Long-term follow-up of extremely low birth weight infants with neonatal renal failure. Pediatr Nephrol. 2003;18:887–93.

    Article  PubMed  Google Scholar 

  137. Askenazi DJ, Feig DI, Graham NM, et al. 3–5 year longitudinal follow-up of pediatric patients after acute renal failure. Kidney Int. 2006;69:184–9.

    Article  CAS  PubMed  Google Scholar 

  138. Mammen C, Al Abbas A, Skippen P, et al. Long-term risk of CKD in children surviving episodes of acute kidney injury in the intensive care unit: a prospective cohort study. Am J Kidney Dis. 2012;59:523–30.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prasad Devarajan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Devarajan, P. (2016). Acute Kidney Injury: Prevention and Diagnosis. In: Geary, D., Schaefer, F. (eds) Pediatric Kidney Disease. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-52972-0_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-52972-0_46

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-52970-6

  • Online ISBN: 978-3-662-52972-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics