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Abstract We develop the concept of pluri-Lagrangian structures for integrable hier-
archies. This is a continuous counterpart of the pluri-Lagrangian (or Lagrangianmul-
tiform) theory of integrable lattice systems.We derive the multi-time Euler Lagrange
equations in their full generality for hierarchies of two-dimensional systems, and con-
struct a pluri-Lagrangian formulation of the potential Korteweg-de Vries hierarchy.

1 Introduction

In this paper, our departure point are two developments which have taken place in
the field of discrete integrable systems in recent years.

• Firstly, multi-dimensional consistency of lattice systems has been proposed as a
notion of integrability [8, 15]. In retrospect, this notion can be seen as a discrete
counterpart of the well-known fact that integrable systems never appear alone but
are organized into integrable hierarchies. Based on the notion ofmulti-dimensional
consistency, a classification of two-dimensional integrable lattice systems (the so
called ABS list) was given in [1]. Moreover, for all equations of the ABS list,
considered as equations on Z

2, a variational interpretation was found in [1].
• Secondly, the idea of themulti-dimensional consistencywas blendedwith the vari-
ational formulation in [13], where it was shown that solutions of anyABS equation
on any quad surfaceΣ inZN are critical points of a certain action functional

∫
Σ
L

obtained by integration of a suitable discrete Lagrangian two-formL . Moreover,
it was observed in [13] that the critical value of the action remains invariant under
local changes of the underlying quad-surface, or, in other words, that the 2-form
L is closed on solutions of quad-equations, and it was suggested to consider this
as a defining feature of integrability. However, later research [10] revealed that
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L is closed not only on solutions of (non-variational) quad-equations, but also
on general solutions of the corresponding Euler-Lagrange equations. Therefore, at
least for discrete systems, the closedness condition is implicitly contained in the
variational formulation.

Ageneral theory ofmulti-timeone-dimensionalLagrangian systems, both discrete
and continuous, has been developed in [20]. A first attempt to formulate the theory for
continuous two-dimensional systems was made in [21]. For such systems, a solution
is a critical point of the action functional

∫
S L on any two-dimensional surface S in

R
N , whereL is a suitable differential two-form. The treatment in [21] was restricted

to second order Lagrangians, i.e. to two-formsL that only depend on the second jet
bundle. In the present work we will extend this to Lagrangians of any order.

As argued in [10], the unconventional idea to consider the action on arbitrary
two-dimensional surfaces in the multi-dimensional space of independent variables
has significant precursors. These include:

• Theory of pluriharmonic functions and, more generally, of pluriharmonic maps
[11, 17, 19]. By definition, a pluriharmonic function of several complex variables
f : CN → R minimizes the Dirichlet functional EΓ = ∫

Γ
|( f ◦ Γ )z|2dz ∧ dz̄

along any holomorphic curve in its domain Γ : C → C
N . Differential equations

governing pluriharmonic functions,

∂2 f

∂zi∂ z̄ j
= 0 for all i, j = 1, . . . , N ,

are heavily overdetermined. Therefore it is not surprising that pluriharmonic func-
tions (and maps) belong to the theory of integrable systems.
This motivates the term pluri-Lagrangian systems, which was proposed in [9, 10].

• Baxter’s Z-invariance of solvable models of statistical mechanics [3, 4]. This
concept is based on invariance of the partition functions of solvable models under
elementary local transformations of the underlying planar graphs. It is well known
(see, e.g., [7]) that one can identify planar graphs underlying these models with
quad-surfaces in Z

N . On the other hand, the classical mechanical analogue of
the partition function is the action functional. This suggests the relation of Z-
invariance to the concept of closedness of the Lagrangian 2-form, at least at the
heuristic level. This relation has been made mathematically precise for a number
of models, through the quasiclassical limit [5, 6].

• The classical notion of variational symmetry, going back to the seminal work of
E. Noether [16], has been shown to be directly related to the closedness of the
Lagrangian form in the multi-time [21].

The main goal of this paper is two-fold: to derive the Euler Lagrange equations
for two-dimensional pluri-Lagrangian problems of arbitrary order, and to state the
(potential) KdV hierarchy as a pluri-Lagrangian system. We will also discuss the
closedness of the Lagrangian two-form, which turns out to be related to the Hamil-
tonian theory of integrable hierarchies.
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Note that the influential monograph [12], according to the foreword, is “about
hierarchies of integrable equations rather than about individual equations”. However,
its Lagrangian part (Chaps. 19, 20) only deals with individual equations. The reason
for this is apparently the absence of the concept of pluri-Lagrangian systems.Wehope
that this paper opens up the way for a variational approach to integrable hierarchies.

2 Pluri-Lagrangian Systems

2.1 Definition

We place our discussion in the formalism of the variational bicomplex as presented
in [12, Chap. 19] (and summarized, for the reader’s convenience, in Appendix A).
Slightly different versions of this theory can be found in [18] and in [2].

Consider a vector bundle X : RN → R and its nth jet bundle J n X . Let L ∈
A (0,d)(J n X) be a smooth horizontal d-form. In other words, L is a d-form on R

N

whose coefficients depend on a function u : RN → R and its partial derivatives up
to order n. We call RN the multi-time, u the field, and L the Lagrangian d-form.
We will use coordinates (t1, . . . , tN ) on R

N . Recall that in the standard calculus of
variations the Lagrangian is a volume form, so that d = N .

Definition 2.1 We say that the field u solves the pluri-Lagrangian problem forL if
u is a critical point of the action

∫
S L simultaneously for all d-dimensional surfaces

S in R
N . The equations describing this condition are called the multi-time Euler-

Lagrange equations. We say that they form a pluri-Lagrangian system and that L
is a pluri-Lagrangian structure for these equations.

To discuss critical points of a pluri-Lagrangian problem, consider the vertical
derivative δL of the (0,d)-form L in the variational bicomplex, and a variation
V . Note that we consider variations V as vertical vector fields; such a restriction is
justified by our interest, in the present paper, in autonomous systems only. Besides,
in the context of discrete systems only vertical vector fields seem to possess a natural
analogs. The criticality condition of the action, δ

∫
S L = 0, is described by the

equation ∫

S
ιprV δL = 0, (1)

which has to be satisfied for any variation V on S that vanishes at the boundary
∂S. Recall that pr V is the nth jet prolongation of the vertical vector field V , and
that ι stands for the contraction. One fundamental property of critical points can be
established right from the outset.

Proposition 2.2 The exterior derivative dL of the Lagrangian is constant on crit-
ical points u.
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Proof Consider a critical point u and a small (d + 1)-dimensional ball B. Because
S := ∂ B has no boundary, Eq. (1) is satisfied for any variation V . Using Stokes’
theorem and the properties that δd + dδ = 0 and ιprV d + d ιprV = 0 (Propositions
A.1 and A.4 in Appendix A), we find that

0 =
∫

∂ B
ιprV δL =

∫

B
d(ιprV δL ) = −

∫

B
ιprV d(δL ) =

∫

B
ιprV δ(dL ).

Since this holds for any ball B it follows that ιprV δ(dL ) = 0 for any variation V
of a critical point u. Therefore, δ(dL ) = 0, so that dL is constant on critical points
u. Note that here we silently assume that the space of critical points is connected. It
would be difficult to justify this property in any generality, but it is usually clear in
applications, where the critical points are solutions of certain well-posed systems of
partial differential equations. ��

Wewill take a closer look at the property dL = const in Sect. 6, when we discuss
the link with Hamiltonian theory. It will be shown that vanishing of this constant,
i.e., closedness of L on critical points, is related to integrability of the multi-time
Euler-Lagrange equations.

2.2 Approximation by Stepped Surfaces

For computations, we will use the multi-index notation for partial derivatives. For
any multi-index I = (i1, . . . , iN ) we set

uI = ∂ |I |u
(∂t1)i1 . . . (∂tN )iN

,

where |I | = i1 + . . . + iN . The notations I k and I kα will represent the multi-indices
(i1, . . . , ik + 1, . . . iN ) and (i1, . . . , ik + α, . . . iN ) respectively.When convenientwe
will also use the notations I tk and I tα

k for these multi-indices. We will write k /∈ I
if ik = 0 and k ∈ I if ik > 0. We will denote by Di or Dti the total derivative with
respect to coordinate direction ti ,

Di := Dti :=
∑

I

u I i
∂

∂uI

and by DI := Di1
t1 . . .DiN

tN
the corresponding higher order derivatives.

Our main general result is the derivation of the multi-time Euler-Lagrange equa-
tions for two-dimensional surfaces (d = 2). That will allow us to study the KdV
hierarchy as a pluri-Lagrangian system. However, it is instructive to first derive the
multi-time Euler-Lagrange equations for curves (d = 1).
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The key technical result used to derive multi-time Euler-Lagrange equations is
the observation that it suffices to consider a very specific type of surface.

Definition 2.3 A stepped d-surface is a d-surface that is a finite union of coordinate
d-surfaces. A coordinate d-surface of the direction (i1, . . . , id) is a d-surface lying
in an affine d-plane {(t1, . . . , tN ) | t j = c j for j �= i1, . . . , id}.
Lemma 2.4 If the action is stationary on any stepped surface, then it is stationary
on any smooth surface.

The proof of this Lemma can be found in appendix B.

2.3 Multi-time Euler-Lagrange Equations for Curves

Theorem 2.5 Consider a Lagrangian 1-form L = ∑N
i=1 Li dti . The multi-time

Euler-Lagrange equations for curves are:

δi Li

δuI
= 0 ∀I �
 i, (2)

δi Li

δuI i
= δ j L j

δuI j
∀I, (3)

where i and j are distinct, and the following notation is used for the variational
derivative corresponding to the coordinate direction i:

δi Li

δuI
=

∑

α≥0

(−1)α Dα
i

∂Li

∂uI iα

= ∂Li

∂uI
− Di

∂Li

∂uI i
+ D2

i

∂Li

∂uI i2
− . . . .

Remark 2.6 In the special case that L only depends on the first jet bundle, system
(2)–(3) reduces to the equations found in [20]:

δi Li

δu
= 0 ⇔ ∂Li

∂u
− Di

∂Li

∂ui
= 0,

δi Li

δu j
= 0 ⇔ ∂Li

∂u j
= 0 for i �= j,

δi Li

δui
= δ j L j

δu j
⇔ ∂Li

∂ui
= ∂L j

∂u j
for i �= j.

Proof (of Theorem 2.5) According to Lemma 2.4, it is sufficient to look at a general
L-shaped curve S = Si ∪ Sj , where Si is a line segment of the coordinate direction
i and Sj is a line segment of the coordinate direction j . Denote the cusp by p :=
Si ∩ Sj . We orient the curve such that Si induces the positive orientation on the
point p and Sj the negative orientation. There are four cases, depending on how
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ti

tj

Si

Sj

p

(+1,+1)
ti

tj

Si

Sj

p

(+1,−1)
ti

tj

Si

Sj

p

(−1,+1)
ti

tj

Si

Sj

p

(−1,−1)

Fig. 1 The four L-shaped curves with their values of (εi , ε j )

the L-shape is rotated. They are depicted in Fig. 1. To each case we associate a pair
(εi , ε j ) ∈ {−1,+1}2, where the positive value is taken if the respective piece of curve
is oriented in the coordinate direction, and negative if it is oriented opposite to the
coordinate direction.

The variation of the action is
∫

S
ιprV δL = εi

∫

Si

(ιprV δLi ) dti + ε j

∫

Sj

(ιprV δL j ) dt j

= εi

∫

Si

∑

I

∂Li

∂uI
δuI (V ) dti + ε j

∫

Sj

∑

I

∂L j

∂uI
δuI (V ) dt j .

Note that these sums are actually finite. Indeed, since L depends on the nth jet
bundle all terms with |I | := i1 + . . . + iN > n vanish.

Now we expand the sum in the first of the integrals and perform integration by
parts.

εi

∫

Si

(ιpr V δLi ) dti

= εi

∫

Si

∑

I �
i

(
∂Li

∂uI
δuI (V ) + ∂Li

∂uI i
δuI i (V ) + ∂Li

∂uI i2
δuI i2 (V ) + . . .

)

dti

= εi

∫

Si

∑

I �
i

(
∂Li

∂uI
− Di

∂Li

∂uI i
+ D2

i
∂Li

∂uI i2
− D3

i
∂Li

∂uI i3
+ . . .

)

δuI (V ) dti

+
∑

I �
i

(
∂Li

∂uI i
δuI (V ) + ∂Li

∂uI i2
δuI i (V ) − Di

∂Li

∂uI i2
δuI (V )

+ ∂Li

∂uI i3
δuI i2 (V ) − Di

∂Li

∂uI i3
(V )δuI i (V ) + D2

i
∂Li

∂uI i3
δuI (V ) + . . .

)∣
∣
∣
∣

p
.

Using the language of variational derivatives, this reads

εi

∫

Si

(ιprV δLi ) dti = εi

∫

Si

∑

I �
i

δi Li

δuI
δuI (V ) dti
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+
∑

I �
i

(
δi Li

δuI i
δuI (V ) + δi Li

δuI i2
δuI i (V ) + . . .

)∣
∣
∣
∣

p

= εi

∫

Si

∑

I �
i

δi Li

δuI
δuI (V ) dti +

∑

I

(
δi Li

δuI i
δuI (V )

)∣
∣
∣
∣

p

.

The other piece, Sj , contributes

ε j

∫

Sj

ιprV δL j dt j = ε j

∫

Sj

∑

I �
 j

δ j L j

δuI
δuI (V ) dt j −

∑

I

(
δ j L j

δuI j
δuI (V )

)∣
∣
∣
∣

p

,

where the minus sign comes from the fact that Sj induces negative orientation on the
point p. Summing the two contributions, we find

∫

S
ιprV δL = εi

∫

Si

∑

I �
i

δi Li

δuI
δuI (V ) dti + ε j

∫

Sj

∑

I �
 j

δ j L j

δuI
δuI (V ) dt j

+
∑

I

(
δi Li

δuI i
δuI (V ) − δ j L j

δuI j
δuI (V )

)∣
∣
∣
∣

p

. (4)

Now require that the variation (4) of the action is zero for any variation V . If we
consider variations that vanish on Sj , then we find for every multi-index I which
does not contain i that

δi Li

δuI
= 0.

Given this equation, and its analogue for the index j , only the last term remains in
the right hand side of Eq. (4). Considering variations around the cusp p we find for
every multi-index I that

δi Li

δuI i
= δ j L j

δuI j
.

It is clear these equations combined are also sufficient for the action to be critical. ��

2.4 Multi-time Euler-Lagrange Equations
for Two-Dimensional Surfaces

The two-dimensional case (d = 2) coversmanyknown integrable hierarchies, includ-
ing the potential KdV hierarchy which we will discuss in detail later on. We consider
a Lagrangian two-formL = ∑

i< j Li j dti ∧ dt j and we will use the notational con-
vention L ji = −Li j .
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Theorem 2.7 The multi-time Euler-Lagrange equations for two-dimensional sur-
faces are

δi j Li j

δuI
= 0, ∀I �
 i, j, (5)

δi j Li j

δuI j
= δik Lik

δuI k
∀I �
 i, (6)

δi j Li j

δuI i j
+ δ jk L jk

δuI jk
+ δki Lki

δuI ki
= 0 ∀I, (7)

where i , j and k are distinct, and the following notation is used for the variational
derivative corresponding to the coordinate directions i, j :

δi j Li j

δuI
:=

∑

α,β≥0

(−1)α+β Dα
i D

β

j

∂Li j

∂uI iα jβ

.

Remark 2.8 In the special case that L only depends on the second jet bundle, this
system reduces to the equations stated in [21].

Before proceeding with the proof of Theorem 2.7, we introduce some terminol-
ogy and prove a lemma. A two-dimensional stepped surface consisting of q flat
pieces intersecting at some point p is called a q-flower around p, the flat pieces are
called its petals. If the action is stationary on every q-flower, it is stationary on any
stepped surface. By Lemma 2.4 the action will then be stationary on any surface.
The following Lemma shows that it is sufficient to consider 3-flowers.

Lemma 2.9 If the action is stationary on every 3-flower, then it is stationary on
every q-flower for any q > 3.

Proof Let F be a q-flower. Denote its petals corresponding to coordinate directions
(ti1, ti2), (ti2 , ti3), . . . , (tiq , ti1) by S12, S23, . . . , Sq1 respectively. Consider the 3-flower
F123 = S12 ∪ S23 ∪ S31, where S31 is a petal in the coordinate direction (ti3 , ti1) such
that F123 is a flower around the same point as F. Similarly, define F134, . . . , F1 q−1 q .
Then (for any integrand)

∫

F123

+
∫

F134

+ . . . +
∫

F1 q−1 q

=
∫

S12

+
∫

S23

+
∫

S31

+
∫

S13

+
∫

S34

+
∫

S41

+ . . . +
∫

S1 q−1

+
∫

Sq−1 q

+
∫

Sq1

.

Here, S21, S32, …are the petals S12, S23, …but with opposite orientation (see Fig. 2).
Therefore all terms where the index of S contains 1 cancel, except for the first and
last, leaving

∫

F123

+ . . . +
∫

F1 q−1 q

=
∫

S12

+
∫

S23

+
∫

S34

+ . . . +
∫

Sq−1 q

+
∫

Sq1

=
∫

F
.
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Fig. 2 Two 3-flowers
composed to form a 4-flower.
The common petal does not
contribute to the integral
because it occurs twice with
opposite orientation

ti

tj

tk

tl

By assumption the action is stationary on every 3-flower, so

∫

F
ιprV δL =

∫

F123

ιprV δL + . . . +
∫

F1 q−1 q

ιprV δL = 0.

��

Proof (of Theorem 2.7) Consider a 3-flower S = Si j ∪ Sjk ∪ Ski around the point
p = Si j ∩ Sjk ∩ Ski . Denote its interior edges by

∂Si := Si j ∩ Ski , ∂Sj := Sjk ∩ Si j , ∂Sk := Ski ∩ Sjk .

On ∂Si , ∂Sj and ∂Sk we choose the orientations that induce negative orientation
on p. We consider the case where these orientations correspond to the coordinate
directions, as in Fig. 3. The caseswhere one ormore of these orientations are opposite
to the corresponding coordinate direction (see Fig. 4) can be treated analogously and
yield the same result.

Fig. 3 A 3-flower. Different
petals induce the opposite
orientation on the common
boundary

∂Si

∂Sj

∂Sk

p
ti

tj

tk

Sij

Sjk

Ski
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ti

tj

tk

ti

tj

tk ti

tj

tk

Fig. 4 Three of the other 3-flowers. The orientations of the interior edges do not all correspond to
the coordinate direction

We choose the orientation on the petals in such a way that the orientations of ∂Si ,
∂Sj and ∂Sk are induced by Si j , Sjk and Ski respectively. Then the orientations of
∂Si , ∂Sj and ∂Sk are the opposite of those induced by Ski , Si j and Sjk respectively
(see Fig. 3).

We will calculate
∫

S
ιprV δL =

∫

Si j

ιprV δL +
∫

Sjk

ιprV δL +
∫

Ski

ιprV δL (8)

and require it to be zero for any variation V which vanishes on the (outer) boundary
of S. This will give us the multi-time Euler-Lagrange equations.

For the first term of Eq. (8) we find

∫

Si j

ιprV δL =
∫

Si j

∑

I

∂Li j

∂uI
δuI (V ) dti ∧ dt j

=
∫

Si j

∑

I �
i, j

∑

λ,μ≥0

∂Li j

∂uI iλ jμ

δuI iλ jμ(V ) dti ∧ dt j .

First we perform integration by parts with respect to ti as many times as possible.

∫

Si j

ιprV δL =
∫

Si j

∑

I �
i, j

∑

λ,μ≥0

(−1)λ Dλ
i

∂Li j

∂uI iλ jμ

δuI jμ(V ) dti ∧ dt j

−
∫

∂Sj

∑

I �
i, j

∑

λ,μ≥0

λ−1∑

π=0

(−1)π Dπ
i

∂Li j

∂uI iλ jμ

δuI iλ−π−1 jμ(V ) dt j .

Next integrate by parts with respect to t j as many times as possible.

∫

Si j

ιprV δL =
∫

Si j

∑

I �
i, j

∑

λ,μ≥0

(−1)λ+μ Dλ
i D

μ

j

∂Li j

∂uI iλ jμ

δuI (V ) dti ∧ dt j (9)
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−
∫

∂Sj

∑

I �
i, j

∑

λ,μ≥0

λ−1∑

π=0

(−1)π Dπ
i

∂Li j

∂uI iλ jμ

δuI iλ−π−1 jμ(V ) dt j (10)

−
∫

∂Si

∑

I �
i, j

∑

λ,μ≥0

μ−1∑

ρ=0

(−1)λ+ρ Dλ
i D

ρ

j

∂Li j

∂uI iλ jμ

δuI jμ−ρ−1(V ) dti . (11)

The signs of (10) and (11) are due to the choice of orientations (see Fig. 3). We can
rewrite the integral (9) as

∫

Si j

∑

I �
i, j

δi j Li j

δuI
δuI (V ) dti ∧ dt j .

The last integral (11) takes a similar form ifwe replace the indexμbyβ = μ − ρ − 1.

−
∫

∂Si

∑

I �
i, j

∑

λ,μ≥0

μ−1∑

ρ=0

(−1)λ+ρ Dλ
i D

ρ

j

∂Li j

∂uI iλ jμ

δuI jμ−ρ−1(V ) dti

= −
∫

∂Si

∑

I �
i, j

∑

β,λ,ρ≥0

(−1)λ+ρ Dλ
i D

ρ

j

∂Li j

∂uI iλ jβ+ρ+1
δuI jβ (V ) dti

= −
∫

∂Si

∑

I �
i, j

∑

β≥0

δi j Li j

δuI jβ+1
δuI jβ (V ) dti .

To write the other boundary integral (10) in this form we first perform integration by
parts.

−
∫

∂Sj

∑

I �
i, j

∑

λ,μ≥0

λ−1∑

π=0

(−1)π Dπ
i

∂Li j

∂uI iλ jμ

δuI iλ−π−1 jμ(V ) dt j

= −
∫

∂Sj

∑

I �
i, j

∑

λ,μ≥0

λ−1∑

π=0

(−1)π+μ Dπ
i Dμ

j

∂Li j

∂uI iλ jμ

δuI iλ−π−1(V ) dt j

+
∑

I �
i, j

∑

λ,μ≥0

λ−1∑

π=0

μ−1∑

ρ=0

(−1)π+ρ

(

Dπ
i Dρ

j

∂Li j

∂uI iλ jμ

δuI iλ−π−1 jμ−ρ−1(V )

)∣
∣
∣
∣

p

.

Then we replace λ by α = λ − π − 1 and in the last term μ by β = μ − ρ − 1.

−
∫

∂Sj

∑

I �
i, j

∑

λ,≥0

λ−1∑

π=0

(−1)π Dπ
i

∂Li j

∂uI iλ jμ

δuI iλ−π−1 jμ(V ) dt j

= −
∫

∂Sj

∑

I �
i, j

∑

α,μ,π≥0

(−1)π+μ Dπ
i Dμ

j

∂Li j

∂uI iα+π+1 jμ

δuI iα (V ) dt j
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+
∑

I �
i, j

∑

α,β,π,ρ≥0

(

(−1)π+ρ Dπ
i Dρ

j

∂Li j

∂uI iα+π+1 jβ+ρ+1
δuI iα jβ (V )

)∣
∣
∣
∣

p

= −
∫

∂Sj

∑

I �
i, j

∑

α≥0

δi j Li j

δuI iα+1
δuI iα (V ) dt j +

∑

I �
i, j

∑

α,β≥0

(
δi j Li j

δuI iα+1 jβ+1
δuI iα jβ (V )

)∣
∣
∣
∣

p

.

Putting everything together we find

∫

Si j

ιprV δL =
∫

Si j

∑

I �
i, j

δi j Li j

δuI
δuI (V ) dti ∧ dt j −

∫

∂Si

∑

I �
i

δi j Li j

δuI j
δuI (V )dti

−
∫

∂Sj

∑

I �
 j

δi j Li j

δuI i
δuI (V ) dt j +

( ∑

I

δi j Li j

δuI i j
δuI (V )

)∣
∣
∣
∣

p

.

Expressions for the integrals over Sjk and Ski are found by cyclic permutation of the
indices. Finally we obtain

∫

S
ιprV δL =

∫

Si j

∑

I �
i, j

δi j Li j

δuI
δuI (V ) dti ∧ dt j

−
∫

∂Si

( ∑

I �
i

δi j Li j

δuI j
δuI (V ) +

∑

I �
i

δki Lki

δuI k
δuI (V )

)

dti

+
∑

I

(
δi j Li j

δuI i j
δuI (V )

)∣
∣
∣
∣

p

+ cyclic permutations in i, j, k.

(12)

From this we can read off the multi-time Euler-Lagrange equations. ��

3 Pluri-Lagrangian Structure of the Sine-Gordon Equation

We borrow our first example of a pluri-Lagrangian system from [21].
The Sine-Gordon equation uxy = sin u is the Euler-Lagrange equation for

L = 1

2
ux uy − cos u.

Consider the vector field ϕ ∂
∂u with

ϕ = uxxx + 1

2
u3

x
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and its prolongation Dϕ := ∑
I ϕI

∂
∂uI

. It is known that Dϕ is a variational symmetry
for the sine-Gordon equation [18, p. 336]. In particular, we have that

Dϕ L = Dx N + Dy M (13)

with

M = 1

2
ϕux − 1

8
u4

x + 1

2
u2

xx ,

N = 1

2
ϕuy − 1

2
u2

x cos u − uxx (uxy − sin u).

Now we introduce a new independent variable z corresponding to the “flow”
of the generalized vector field Dϕ , i.e. uz = ϕ. Consider simultaneous solutions of
the Euler-Lagrange equation δL

δu = 0 and of the flow uz = ϕ as functions of three
independent variables x, y, z. Then Eq. (13) expresses the closedness of the two-form

L = L dx ∧ dy − M dz ∧ dx − N dy ∧ dz.

The fact that dL = 0 on solutions is consistent with Proposition 2.2. HenceL is a
reasonable candidate for a Lagrangian two-form.

Theorem 3.1 The multi-time Euler-Lagrange equations for the Lagrangian two-
form

L = L12 dx ∧ dy + L13 dx ∧ dz + L23 dy ∧ dz

with the components

L12 = 1

2
ux uy − cos u, (14)

L13 = 1

2
ux uz − 1

8
u4

x + 1

2
u2

xx , (15)

L23 = −1

2
uyuz + 1

2
u2

x cos u + uxx (uxy − sin u), (16)

consist of the sine-Gordon equation

uxy = sin u,

the modified KdV equation

uz = uxxx + 1

2
u3

x ,

and corollaries thereof. On solutions of either of these equations the two-form L is
closed.
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Proof Let us calculate the multi-time Euler-Lagrange Eqs. (5)–(7) one by one:

• The equation
δ12L12

δu
= 0 yields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .uxy = sin u.

For any α > 0 the equation
δ12L12

δuzα

= 0 yields 0 = 0.

• The equation
δ13L13

δu
= 0 yields . . . . . . . . . . . . . . . . . . . . . . . . . . . . .uxz = 3

2u2
x uxx + uxxxx .

For any α > 0 the equation
δ13L13

δuyα

= 0 yields 0 = 0.

• The equation
δ23L23

δu
= 0 yields . . . . . . . . . . . . . . . . . . . . . . uyz = 1

2u2
x sin u + uxx cos u.

The equation
δ23L23

δux
= 0 yields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . uyxx = ux cos u.

The equation
δ23L23

δuxx
= 0 yields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .uxy = sin u.

For any α > 2, the equation
δ23L23

δuxα

= 0 yields 0 = 0.

• The equation
δ13L13

δux
= δ23L23

δuy
yields . . . . . . . . . . . . . . . . . . . . . . . . . . . .uz = uxxx + 1

2u3
x .

The equation
δ13L13

δuxx
= δ23L23

δuxy
yields uxx = uxx .

For any other I the equation
δ13L13

δuI x
= δ23L23

δuI y
yields 0 = 0.

• The equation
δ12L12

δuy
= δ13L13

δuz
yields 1

2ux = 1
2ux .

For any nonempty I , the equation
δ12L12

δuI y
= δ13L13

δuI z
yields 0 = 0.

• The equation
δ12L12

δux
= δ23L32

δuz
yields 1

2uy = 1
2uy .

For any nonempty I , the equation
δ12L12

δuI x
= δ23L32

δuI z
yields 0 = 0.

• For any I the equation
δ12L12

δuI xy
+ δ23L23

δuI yz
+ δ13L31

δuI zx
= 0 yields 0 = 0.

It remains to notice that all nontrivial equations in this list are corollaries of the
equations uxy = sin u and uz = uxxx + 1

2u3
x , derived by differentiation.

The closedness of L can be verified by direct calculation:

Dz L12 − Dy L13 + Dx L23 = 1

2
(uyzux + uxzuy) + uz sin u

− 1

2
uyzux − 1

2
uzuxy + 1

2
u3

x uxy − uxx uxxy
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− 1

2
uxzuy − 1

2
uzuxy + ux uxx cos u − 1

2
u3

x sin u

+ uxxx (uxy − sin u) + uxx (uxxy − ux cos u)

= −
(

uz − 1

2
u3

x − uxxx

)

(uxy − sin u).

��
Remark 3.2 The Sine-Gordon equation and the modified KdV equation are the sim-
plest equations of their respective hierarchies. Furthermore, those hierarchies can be
seen as the positive and negative parts of one single hierarchy that is infinite in both
directions [14, Sect. 3c and 5k]. It seems likely that this whole hierarchy possesses
a pluri-Lagrangian structure.

4 The KdV Hierarchy

Our second and themain example of a pluri-Lagrangian systemwill be the (potential)
KdV hierarchy. This section gives an overview of the relevant known facts about
KdV, mainly following Dickey [12, Sect. 3.7]. The next section will present its pluri-
Lagrangian structure.

One way to introduce the Korteweg-de Vries (KdV) hierarchy is to consider a
formal power series

R =
∞∑

k=0

rk z−2k−1,

with the coefficients rk = rk[u] being polynomials of u and its partial derivatives
with respect to x , satisfying the equation

Rxxx + 4u Rx + 2ux R − z2Rx = 0. (17)

Multiplying this equation by R and integrating with respect to x we find

R Rxx − 1

2
R2

x + 2

(

u − 1

4
z2

)

R2 = C(z), (18)

whereC(z) = ∑∞
k=0 ck z−2k is a formal power series in z−2, with coefficients ck being

constants. Different choices of C(z) correspond to different normalizations of the
KdV hierarchy. We take C(z) = 1

8 , i.e. c0 = 1
8 and ck = 0 for k > 0. The first few

coefficients of the power series R = r0z−1 + r1z−3 + r2z−5 + . . . are

r0 = 1

2
, r1 = u, r2 = uxx + 3u2, r3 = uxxxx + 10uuxx + 5u2

x + 10u3.

The Korteweg-de Vries hierarchy is defined as follows.
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Definition 4.1 • The KdV hierarchy is the family of equations

utk = (rk[u])x .

• Write gk[v] := rk[vx ]. The potential KdV (PKdV) hierarchy is the family of equa-
tions

vtk = gk[v].

• The differentiated potential KdV (DPKdV) hierarchy is the family of equations

vxtk = (gk[v])x .

The right-hand sides of first few PKdV equations are

g1 = vx , g2 = vxxx + 3v2x , g3 = vxxxxx + 10vx vxxx + 5v2xx + 10v3x .

Remark 4.2 The first KdV and PKdV equations, ut1 = ux , resp. vt1 = vx , allow us
to identify x with t1.

Proposition 4.3 The differential polynomials rk[u] satisfy

δrk

δu
= (4k − 2) rk−1,

where δ
δu is shorthand notation for δ1

δu .

A proof of this statement can be found in [12, 3.7.11–3.7.14].

Corollary 4.4 Set hk[v] := 1
4k+2gk+1[v], then the differential polynomials gk and hk

satisfy
δgk

δvx
= (4k − 2) gk−1 and

δhk

δvx
= gk .

Before we proceed, let us formulate a simple Lemma.

Lemma 4.5 For any multi-index I and for any differential polynomial f [v] we have:

Dx

(
δ f

δvI x

)

= ∂ f

∂vI
− δ f

δvI
.

Proof By direct calculation:

Dx

(
δ f

δvI x

)

= Dx

(
∂ f

∂vI x
− Dx

∂ f

∂vI x2
+ D2

x

∂ f

∂vI x3
− . . .

)
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= Dx
∂ f

∂vI x
− D2

x

∂ f

∂vI x2
+ D2

x

∂ f

∂vI x3
− . . . = ∂ f

∂vI
− δ f

δvI
.

��
We can now find Lagrangians for the the DPKdV equations.

Proposition 4.6 The DPKdV equations are Lagrangian, with the Lagrange func-
tions

Lk[v] = 1

2
vx vtk − hk[v].

Proof Since hk = 1
4k+2gk+1 does not depend on v directly, it follows from Lemma

4.5 and Corollary 4.4 that

δLk

δv
= −vtk x − δhk

δv
= −vtk x + Dx

δhk

δvx
= −vtk x + (gk)x .

��

5 Pluri-Lagrangian Structure of PKdV Hierarchy

Since the individual KdV and PKdV equations are evolutionary (not variational), it
seems not very plausible that they could have a pluri-Lagrangian structure. However,
it turns out that the PKdV hierarchy as a whole is pluri-Lagrangian. Let us stress that
this structure is only visible if one considers several PKdV equations simultaneously
and not individually. We consider a finite-dimensional multi-time RN parametrized
by t1, t2, . . . , tN supporting the first N flows of the PKdV hierarchy. Recall that the
first PKdV equation reads vt1 = vx , which allows us to identify t1 with x .

The formulation of the main result involves certain differential polynomials intro-
duced in the following statement.

Lemma 5.1 • There exist differential polynomials bi j [v] depending on v and vxα ,
α > 0, such that

Dx (gi )g j = Dx (bi j ). (19)

• These polynomials satisfy
bi j + b ji = gi g j . (20)

• The differential polynomials ai j [v] (depending on vxα and vxα t j , α ≥ 0) defined by

ai j := vt j

δ1hi

δvx
+ vxt j

δ1hi

δvxx
+ vxxt j

δ1hi

δvxxx
+ . . . (21)
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satisfy
D j (hi ) + Dx (gi )vt j = Dx (ai j ). (22)

Proof The existence of polynomials bi j is shown in [12, 3.7.9]. Since

Dx (bi j + b ji ) = Dx (gi )g j + gi Dx (g j ) = Dx (gi g j ),

and since neither bi j + b ji nor gi g j contain constant terms, Eq. (20) follows. The last
claim is a straightforward calculation using Lemma 4.5:

Dx (ai j ) = Dx

(

vt j

δ1hi

δvx
+ vxt j

δ1hi

δvxx
+ vxxt j

δ1hi

δvxxx
+ . . .

)

= vxt j

δ1hi

δvx
+ vxxt j

δ1hi

δvxx
+ vxxxt j

δ1hi

δvxxx
+ . . .

+ vt j Dx

(
δ1hi

δvx

)

+ vxt j Dx

(
δ1hi

δvxx

)

+ vxxt j Dx

(
δ1hi

δvxxx

)

+ . . .

= vxt j

δ1hi

δvx
+ vxxt j

δ1hi

δvxx
+ vxxxt j

δ1hi

δvxxx
+ . . .

− vt j

δ1hi

δv
+ vt j

∂hi

∂v
− vxt j

δ1hi

δvx
+ vxt j

∂hi

∂vx
− vxxt j

δ1hi

δvxx
+ vxxt j

∂hi

∂vxx
− . . .

= D j hi − vt j

δ1hi

δv
= D j hi + Dx (gi )vt j .

��
Now we are in a position to give a pluri-Lagrangian formulation of the PKdV

hierarchy.

Theorem 5.2 The multi-time Euler-Lagrange equations for the Lagrangian two-
form L = ∑

i< j Li j dti ∧ dt j , with coefficients given by

L1i := Li = 1

2
vx vti − hi (23)

and

Li j := 1

2
(vti g j − vt j gi ) + (ai j − a ji ) − 1

2
(bi j − b ji ) for j > i > 1 (24)

are the first N − 1 nontrivial PKdV equations

vt2 = g2, vt3 = g3, . . . vtN = gN ,

and equations that follow from these by differentiation.
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5.1 Variational Symmetries and the Pluri-Lagrangian Form

Before proving Theorem 5.2, let us give an heuristic derivation of expression (24) for
Li j . The ansatz is that different flows of the PKdV hierarchy should be variational
symmetries of each other. (We are grateful to V. Adler who proposed this derivation
to us in a private communication.)

Fix two distinct integers i, j ∈ {2, 3, . . . , N }. Consider the the i th DPKdV equa-
tion, which is nothing but the conventional two-dimensional variational system gen-
erated in the (x, ti )-plane by the Lagrange function

L1i [v] = 1

2
vx vti − hi [v].

Consider the evolutionary equation vt j = g j [v], i.e., the j th PKdV equation, and the
corresponding generalized vector field

Dg j :=
∑

I �
 j

(DI g j )
∂

∂vI
.

We want to show that Dg j is a variational symmetry of L1i . For this end, we look for
Li j such that

Dg j (L1i ) − Di

(
L

(g j )

1 j

)
+ Dx (Li j ) = 0. (25)

Here, L
(g j )

1 j is the Lagrangian defined by (23) but with vt j replaced by g j :

L
(g j )

1 j := 1

2
vx g j − h j .

We have:

Di

(
L

(g j )

1 j

)
= 1

2
vti x g j + 1

2
vx (g j )ti − Di (h j ),

Dg j (L1i ) = 1

2
(g j )x vti + 1

2
vx (g j )ti − Dg j (hi ).

Upon using (22) and (19), and introducing the polynomial

a
(g j )

i j := g j
δ1hi

δvx
+ (g j )x

δ1hi

δvxx
+ (g j )xx

δ1hi

δvxxx
+ . . .

obtained from ai j through the replacement of vt j by g j , we find:

Di

(
L

(g j )

1 j

)
− Dg j (L1i ) = 1

2
vti x g j − 1

2
(g j )x vti − Di (h j ) + Dg j (hi )
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= 1

2
vti x g j − 1

2
(g j )x vti − (a ji )x + (g j )x vti +

(
a

(g j )

i j

)

x
− (gi )x g j

= 1

2
vti x g j + 1

2
(g j )x vti −

(
a ji − a

(g j )

i j

)

x
− (gi )x g j

= 1

2
(vti g j )x +

(
a

(g j )

i j − a ji

)

x
− (bi j )x .

We denote the antiderivative with respect to x of this quantity by

L(i)
i j := 1

2
vti g j +

(
a

(g j )

i j − a ji

)
− bi j .

The analogous calculation with coordinates x and t j yields

Dgi (L1 j ) − D j

(
L(gi )

1i

)
= −1

2
(vt j gi )x +

(
ai j − a(gi )

j i

)

x
+ (b ji )x .

We denote its antiderivative by

L( j)
i j := −1

2
vt j gi +

(
ai j − a(gi )

j i

)
+ b ji .

Now we look for a differential polynomial Li j [v] depending on the partial deriv-
atives of v with respect to x , ti and t j that reduces to L(i)

i j and to L( j)
i j after the substi-

tutions vt j = g j and vti = gi , respectively. It turns out that there is a one-parameter
family of such functions, given by

Li j = cvti vt j + (ai j − a ji ) +
(
1

2
− c

)

vti g j −
(
1

2
+ c

)

vt j gi + 1

2
(b ji − bi j ) + cgi g j

for c ∈ R. Checking this is a straightforward calculation using Eq. (20). Our theory
does not depend in any essential way on the choice of Li j within this family. For
aesthetic reasons we chose c = 0, which gives us Eq. (24).

Remark 5.3 We could also take L to be the c-linear part of the form we have just
obtained, i.e. L = ∑

1<i< j (vti − gi )(vt j − g j ) dti ∧ dt j . One can think of this as
choosing c = ∞. Such a two-form L can be considered for any family of evolu-
tionary equations vti = gi [v]. However, due to the vanishing components L1i , this
form L has no relation to the classical variational formulation of the individual
differential equations vxti = (gi )x .

Eventually, Eq. (25) leads to the following closedness property.

Proposition 5.4 The two-form L = ∑
i< j Li j dti ∧ dt j , with coefficients given by

(23) and (24), is closed as soon as v solves all but one of the PKdV equations
vt2 = g2, . . . , vtN = gN .



On the Lagrangian Structure of Integrable Hierarchies 367

Proof We use the notation

dL =
∑

i< j<k

Mi jk dti ∧ dt j ∧ dtk, Mi jk = Dk Li j − D j Lik + Di L jk (26)

We start by showing that M1 jk = Dk L1 j − D j L1k + Dx L jk vanishes as soon as
either vt j = g j or vtk = gk is satisfied. Indeed, we have:

M1 jk = Dk L1 j − D j L1k + Dx L jk

= 1

2
vt j tk vx + 1

2
vt j vxtk − Dk h j − 1

2
vt j tk vx − 1

2
vtk vxt j + D j hk

+ 1

2

(
vxt j gk + vt j Dx gk − vxtk g j − vtk Dx g j

)

+ Dk h j + vtk Dx g j − D j hk − vt j Dx gk − 1

2
(gk Dx g j − g j Dx gk)

= 1

2

(
vt j vxtk − vtk vxt j + vxt j gk − vt j Dx gk

− vxtk g j + vtk Dx g j − gk Dx g j + g j Dx gk

)

= 1

2

(
vt j − g j

)
Dx

(
vtk − gk

) − 1

2

(
vtk − gk

)
Dx

(
vt j − g j

)
. (27)

For the case i, j, k > 1, we assume without loss of generality that vti = gi and vt j =
g j are satisfied. We do not assume that vtk = gk holds, and correspondingly we do
not make any identification involving vtk , vxtk , …. Using Eq. (27), we find:

Dx Mi jk = Dx
(
Dk Li j − D j Lik + Di L jk

)

= Dk
(
Di L1 j − D j L1i

) − D j

(
Di L1k − Dk L1i

)
+ Di

(
D j L1k − Dk L1 j

)

= 0.

Since these polynomials do not contain constant terms, it follows that

Dk Li j − D j Lik + Di L jk = 0.

��
Remark 5.5 Assuming that the statement of Theorem 5.2 holds true, one can easily
prove a somewhat weaker claim than Proposition 5.4, namely that the two-formL is
closed on simultaneous solutions of all the PKdV equations. Indeed, by Proposition
2.2, dL is constant on solutions of themulti-time Euler-Lagrange equations vti = gi .
Vanishing of this constant follows from the fact that dL = 0 on the trivial solution
v ≡ 0.
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5.2 The Multi-time Euler-Lagrange Equations

Proof (of Theorem 5.2) We check all multi-time Euler-Lagrange Eqs. (5)–(7) indi-
vidually. If N > 3, we fix k > j > i > 1. If N = 3, we take j = 3, i = 2, and in the
following ignore all equations containing k. We use the convention L ji = −Li j , etc.

Equations (7)

• The equations
δ1i L1i

δvI xti

+ δi j Li j

δvI ti t j

+ δ1 j L j1

δvI t j x
= 0

and
δi j Li j

δvI ti t j

+ δ jk L jk

δvI t j tk

+ δki Lki

δvI tk ti

= 0

are trivial because all terms vanish.

Equations (6)

• The equation
δ1i L1i

δvx
= δi j L ji

δvt j

yields

1

2
vti − δ1i hi

δvx
= 1

2
gi − δi j ai j

δvt j

= 1

2
gi − δi j

δvt j

(

vt j

δ1hi

δvx
+ vt j x

δ1hi

δvxx
+ vt j xx

δ1hi

δvxxx
+ . . .

)

= 1

2
gi − δ1hi

δvx
.

This simplifies to the PKdV equation

vti = gi . (28)

• For α > 0, the equation
δ1i L1i

δvxα+1
= δi j L ji

δvt j xα

yields

− δ1i hi

δvxα+1
= − δi j

δvt j xα

(

vt j

δ1hi

δvx
+ vt j x

δ1hi

δvxx
+ vt j xx

δ1hi

δvxxx
+ . . .

)
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= − δ1hi

δvxα+1
,

which is trivial.
• Similarly, the equation

δ1 j L1 j

δvx
= δi j Li j

δvti

yields PKdV equation
vt j = g j , (29)

and for α > 0, the equation
δ1 j L1 j

δvxα+1
= δi j Li j

δvti xα

is trivial.
• All equations of the form

δ1i L1i

δvx I
= δi j L ji

δvt j I
(ti /∈ I ) and

δ1 j L1 j

δvx I
= δi j Li j

δvti I
(t j /∈ I )

where I contains any tl (l > 1) are trivial because each term is zero.
• The equations

δ1i L1i

δvI ti

= δ1 j L1 j

δvI t j

(x /∈ I )

and
δi j Li j

δvI t j

= δik Lik

δvI tk

(ti /∈ I )

are easily seen to be trivial as well.

Equations (5)

• By construction, the equations
δ1i L1i

δv
= 0 for i > 1 are the equations

vxti = Dx gi . (30)

For I containing any tl , l > 1, l �= i , the equations
δ1i L1i

δvtI

= 0 are trivial.

• The last family of equations we discuss as a lemma because its calculation is far
from trivial.

Lemma 5.6 The equations
δi j Li j

δvxα

= 0 are corollaries of the PKdV equations.
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Proof (of Lemma 5.6) From Eq. (24) we see that the variational derivative of Li j

contains only three nonzero terms,

δi j Li j

δvxα

= ∂Li j

∂vxα

− Di

(
∂Li j

∂vxα ti

)

− D j

(
∂Li j

∂vxα t j

)

. (31)

In particular, the equation
δi j Li j

δv
= 0 yields Di g j − D j gi = 0, that is, the com-

patibility condition of the flows vti = gi and vt j = g j . To determine the first term on
the right hand side of Eq. (31) for an arbitrary α > 0, we use an indirect method.
Assume that the dimension of multi-time N is at least 4 and fix k > 1 distinct from
i and j . Let v be a solution of all PKdV equations except vtk = gk . By Proposition
5.4 we have ∑

I

∂Li j

∂vI
vI tk = Dk Li j = D j Lik − Di L jk . (32)

Since ∂Li j

∂vI
does not contain any derivatives with respect to tk , we can determine

∂Li j

∂vxα
by looking at the terms in the right hand side of Eq. (32) containing vxα tk . These

are

D j

(

− 1

2
gi vtk + vtk

δ1hi

δvx
+ vxtk

δ1hi

δvxx
+ . . .

)

− Di

(

− 1

2
g j vtk + vtk

δ1h j

δvx
+ vxtk

δ1h j

δvxx
+ . . .

)

.

Now we expand the brackets. By again throwing out all terms that do not contain
any vxα tk , and those that cancel modulo vti = gi or vt j = g j , we get

− vtk D j

(
δ1hi

δvx

)

+ vxtk D j

(
δ1hi

δvxx

)

+ vxxtk D j

(
δ1hi

δvxxx

)

+ . . .

+ vtk Di

(
δ1h j

δvx

)

− vxtk Di

(
δ1h j

δvxx

)

− vxxtk Di

(
δ1h j

δvxxx

)

− . . . .

Comparing this to Eq. (32), we find that

∂Li j

∂vxα

= −Di

(
δ1h j

δvxα+1

)

+ D j

(
δ1hi

δvxα+1

)

.

On the other hand we have

−Di

(
∂Li j

∂vxα ti

)

− D j

(
∂Li j

∂vxα t j

)

= Di

(
δ1h j

δvxα+1

)

− D j

(
δ1hi

δvxα+1

)

,



On the Lagrangian Structure of Integrable Hierarchies 371

so Equation (31) implies that
δi j Li j

δvxα

= 0 for any α.

Since
δ23L23

δvxα

= 0 does not depend on the dimension N � 3, the result for N � 4

implies the claim for N = 3. ��
This concludes the proof of Theorem 5.2. ��

6 Relation to Hamiltonian Formalism

In this last section, we briefly discuss the connection between the closedness of L
and the involutivity of the corresponding Hamiltonians.

In Proposition 2.2 we saw that dL is constant on solutions. For the one–
dimensional case (d = 1) with L depending on the first jet bundle only, it has
been shown in [20] that this is equivalent to the commutativity of the corresponding
Hamiltonian flows. If the constant is zero then the Hamiltonians are in involution.
Now we will prove a similar result for the two-dimensional case.

We will use a Poisson bracket on formal integrals, i.e. equivalence classes of
functions modulo x-derivatives [12, Chap.1–2]. In this section, the integral sign

∫

will always denote an equivalence class, not an integration operator. The Poisson
bracket due to Gardner-Zakharov-Faddeev is defined by

{∫
F,

∫
G

} =
∫ (

Dx
δ1F

δu

)
δ1G

δu
.

Using integration by parts, we see that this bracket is anti-symmetric. Less obvious
is the fact that it satisfies the Jacobi identity [18, Chap.7]. As we did when studying
the KdV hierarchy, we introduce a potential v that satisfies vx = u, and we identify
the space-coordinate x with the first coordinate t1 of multi-time.We can now re-write
the Poisson bracket as

{∫
F,

∫
G

} =
∫ (

Dx
δ1F

δvx

)
δ1G

δvx
= −

∫
δ1F

δv

δ1G

δvx
, (33)

for functions F and G that depend on the x-derivatives of v but not on v itself.
Assume that the coefficients L1 j of the Lagrangian two-fromL are given by

L1 j = 1

2
vx vt j − h j ,

where h j is a differential polynomial in vx , vxx , . . .. This is the case for the PKdV
hierarchy. The L1 j are Lagrangians of the equations

vxt j = Dx g j or ut j = Dx g j ,
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where g j := δ1h j

δvx
, hence δ1h j

δv = −Dx g j . It turns out that the formal integral
∫

h j

is the Hamilton functional for the equation ut j = Dx g j with respect to the Poisson
bracket (33). Formally:

{∫
h j , u(y)

} = {∫
h j ,

∫
u δ(· − y)

} = −
∫

δ1h j

δv
δ(x − y) = Dx g j (y),

where δ denotes the Dirac delta.

Theorem 6.1 If dL = 0 on solutions, then the Hamiltonians are in involution,

{∫
hi ,

∫
h j

} = 0.

Proof Recall notation (26). We have

∫
M1 jk =

∫
(
Dx L jk − D j L1k + Dk L1 j

)

=
∫

( − D j L1k + Dk L1 j
)

=
∫ (

−1

2
vxt j vtk − 1

2
vx vtk t j + D j hk + 1

2
vxtk vt j + 1

2
vx vt j tk − Dk L1 j

)

=
∫ (

1

2

(
vxtk vt j − vxt j vtk

) − Dk L1 j + D j hk

)

Using Eq. (21) (which, as opposed to Eq. (19), is independent of the form of hi and
gi ), the evolution equations vt j = g j , and integration by parts, we find that

∫
M1 jk =

∫ (
1

2

(
vxtk vt j − vxt j vtk

) − Dx a jk + vtk Dx g j + Dx ak j − vt j Dx gk

)

=
∫ (

−1

2

(
g j Dx gk − gk Dx g j

) − Dx a jk + Dx ak j

)

=
∫

gk Dx g j

= −
∫

δ1h j

δv

δ1hk

δvx

= {∫
h j ,

∫
hk

}
.

Hence if dL = 0 on solutions of the evolution equations vt j = g j , then the Hamilton
functionals are in involution. ��
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7 Conclusion

We have formulated the pluri-Lagrangian theory of integrable hierarchies, and pro-
pose it as a definition of integrability. The motivation for this definition comes from
the discrete case [10, 13, 20] and the fact that we have established a relation with the
Hamiltonian side of the theory. For the Hamiltonians to be in involution, we need the
additional fact that the Lagrangian two-form is closed. However, we believe that the
essential part of the theory is inherently contained in the pluri-Lagrangian formalism.

Since the KdV hierarchy is one of the most important examples of an integrable
hierarchy, our construction of a pluri-Lagrangian structure for the PKdV hierarchy
is an additional indication that the existence of a pluri-Lagrangian structure is a
reasonable definition of integrability.

It is remarkable that multi-time Euler-Lagrange equations are capable of produc-
ing evolutionary equations. This is a striking difference from the discrete case, where
the evolution equations (quad equations) imply themulti-time Euler–Lagrange equa-
tions (corner equations), but are themselves not variational [10].

Acknowledgments This research is supported by the Berlin Mathematical School and the DFG
Collaborative Research Center TRR 109 “Discretization in Geometry and Dynamics”.

A. A very short introduction to the variational bicomplex

Here we introduce the variational bicomplex and derive the basic results that we
use in the text. We follow Dickey, who provides a more complete discussion in
[12, Chap.19]. Another good source on a (subtly different) variational bicomplex is
Anderson’s unfinished manuscript [2]. For ease of notation we restrict to real fields
u : RN → R, rather than vector-valued fields.

The space of (p, q)-forms A (p,q) consists of all formal sums

ωp,q =
∑

f δuI1 ∧ . . . ∧ δuIp ∧ dt j1 ∧ . . . ∧ dt jq ,

where f is a polynomial in u and partial derivatives of u of arbitrary order with
respect to any coordinates. The vertical one-forms δuI are dual to the vector fields

∂
∂uI

. The action of the derivative Di on ωp,q is

Di ωp,q =
∑

(Di f ) δuI1 ∧ . . . ∧ δuIp ∧ dt j1 ∧ . . . ∧ dt jq

+ f δuI1i ∧ . . . ∧ δuIp ∧ dt j1 ∧ . . . ∧ dt jq

+ . . . + f δuI1 ∧ . . . ∧ δuIpi ∧ dt j1 ∧ . . . ∧ dt jq .

The integral of ωp,q over an q-dimensional manifold is the (p, 0)-form defined by
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∫
ωp,q =

∑(∫
f dt j1 ∧ . . . ∧ dt jq

)

δuI1 ∧ . . . ∧ δuIp .

We call (0, q)-forms horizontal and (p, 0)-forms vertical. The horizontal exterior
derivative d : A (p,q) → A (p,q+1) and the vertical exterior derivative δ : A (p,q) →
A (p+1,q) are defined by the anti-derivation property

(a) d
(
ω

p1,q1
1 ∧ ω

p2,q2
2

) = dωp1,q1
1 ∧ ω

p2,q2
2 + (−1)p1+q1 ω

p1,q1
1 ∧ dωp2,q2

2 ,

δ
(
ω

p1,q1
1 ∧ ω

p2,q2
2

) = δω
p1,q1
1 ∧ ω

p2,q2
2 + (−1)p1+q1 ω

p1,q1
1 ∧ δω

p2,q2
2 ,

and by the way they act on (0, 0)-, (1, 0)-, and (0, 1)-forms:

(b) d f =
∑

j

D j f dt j =
∑

j

(
∂ f

∂t j
+

∑

I

∂ f

∂uI
u I j

)

dt j , δ f =
∑

I

∂ f

∂uI
δuI ,

(c) d(δuI ) = −
∑

j

δuI j ∧ dt j , δ(δuI ) = 0,

(d) d(dt j ) = 0, δ(dt j ) = 0, δ(duI ) = −d(δuI ) =
∑

j

δuI j ∧ dt j .

Properties (a)–(d) determine the action of d and δ on any form. The corresponding
mapping diagram is known as the variational bicomplex.

...
...

...
...

↑ δ ↑ δ ↑ δ ↑ δ

A (1,0) d−→ A (1,1) d−→ . . .
d−→ A (1,n−1) d−→ A (1,n)

↑ δ ↑ δ ↑ δ ↑ δ

A (0,0) d−→ A (0,1) d−→ . . .
d−→ A (0,n−1) d−→ A (0,n)

The following claims follow immediately from the definitions.

Proposition A.1 We have d2 = δ2 = 0 and dδ + δd = 0.

Remark A.2 This implies that d + δ : A k → A k+1, whereA k := ⋃k
i=0 A

(i,k−i), is
an exterior derivative as well.

Proposition A.3 We have Di δ = δDi .

Proposition A.4 For a differential polynomial h, define the corresponding vertical
generalized vector field by ∂h := ∑

I h I
∂

∂uI
. We have d ι∂h + ι∂h d = 0.

Proof It suffices to show this for (0,0)-forms (polynomials f in u and partial deriva-
tives of u), for (0,1)-forms dt j , and for (1,0)-forms δuI . For (0,0)-forms, both terms
of the claimed identity are zero:

d
(

ι∂h f
)

= 0, ι∂h (d f ) = ι∂h

(∑

j

D j f dt j

)

= 0.
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Likewise for (0,1)-forms:

d
(

ι∂h dt j

)
= 0, ι∂h (ddt j ) = 0.

For (1,0)-forms we find:

ι∂h (dδuI ) = ι∂h

(

−
∑

j

δuI j ∧ dt j

)

= −
∑

j

h I j dt j = −dhI = −d
(

ι∂h δuI

)
.

��

B. Proof of Lemma 2.4

Assume that the action is stationary on all d-dimensional stepped surfaces inRN . Let
S be a smooth d-dimensional surface in RN . Partition the space RN into hypercubes
Ci of edge length ε. We can choose this partitioning in such a way that the surface S
does not contain the center of any of the hypercubes. Denote SN

i := S ∩ Ci .
We give each hypercube its own coordinate system [−1, 1]N → Ci and identify

the hypercube with its coordinates. In each punctured hypercube [−1, 1]N \ {0} we
define a family of balloon maps

BN
α : [−1, 1]N \ {0} → [−1, 1]N \ {0} : x �→

⎧
⎨

⎩

αx

‖x‖max
if ‖x‖max < α

x if ‖x‖max � α

for α ∈ [0, 1]. Here, ‖x‖max := max(|x1|, . . . |xN |) denotes the maximum normwith
respect to the local coordinates. The idea is that from the center of each hypercube,
we inflate a square balloon which pushes the curve away from the center, until it lies
on the boundary of the hypercube.

Indeed, the deformed surface SN−1
i := BN

1 (SN
i ) = BN

1 (S ∩ Ci ) lies on thebound-
ary of the hypercube, i.e. within the (N − 1)-faces of the hypercube.Wewant it to lie
within the d-faces of the hypercube, which would imply that it is a stepped surface.
To achieve this, we introduce a balloon map

BN−1, j
α : [−1, 1]N−1 \ {0} → [−1, 1]N−1 \ {0} : x �→

⎧
⎨

⎩

αx

‖x‖max
if ‖x‖max < α

x if ‖x‖max � α

in each of the (N − 1)-faces C j
i of the hypercube Ci , which pushes the surface into

the (N − 2)-faces. We denote the surface we obtain this way by SN−2
i . If the surface

happens to contain the center of a (N − 1)-face, we can slightly perturb the surface
without affecting the argument. By iterating this procedure, using balloonmapsBk, j

α
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in each k-face C j
i (N � k � d + 1), we obtain a surface Sd

i that lies in the d-faces
(Figs. 5 and 6).

Consider the (d + 1)-dimensional surface

Mi :=
N⋃

k=d+1

⋃

j : C j
i is a

k -face of Ci

⋃

α∈[0,1]
Bk, j

α (Sk
i ∩ C j

i )

that is swept out by the consecutive application of the balloonmaps to SN
i := S ∩ Ci .

Assuming that ε is small compared to the curvature of S, the (d + 1)-dimensional
volume of each of the

⋃
α∈[0,1] B

k, j
α (Sk

i ∩ C j
i ) is of the order εd+1. The number of

such volumes making up Mi only depends on the dimensions N and d, not on ε, so
the (d + 1)-dimensional volume |Mi | of Mi is of the order |Mi | = O(εd+1).

Now consider a variation V with compact support and restrict the surface S to
this support. Denote by Ŝ := ⋃

i Sd
i the stepped surface obtained from S by repeated

application of balloon maps in all the hypercubes, and by M := ⋃
i Mi the (d + 1)-

dimensional surface swept out by these balloon maps. The bounary of M consists
of S, Ŝ, and a small strip of area O(ε) connecting the boundaries of S and Ŝ (the
dotted line in Fig. 5). The number of hypercubes intersecting S is of order ε−d , so
|M | = O(ε−d)O(εd+1) = O(ε). It follows that

∣
∣
∣
∣

∫

Ŝ
ιprV δL −

∫

S
ιprV δL

∣
∣
∣
∣ =

∣
∣
∣
∣

∫

∂ M
ιprV δL

∣
∣
∣
∣ + O(ε)

=
∣
∣
∣
∣

∫

M
d(ιprV δL )

∣
∣
∣
∣ + O(ε) → 0

as ε → 0. By assumption,
∫

Ŝ ιprV δL = 0 for all ε, so the action on S will be
stationary as well. ��

Fig. 5 Balloon maps in nine adjacent squares deforming a curve inR2. From left to right: α = 0.2,
α = 0.7 and α = 1
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Fig. 6 The second and last iteration for a curve in R
3. From left to right: α = 0.1, α = 0.6 and

α = 1
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