On the Lagrangian Structure of Integrable
Hierarchies

Yuri B. Suris and Mats Vermeeren

Abstract We develop the concept of pluri-Lagrangian structures for integrable hier-
archies. This is a continuous counterpart of the pluri-Lagrangian (or Lagrangian mul-
tiform) theory of integrable lattice systems. We derive the multi-time Euler Lagrange
equations in their full generality for hierarchies of two-dimensional systems, and con-
struct a pluri-Lagrangian formulation of the potential Korteweg-de Vries hierarchy.

1 Introduction

In this paper, our departure point are two developments which have taken place in
the field of discrete integrable systems in recent years.

e Firstly, multi-dimensional consistency of lattice systems has been proposed as a
notion of integrability [8, 15]. In retrospect, this notion can be seen as a discrete
counterpart of the well-known fact that integrable systems never appear alone but
are organized into integrable hierarchies. Based on the notion of multi-dimensional
consistency, a classification of two-dimensional integrable lattice systems (the so
called ABS list) was given in [1]. Moreover, for all equations of the ABS list,
considered as equations on Z?, a variational interpretation was found in [1].

e Secondly, the idea of the multi-dimensional consistency was blended with the vari-
ational formulation in [13], where it was shown that solutions of any ABS equation
on any quad surface X in Z" are critical points of a certain action functional f s Z
obtained by integration of a suitable discrete Lagrangian two-form .Z’. Moreover,
it was observed in [13] that the critical value of the action remains invariant under
local changes of the underlying quad-surface, or, in other words, that the 2-form
& is closed on solutions of quad-equations, and it was suggested to consider this
as a defining feature of integrability. However, later research [10] revealed that
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£ is closed not only on solutions of (non-variational) quad-equations, but also
on general solutions of the corresponding Euler-Lagrange equations. Therefore, at
least for discrete systems, the closedness condition is implicitly contained in the
variational formulation.

A general theory of multi-time one-dimensional Lagrangian systems, both discrete
and continuous, has been developed in [20]. A first attempt to formulate the theory for
continuous two-dimensional systems was made in [21]. For such systems, a solution
is a critical point of the action functional | ¢ -2 on any two-dimensional surface S in
RN, where % is a suitable differential two-form. The treatment in [21] was restricted
to second order Lagrangians, i.e. to two-forms ¢ that only depend on the second jet
bundle. In the present work we will extend this to Lagrangians of any order.

As argued in [10], the unconventional idea to consider the action on arbitrary
two-dimensional surfaces in the multi-dimensional space of independent variables
has significant precursors. These include:

e Theory of pluriharmonic functions and, more generally, of pluriharmonic maps
[11, 17, 19]. By definition, a pluriharmonic function of several complex variables
f :CN — R minimizes the Dirichlet functional Ej = Jrl(fo ). |*dz ndz
along any holomorphic curve in its domain I" : C — C. Differential equations
governing pluriharmonic functions,

0> f

07;0Z;

=0 forall i, j=1,...,N,

are heavily overdetermined. Therefore it is not surprising that pluriharmonic func-
tions (and maps) belong to the theory of integrable systems.
This motivates the term pluri-Lagrangian systems, which was proposed in [9, 10].

e Baxter’s Z-invariance of solvable models of statistical mechanics [3, 4]. This
concept is based on invariance of the partition functions of solvable models under
elementary local transformations of the underlying planar graphs. It is well known
(see, e.g., [7]) that one can identify planar graphs underlying these models with
quad-surfaces in Z". On the other hand, the classical mechanical analogue of
the partition function is the action functional. This suggests the relation of Z-
invariance to the concept of closedness of the Lagrangian 2-form, at least at the
heuristic level. This relation has been made mathematically precise for a number
of models, through the quasiclassical limit [5, 6].

e The classical notion of variational symmetry, going back to the seminal work of
E. Noether [16], has been shown to be directly related to the closedness of the
Lagrangian form in the multi-time [21].

The main goal of this paper is two-fold: to derive the Euler Lagrange equations
for two-dimensional pluri-Lagrangian problems of arbitrary order, and to state the
(potential) KdV hierarchy as a pluri-Lagrangian system. We will also discuss the
closedness of the Lagrangian two-form, which turns out to be related to the Hamil-
tonian theory of integrable hierarchies.
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Note that the influential monograph [12], according to the foreword, is “about
hierarchies of integrable equations rather than about individual equations”. However,
its Lagrangian part (Chaps. 19, 20) only deals with individual equations. The reason
for this is apparently the absence of the concept of pluri-Lagrangian systems. We hope
that this paper opens up the way for a variational approach to integrable hierarchies.

2 Pluri-Lagrangian Systems
2.1 Definition

We place our discussion in the formalism of the variational bicomplex as presented
in [12, Chap. 19] (and summarized, for the reader’s convenience, in Appendix A).
Slightly different versions of this theory can be found in [18] and in [2].

Consider a vector bundle X : RY — R and its nth jet bundle J"X. Let .Z €
o/ 0D (J"X) be a smooth horizontal d-form. In other words, .Z is a d-form on RY
whose coefficients depend on a function # : R¥Y — R and its partial derivatives up
to order n. We call RV the multi-time, u the field, and . the Lagrangian d-form.
We will use coordinates (71, . . ., fy) on RY. Recall that in the standard calculus of
variations the Lagrangian is a volume form, so thatd = N.

Definition 2.1 We say that the field u solves the pluri-Lagrangian problem for £ if
u is a critical point of the action |, s -Z simultaneously for all d-dimensional surfaces
S in RY. The equations describing this condition are called the multi-time Euler-
Lagrange equations. We say that they form a pluri-Lagrangian system and that &
is a pluri-Lagrangian structure for these equations.

To discuss critical points of a pluri-Lagrangian problem, consider the vertical
derivative §.% of the (0,d)-form % in the variational bicomplex, and a variation
¥ . Note that we consider variations ¥ as vertical vector fields; such a restriction is
justified by our interest, in the present paper, in autonomous systems only. Besides,
in the context of discrete systems only vertical vector fields seem to possess a natural
analogs. The criticality condition of the action, § [, ¢Z =0, is described by the
equation

/%r“ﬂsg:ov (D

N

which has to be satisfied for any variation ¥ on § that vanishes at the boundary
9S. Recall that pr 7 is the nth jet prolongation of the vertical vector field ¥/, and
that ¢ stands for the contraction. One fundamental property of critical points can be
established right from the outset.

Proposition 2.2 The exterior derivative . of the Lagrangian is constant on crit-
ical points u.
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Proof Consider a critical point # and a small (d 4 1)-dimensional ball B. Because
S := 9B has no boundary, Eq. (1) is satisfied for any variation ¥". Using Stokes’
theorem and the properties that 6d + dé = 0 and ¢ d + d tpr v = 0 (Propositions
A.l and A.4 in Appendix A), we find that

0=/ Lpry/&;%:/d(tpry/(sg):—/tpry/d@.ﬁf)Z/Lpry/(S(df).
B B B B

Since this holds for any ball B it follows that i, §(d.¥") = 0 for any variation ¥’
of a critical point u. Therefore, §(d.Z) = 0, so that d.Z is constant on critical points
u. Note that here we silently assume that the space of critical points is connected. It
would be difficult to justify this property in any generality, but it is usually clear in
applications, where the critical points are solutions of certain well-posed systems of
partial differential equations. O

We will take a closer look at the property d.Z = const in Sect. 6, when we discuss
the link with Hamiltonian theory. It will be shown that vanishing of this constant,
i.e., closedness of . on critical points, is related to integrability of the multi-time
Euler-Lagrange equations.

2.2 Approximation by Stepped Surfaces

For computations, we will use the multi-index notation for partial derivatives. For
any multi-index I = (i1, ..., iy) we set

allly

uy=-——"",
(@t ... (0ty)N

where |I| = i; 4 ...+ iy. The notations Ik and 1k will represent the multi-indices
@(1y..., ik +1,...ixy)and (iy, ..., iy + o, ...iy) respectively. When convenient we
will also use the notations /#; and /¢ for these multi-indices. We will write k ¢ 1
if iy =0 and k € [ if iy > 0. We will denote by D; or D,, the total derivative with
respect to coordinate direction ¢;,

i —D,‘. Zuh

and by D; := D;: . Djx the corresponding higher order derivatives.

Our main general result is the derivation of the multi-time Euler-Lagrange equa-
tions for two-dimensional surfaces (d = 2). That will allow us to study the KdV
hierarchy as a pluri-Lagrangian system. However, it is instructive to first derive the
multi-time Euler-Lagrange equations for curves (d = 1).
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The key technical result used to derive multi-time Euler-Lagrange equations is
the observation that it suffices to consider a very specific type of surface.

Definition 2.3 A stepped d-surface is a d-surface that is a finite union of coordinate
d-surfaces. A coordinate d-surface of the direction (iy, ..., iyz) is a d-surface lying
in an affine d-plane {(#, ..., ty) | t; =¢; for j # iy, ..., 4}

Lemma 2.4 [fthe action is stationary on any stepped surface, then it is stationary
on any smooth surface.

The proof of this Lemma can be found in appendix B.

2.3 Multi-time Euler-Lagrange Equations for Curves

Theorem 2.5 Consider a Lagrangian I-form £ = ZlNzl L; dt;. The multi-time
Euler-Lagrange equations for curves are:

8,‘Li

=0 VI#i, 2
8141

(S,‘Li 5jL]'

(Sbt]i 5u1j

where i and j are distinct, and the following notation is used for the variational
derivative corresponding to the coordinate direction i:

8;L; JaL; aL; aL; aL;
S = 2CDUDE g = S Dy o D] g
81/!] aum 8141 814” au“z

a>0

Remark 2.6 1In the special case that . only depends on the first jet bundle, system
(2)—(3) reduces to the equations found in [20]:

(SiLi aLl aLl

“Zl=0 — _p,— =0,

Su < ou du;

5,‘Ll' 8L, . .
—=0 & — =0 for i#j,

Suj 314]'

— =1 — =—L for i#j.
514,' (SM]' 8u,~ an

Proof (of Theorem 2.5) According to Lemma 2.4, it is sufficient to look at a general
L-shaped curve S = §; U §;, where §; is a line segment of the coordinate direction
i and S; is a line segment of the coordinate direction j. Denote the cusp by p :=
S; N'S;. We orient the curve such that §; induces the positive orientation on the
point p and §; the negative orientation. There are four cases, depending on how
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(+1,+1) ! (+1,-1) | (—1,41) | (—1,-1)

Fig. 1 The four L-shaped curves with their values of (g;, €;)

the L-shape is rotated. They are depicted in Fig. 1. To each case we associate a pair
(gi,8j) € {(—1,+1 }2, where the positive value is taken if the respective piece of curve
is oriented in the coordinate direction, and negative if it is oriented opposite to the
coordinate direction.

The variation of the action is

/Lprﬂj/gf—ﬁ‘,/([pr”j/al, ) ds; +31/ (tpry 8L ;) dt;
s s

/Z—Su,(”f/)dt,—i-ej/ Z ’8u1(”/)dtj

Note that these sums are actually finite. Indeed, since £ depends on the nth jet
bundle all terms with |I| :=i; 4+ ...+ iy > n vanish.

Now we expand the sum in the first of the integrals and perform integration by
parts.

. / (tpr 3 8L) At

oL aL;
/ ( 1(“//)+ 8u1,(7/)+ ! 6u”2(7/)+...)dt,~
Sl 131 814”2
aL; aL; aL;
/ ( D; —- +D? —L _p} — +...)au,(7/)dz,-
S; = 3u1 uy; uy;2 duy;3
aL; L;
+Z( Bur () g dusi (1) = —8u; (V)
u1i2
aL; Li oL
+3—’5u,iz(m—D L (#)suyi(¥) + D? (Su (7/)+...) .
U3 1i3 duy »

Using the language of variational derivatives, this reads

/(Lpry/(SL)dt, _g,/ Z—a (M) dy

’I;z
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+> (—mm + auz,W) +. )
15i p
/ 2—5 1) dy; +Z (—a ,(7/))

Si 1% p

The other piece, S;, contributes

5L,
aj/s Loy 8L dt,_s,/ Z ]Sul(”f/)dt] Z((Sful{au,(v/))
1 J

5i13j

p

where the minus sign comes from the fact that S; induces negative orientation on the
point p. Summing the two contributions, we find

/Lpr«,/ 8L =g / —5u,(7/) dt; +¢; / L 6u1(”f/) d;
N N

e NET
L: §.L:
z —LSu; (V) — LLsu (v
+ 1 (Sul,- ur(v) Sur, u( ))

Now require that the variation (4) of the action is zero for any variation ¥". If we
consider variations that vanish on S;, then we find for every multi-index / which
does not contain i that

“4)

p

8 L;
—=0.
(SM[

Given this equation, and its analogue for the index j, only the last term remains in
the right hand side of Eq. (4). Considering variations around the cusp p we find for
every multi-index [ that

SL; &L,

Su Ii - Su 1j '

It is clear these equations combined are also sufficient for the action to be critical. O

2.4 Multi-time Euler-Lagrange Equations
Jor Two-Dimensional Surfaces

The two-dimensional case (d = 2) covers many known integrable hierarchies, includ-
ing the potential KdV hierarchy which we will discuss in detail later on. We consider
a Lagrangian two-form . = >, _. L;; d; A dt; and we will use the notational con-
vention L j; = —L;;.

i<j
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Theorem 2.7 The multi-time Euler-Lagrange equations for two-dimensional sur-
faces are

8ijLi;
U —, VI i, j, 6)
81/11

SijLij  SuLi :

Outij _ OtkTik VI #i, (6)
Su,j 8u1k

8ijLij  8jixLjk +6kiLki _ Vi 7
5M1ij 5141_;'k Su ki '

where i, j and k are distinct, and the following notation is used for the variational
derivative corresponding to the coordinate directions i, j:

(SijL,'j
(SM]

BL,»J»

Bu,iaj,s

= > (-)** Dy D]
«o,f>0

Remark 2.8 1In the special case that .Z only depends on the second jet bundle, this
system reduces to the equations stated in [21].

Before proceeding with the proof of Theorem 2.7, we introduce some terminol-
ogy and prove a lemma. A two-dimensional stepped surface consisting of g flat
pieces intersecting at some point p is called a g-flower around p, the flat pieces are
called its petals. If the action is stationary on every g-flower, it is stationary on any
stepped surface. By Lemma 2.4 the action will then be stationary on any surface.
The following Lemma shows that it is sufficient to consider 3-flowers.

Lemma 2.9 If the action is stationary on every 3-flower, then it is stationary on
every g-flower for any g > 3.

Proof Let F be a g-flower. Denote its petals corresponding to coordinate directions
(i 1iy)s (T Big)s - s (Eiy 1)) by S12, 823, .. ., S41 respectively. Consider the 3-flower
Fip3 = S12 U Sp3 U 831, where S3; is a petal in the coordinate direction (%, t;,) such
that F,3 is a flower around the same point as F. Similarly, define Fizq, ..., Fi4-14.
Then (for any integrand)

/F /F o /F
123 134 lg—1g

g—1q g1

Here, S»1, S32, ... are the petals Si», S»3, ... but with opposite orientation (see Fig. 2).
Therefore all terms where the index of S contains 1 cancel, except for the first and

last, leaving
/+...+/ =/+/+/+...+/ +/=/.
Fia Fig-14 Si2 S23 S34 S, Sq1 F

q—1q
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Fig. 2 Two 3-flowers
composed to form a 4-flower.
The common petal does not
contribute to the integral
because it occurs twice with
opposite orientation

By assumption the action is stationary on every 3-flower, so

/Lpr«//(s.,?: Lpr«;/&ip—i-...—‘r/ Lpry/&,ipZO.
F Fias

Fig-14

Proof (of Theorem 2.7) Consider a 3-flower S = S;; U Sj; U S;; around the point
p = Sij N Sjk N Sk Denote its interior edges by

9S; = Sij N Ski, 8SJ =8N Sl'j, oSy := S N Sjk.

On 9S;, 0S; and 9S; we choose the orientations that induce negative orientation
on p. We consider the case where these orientations correspond to the coordinate
directions, as in Fig. 3. The cases where one or more of these orientations are opposite
to the corresponding coordinate direction (see Fig.4) can be treated analogously and
yield the same result.

Fig. 3 A 3-flower. Different t
petals induce the opposite
orientation on the common Sij
boundary
s O
Sjk J
= t;
p 0S;
y /o)
Ski

tg
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S «——

Fig. 4 Three of the other 3-flowers. The orientations of the interior edges do not all correspond to
the coordinate direction

We choose the orientation on the petals in such a way that the orientations of 9.5;,
0S; and 9S8y are induced by S;;, S;; and Sy; respectively. Then the orientations of
9S;, 0S; and 9.5y are the opposite of those induced by Sy;, S;; and S, respectively
(see Fig.3).

We will calculate

/tpry/(sg / Lpry/&,?—i—/ Lpry8$+/ Lprﬂj/(s.iﬂ (8)
N Sik Ski

J

and require it to be zero for any variation " which vanishes on the (outer) boundary
of S. This will give us the multi-time Euler-Lagrange equations.
For the first term of Eq. (8) we find

/Lwa.,s,ﬂ /Z ’fau,(“//)dr,Adz,
N

DI

Si I13i,j X, ,u>()

6141, win (V) dt; Adey.

Upirjn

First we perform integration by parts with respect to #; as many times as possible.

/S ey 8L = [ DD (-1’ D} Ly Bulju(“//)dt,/\dtj

Sij 13i,j x,nu>0

_/ Z Z z( b7 Dn lj 6”11* = lju(qf/) dt]

as; 13i,j A,u>07=0

Next integrate by parts with respect to #; as many times as possible.

dL;;
/Lprya,sﬂ / > > 1)*+“DAD_"8 L_Su;(¥)dt; Adt; )

Sij Sii I4i,j 2,u>0 Uiz ju
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/ Z Z Z( 1)" D7 Lij Sttgirnju (V) dt; (10)

u
3Sj 1i,j >0 =0 Lt ju

/ > > Z( 1)A+”D*Dp Lij au,,w (M) dt. (1)

’1351])L;L>0p 0

The signs of (10) and (11) are due to the choice of orientations (see Fig. 3). We can
rewrite the integral (9) as

dij L,
/ Z / J(Su (V) dt Adt).
Sii 1%,

Thelastintegral (11) takes a similar form if we replace theindex uby 8 = — p — 1.

/ Z Z Z( I)HPD’\D” Lij 3u,,u 1 (P dt

llétj)»u>0,0 0

/ ( H*** D} D’ a;w,ﬂ("f/) dy;

7 du 1
EM] 1i,) Bh,p=0 [i* jBte+

_ _/ S S ki s oy i,

9S; 514 1
3Si 1i,j p=0 O 1I"T

To write the other boundary integral (10) in this form we first perform integration by
parts.

/ > > Z( )™ DT 8u,, ]ﬂaum (V) dt

I, j A,u=0m7=0

/ Z Z Z( 1)”+“D”D“ 9Ly Stp-a1 (V) dt

ou
Si Ii,j ru>0 7=0 Litjr

A—1 p—1
+> > ZZ(—l)”*P(Df D’ aa LI P 1(7/))

u
13i,j A,u>07=0 p=0 Iirjr

P
Then we replace . by« = A — 7 — l and in the lastterm u by B = — p — 1.

/ ZZZ( D™D} 5 B e () d

u
Si 1%i,j 0,20 7=0 Tixjr

/ > D =H™DID a—sm, (V) dt;
aS

j au +1
i T#i,j o, m>0 fiectmeL
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+> > (( )™ D7 D’ i s ,ﬂ(%))

T QU jjatnst iproti
13i,jo,B,m,p>0 Lietmel jite

/{9 z Z 8ijLij ——Sup.(¥)dt; + Z Z (&f;ljjuwl (Su,,»ujﬂ(”//))

Su 1
i 1%i,j a=0 O 1%i,) @,>0

P

p

Putting everything together we find

/Lpr«yaz / > i ’fau () dt; Adtj — / 25 i ”a 1(V)ds;

i Sii 13, SET
l z 51" ij
/ Z J ’8 ur(¥)de; + (Z 6" ""8u1(”//))
z[;] Urij 4

Expressions for the integrals over S and S;; are found by cyclic permutation of the
indices. Finally we obtain

/LW(S.,% /Z Sulis s, (V) dt; A dt

Si 13i.j i

8 Ll] Skz i
_A(Za our () + 2~ Mzmmﬁn

= oW I

+Z( %(%)

+ cyclic permutations in i, j, k.

p
(12)

From this we can read off the multi-time Euler-Lagrange equations. O

3 Pluri-Lagrangian Structure of the Sine-Gordon Equation

We borrow our first example of a pluri-Lagrangian system from [21].
The Sine-Gordon equation u,, = sinu is the Euler-Lagrange equation for

1
L= Euxuy —cosu.

Consider the vector field (p% with

1 3
go:uxxx"'zux
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and its prolongation D, := 3", ¢; % It is known that D,, is a variational symmetry

for the sine-Gordon equation [18, p. 336]. In particular, we have that

D,L=D,N+D,M (13)
with
1 1 1
M = E(pux - gui + EM’%A’
1 1
N = zgz)uy — zui COSU — Uyy(Uyy — sinu).

Now we introduce a new independent variable z corresponding to the “flow”
of the generalized vector field Dy, i.e. u, = ¢. Consider simultaneous solutions of
SL

the Euler-Lagrange equation 5 = 0 and of the flow u; = ¢ as functions of three

independent variables x, y, z. Then Eq. (13) expresses the closedness of the two-form
&L =Ldxndy—MdzANdx — Ndy Adz.

The fact that d.Z = 0 on solutions is consistent with Proposition 2.2. Hence .Z is a
reasonable candidate for a Lagrangian two-form.

Theorem 3.1 The multi-time Euler-Lagrange equations for the Lagrangian two-
form
L =LipdxAdy+ Lizdx ANdz+ Lz dy Adz

with the components

L= Euxuy —cosu, (14)
1 1, 1,
L= Jlxltz = gl + e (15)
1 1
Ly = —EuyuZ + Eui COS U + Uyy(Uyy — sinu), (16)

consist of the sine-Gordon equation

Uyy = Sinu,
the modified KdV equation
1
Uy = Uxxy + Eui,

and corollaries thereof. On solutions of either of these equations the two-form £ is
closed.
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Proof Let us calculate the multi-time Euler-Lagrange Egs. (5)—(7) one by one:

8oL
e The equation 222 9 yields ..o Uyy = Sinu.
. Ol .
For any o > 0 the equation = 0 yields 0 = 0.
Uz
813L
o The equation —>—> = 0 yields ..........cccvveeveeeeennn.. Uer = 302U + Uy
. di3L3 .
For any o > 0 the equation = 0O yields 0 = 0.
Uye
. 6a3Lo . Lo
e The equation —— =0yields ...................... Uy, = Uy Sinu + iy, COSU.
.6
The equation =0yields ....ocoovviiiiiii Uyyy = Uy COSU
X
8L
The equation BB _ Yields «ooveeii Uyy = SInu
M)CX
.63l .
For any « > 2, the equation Su. = 0 yields 0 = 0.
Uy
d13L 8L
e The equation ——2 = 2= Vields ..oovvieeeeeireeeee, Uz = Uyxy + U3
Sty duy
813L 8L
The equation 3713 f5 2 yields u,y = uyy.
Uy Sty
di3L 8L
For any other / the equation o AP yields 0 = 0.
(SM[X 5141),
8oL S13L
e The equation 2oz _ Bl yields %ux = %ux.
Uy du,

Si2Li2 813L13

For any nonempty /, the equation yields 0 = 0.

Ury Uz
S1nL 8L
e The equation Loz % yields %uy = %uv.
Suy Su, ’

Sl 8L

For any nonempty I, the equation o R L yields 0 = 0.
Suliy  SnLley  SiLa

e For any I the equation Lol TBEm TBESL 0 yields 0 = 0.

Ufxy 8”1)}1 Sutyx

It remains to notice that all nontrivial equations in this list are corollaries of the
equations uy, = sinu and u; = Uy, + %ui, derived by differentiation.
The closedness of .Z can be verified by direct calculation:

1 .
D, Ly — Dy Lis+ D, Ly = E(uyzux + uxzuy) + u;smu
1 1 1

3
— JUy Uy — ZUzUxy + SUUxy — UxxUyyy

2 2
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1 1 1 3
— TUx Uy — TUZUxy + UyUyy COSU — Eu

2 2
F Uyxx Uy — SIDU) 4 Uy (Uyxy — Uy COSU)

1
=— (uz — Eu; — umx) (tyy — sinu).

Ysmnu

O

Remark 3.2 The Sine-Gordon equation and the modified KdV equation are the sim-
plest equations of their respective hierarchies. Furthermore, those hierarchies can be
seen as the positive and negative parts of one single hierarchy that is infinite in both
directions [14, Sect. 3c and 5k]. It seems likely that this whole hierarchy possesses
a pluri-Lagrangian structure.

4 The KdV Hierarchy

Our second and the main example of a pluri-Lagrangian system will be the (potential)
KdV hierarchy. This section gives an overview of the relevant known facts about
KdV, mainly following Dickey [12, Sect. 3.7]. The next section will present its pluri-
Lagrangian structure.

One way to introduce the Korteweg-de Vries (KdV) hierarchy is to consider a

formal power series
o0
—2k—1
R = E %4 ,
k=0

with the coefficients r; = ry[u] being polynomials of u and its partial derivatives
with respect to x, satisfying the equation

Ry +4uR, +2u R — z2?R, = 0. (17)

Multiplying this equation by R and integrating with respect to x we find

1 2 1 2 2
RRy = SR +2(u— 2% ) R = CG). (18)

where C(z) = > po,, ckz~ ¥ is a formal power series in z =2, with coefficients ¢, being
constants. Different choices of C(z) correspond to different normalizations of the
KdV hierarchy. We take C(z) = é, i.e. cp = % and ¢, = 0 for k > 0. The first few
coefficients of the power series R = roz ™' 4+ r 127> +rz7> + ... are

. FL=U, Fy= Uy + 33U, F3 = tyrey + 10uu,, + 5u§ + 1043,

1
7‘025

The Korteweg-de Vries hierarchy is defined as follows.



362 Y.B. Suris and M. Vermeeren
Definition 4.1 e The KdV hierarchy is the family of equations
uy = (relul)s-

e Write g;[v] := rr[v,]. The potential KAV (PKdV) hierarchy is the family of equa-
tions

Vi, = 8klv].
e The differentiated potential KdV (DPKdV) hierarchy is the family of equations
Vxy, = (8k[VDx-
The right-hand sides of first few PKdV equations are
g1 =V, 8 = Ve 3V, €3 = Verorr + 10VViay + 5vE, + 1007,

Remark 4.2 The first KAV and PKdV equations, u;, = uy, resp. v;, = vy, allow us
to identify x with #;.

Proposition 4.3 The differential polynomials ry[u] satisfy

(Srk
— = @Gk = 2) i,
Su

where 2 is shorthand notation for ..
Su Su

A proof of this statement can be found in [12, 3.7.11-3.7.14].

Corollary 4.4 Set hi[v] := ﬁ 8r+1v], then the differential polynomials g and hy,

satisfy
1) Sh
08k _ 4k -2 gy and 2K
SVX SVX

= 8k-

Before we proceed, let us formulate a simple Lemma.

Lemma 4.5 For any multi-index I and for any differential polynomial f[v] we have:

(i)

5V1X - 3\/1 51)1.

Proof By direct calculation:

sf af af 2 Of
D =D —D D —...
! (8V1x) ! (ale ! vy 0 v
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0 0 0 0 8
=D, f —-D? f + D? fo_ A
oV, oV 0V vy dvy

We can now find Lagrangians for the the DPKdV equations.

Proposition 4.6 The DPKAV equations are Lagrangian, with the Lagrange func-
tions

1
Liylv] = 7 VaVn = hi[v].

Proof Since hy = ﬁg;ﬁq does not depend on v directly, it follows from Lemma
4.5 and Corollary 4.4 that

8Ly Shy, 4D Shy,
o T “Vhx T = “Vix x
8v fk sv fk 8V,

= —Vnx + (gk)x~

5 Pluri-Lagrangian Structure of PKdV Hierarchy

Since the individual KdV and PKdV equations are evolutionary (not variational), it
seems not very plausible that they could have a pluri-Lagrangian structure. However,
it turns out that the PKdV hierarchy as a whole is pluri-Lagrangian. Let us stress that
this structure is only visible if one considers several PKdV equations simultaneously
and not individually. We consider a finite-dimensional multi-time R" parametrized
by t1, fa, ..., ty supporting the first N flows of the PKdV hierarchy. Recall that the
first PKdV equation reads v, = v, which allows us to identify #; with x.

The formulation of the main result involves certain differential polynomials intro-
duced in the following statement.

Lemma 5.1 e There exist differential polynomials b;;[v] depending on v and v,
o > 0, such that

D (gi)8; = Dx(bij). 19)

e These polynomials satisfy
bij +bji = 8ig;- (20)

o The differential polynomials a;;[v] (depending on vy« and vy«;;, o > 0) defined by

d1h; S1h; S1h;

=V Vxt Vxxt;
"8V, T 8Vyx " SViex

21

a,‘j
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satisfy
Dj(hi) + Dy (gi)vi; = Dx(aij). (22)

Proof The existence of polynomials b;; is shown in [12, 3.7.9]. Since

Dy (bij +bji) = Dy(gi)g; + & Dx(g;) = Dx(g:g)),

and since neither b;; + bj; nor g;g; contain constant terms, Eq. (20) follows. The last
claim is a straightforward calculation using Lemma 4.5:

81h; S1h; 81h;
Dy(ajj) =Dx \vi; — Sy +v xt,(S Ve +Vxxtjm +...

S1h; S1h; S1h;

= Vxt; Sy +v Vxxtj o Sy + Vxxxt; SVrrx

81h; 81h; S1h;
+thDx E +thij SV +Vxxtij SVrrx +

S1h; S1h; S1h;

= Vxit; TVX + Vaxtj < vy + Vxxxt; 78 Vexn

81h; oh; 81h; oh; S1h; oh;
— + 1 T
Vt; 5y Vt; Iy —Vxtj o N Vxtj 75— vy — Vxxt;j [ Vxxt; ey

S1hi
Vtj Sv

=Djh; — =Dj hj +Dx(gi)vi;-

Now we are in a position to give a pluri-Lagrangian formulation of the PKdV
hierarchy.

Theorem 5.2 The multi-time Euler-Lagrange equations for the Lagrangian two-
form £ = ZKJ. L;; dt; A dtj, with coefficients given by

1
L]i = Li = EVth[ - ]’ll‘ (23)
and
1 1 .
L;; .= E(Vtigj — v, &) + (aij —aji) — E(bij —bj) for j>i>1 (24)
are the first N — 1 nontrivial PKdV equations

Vi, =82, Vs =83, ... Viy = &N,

and equations that follow from these by differentiation.
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5.1 Variational Symmetries and the Pluri-Lagrangian Form

Before proving Theorem 5.2, let us give an heuristic derivation of expression (24) for
L;;. The ansatz is that different flows of the PKdV hierarchy should be variational
symmetries of each other. (We are grateful to V. Adler who proposed this derivation
to us in a private communication.)

Fix two distinct integers i, j € {2, 3, ..., N}. Consider the the ith DPKdV equa-
tion, which is nothing but the conventional two-dimensional variational system gen-
erated in the (x, #;)-plane by the Lagrange function

1
Ly[v] = 5V = hi[v].

Consider the evolutionary equation v;, = g;[v], i.e., the jth PKdV equation, and the
corresponding generalized vector field

0
Dg}. = Z(D[ gj)a—vl

1%

We want to show that D, is a variational symmetry of L ;. For this end, we look for
L;; such that

Dy, (L1;) — D; (L(g’ ) +Dy(Li) = 0. (25)

Here, LY;’ s the Lagrangian defined by (23) but with v, replaced by g;:

‘We have:
@) _ | 1
DLy} ) = V8 + va(gj)ti —Di(hj),
1 1
Dg, (Ly;) = z(gj)xvt,- + va(gj)t,- — Dy, (hy).

Upon using (22) and (19), and introducing the polynomial

(&) S1hi S1h; S1hi
d4ij =8 8 +(gl)x +(g])xx +...

OVixx

obtained from a;; through the replacement of v;; by g;, we find:

1
D (L) - Dy, (L11) = 5vix8) (g,—>xv,,.—Dl-(h,-)+Dg,<h,-)
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— v — 2 (& — @i+ ey + (a)) (g
o i J 2 J/X J J/xX ij x J
_ 1 1 (€3]

= ZVix&j + *(gj)xvr,' —\4ji — 4y - (gi)xgj

2 2 L x

1 .
= E(Vtigj)x + (ai(f/) _aji) — (bij)x-
X

We denote the antiderivative with respect to x of this quantity by

i 1 )
Lf;.) = Evfigj + (ai;’j - aji) — bj;.

The analogous calculation with coordinates x and ¢; yields

| 1 |
Dy (Li)) —D; (L) = —S O+ (ay —aff’) + b

We denote its antiderivative by

j 1 .
L] = THVu8i Tt (a,-, - aﬁ)) +bji.
Now we look for a differential polynomial L;;[v] depending on the partial deriv-

atives of v with respect to x, #; and ¢; that reduces to Lfi,) and to ij.' ) after the substi-
tutions v;, = g; and v, = g;, respectively. It turns out that there is a one-parameter
family of such functions, given by

1 1 1
Lij = cvyve; + (ajj —aji) + (5 - C) Vi 8j — (5 +C> vi;8i + 5 (ji = bij) +cgig;

for ¢ € R. Checking this is a straightforward calculation using Eq. (20). Our theory
does not depend in any essential way on the choice of L;; within this family. For
aesthetic reasons we chose ¢ = 0, which gives us Eq. (24).

Remark 5.3 We could also take Z to be the c-linear part of the form we have just
obtained, i.e. £ = Zl<i<j (v, — &) (v, — g;) dt; Adt;. One can think of this as
choosing ¢ = 0o. Such a two-form .Z can be considered for any family of evolu-
tionary equations v, = g;[v]. However, due to the vanishing components L ;, this
form .Z has no relation to the classical variational formulation of the individual
differential equations vy;, = (gi)x-

Eventually, Eq. (25) leads to the following closedness property.

Proposition 5.4 The two-form £ =7, _ i Lij dt; A dtj, with coefficients given by
(23) and (24), is closed as soon as v solves all but one of the PKdV equations
sz =g29""V[N ng'
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Proof We use the notation

d¥ = Z M,'jk dy; A dl‘_,’ A dt, Mijk =Dy L,-j — D_j L +D; ij (26)

i<j<k

We start by showing that M;;; =Dy L;; —D; L1 + Dy L j; vanishes as soon as
either Vi, = &5 OF vy = gk is satisfied. Indeed, we have:

My =Dy Li; —D; Ly +Dy Lj
1

1 1
= 5VynVx T 5V Ve — Dyh; — SViuVe = SV Ve, + Dj hy

1
+ z ( xt; 8k +Vt,» Dy gr — Vi 8j — Vi D, gj)

1
+Dyhj+v,Dygj —Djhy —v; Dy gt — E(gk D, g; — 8 Dx &)

1

- 5( l_,vxtk - vtkvxtj + vxt,-gk - th Dx 8k

— Ve 8 + Vi Dy gj — 8k Dy gj + & D gk)

1
(viy = 8/) Dx (v, = &) = 5 (vu — 8) D (v, — &) - 27)

N =

For the case i, j, k > 1, we assume without loss of generality that v, = g; and v;, =
g are satisfied. We do not assume that v, = g, holds, and correspondingly we do
not make any identification involving v, , vy, .... Using Eq.(27), we find:

D, M;;x =D, (Dk Lij—D; Ly +D; ij)
=Dy (D L1; = D; L) = D (D L = Dy Ly;) + D Dy Lig = Dy L)
=0.

Since these polynomials do not contain constant terms, it follows that
Dk L,‘j — Dj L,‘k + D,‘ ij =0.
O

Remark 5.5 Assuming that the statement of Theorem 5.2 holds true, one can easily
prove a somewhat weaker claim than Proposition 5.4, namely that the two-form . is
closed on simultaneous solutions of all the PKdV equations. Indeed, by Proposition
2.2,d.Z is constant on solutions of the multi-time Euler-Lagrange equations v, = g;.
Vanishing of this constant follows from the fact that d.Z = 0 on the trivial solution
v=0.
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5.2 The Multi-time Euler-Lagrange Equations

Proof (of Theorem 5.2) We check all multi-time Euler-Lagrange Eqs. (5)—(7) indi-
vidually. If N > 3, wefixk > j >i > 1.If N = 3, wetake j = 3,7 = 2, and in the

following ignore all equations containing k. We use the ¢
Equations (7)
e The equations

8Ly &ijLij n 81;L

Vi, 6V1t;tj 6V1t,-x

and

8ijLij  S8jxLjx  SkiLyi
+
Vi, Vi Vi,
are trivial because all terms vanish.
Equations (6)

e The equation

S1iLyi  8ijLji
vy dvy;
yields
1‘)[' B (Slihl l _ (Sijat]
2 Sy 2 Sy,
1 8ij 81h; 81h;
=-gi— — |v,— + Vi
2 3y, vy SVyx
1 81h;
T8 T

This simplifies to the PKdV equation

Vi, = &i-
e For o > 0, the equation
8L 8Ly
(vawrl 8Vt/.xa
yields

81;:hi 8;i 81h; S1h;
_1zt:_ ij Vrj]l+Vrlel
SV yarti 8thxu SV SVyx

onvention L ;; = —L;;, etc.

=0

=0

d1h;
+ VIIXXF +...

(28)

81h;
Ve
5VXXX
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81hi

(SontH

’

which is trivial.

e Similarly, the equation
81jL1j _ 8ijLij

vy Svy,
yields PKdV equation
v, = gj, (29)
and for @ > 0, the equation
SVya+ OV, xa

is trivial.
e All equations of the form
S1;iLii  8ijLji S1jLij  6ijLy;

= t; &1 d = t; ¢l
SVyr 8y, 1 gl OVyr vy 1 @ ¢ D

where [ contains any #; (/ > 1) are trivial because each term is zero.

e The equations
81;iLy;  81;Ly;

= x &1
Svi  ov, D

and 5Ly Sl
iy ik ik (ti ¢1)

vy, v,

are easily seen to be trivial as well.

Equations (5)

L1
e By construction, the equations 1; Y = 0fori > 1 are the equations
v
Var, = Dk gi (30)
. . . 81iLy .
For I containing any #, ! > 1,/ # i, the equations = ( are trivial.
vy,

e The last family of equations we discuss as a lemma because its calculation is far
from trivial.

S::L::
Lemma 5.6 The equations :sj L = 0 are corollaries of the PKAV equations.
Vo
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Proof (of Lemma 5.6) From Eq.(24) we see that the variational derivative of L;;
contains only three nonzero terms,

Mt S0 (1) <oy (5. (1)

vau aVon 3Vx°‘t,- 8VX"‘tj

5L
In particular, the equation ———~ = 0 yields D; g; — D; g; = 0, that is, the com-

patibility condition of the flows v‘; = g; and v;; = g;. To determine the first term on
the right hand side of Eq.(31) for an arbitrary o > 0, we use an indirect method.
Assume that the dimension of multi-time N is at least 4 and fix k > 1 distinct from
i and j. Let v be a solution of all PKdV equations except v,, = gx. By Proposition
5.4 we have AL

— v, =Dy Lijj =Dj Lix — D Lji. (32)

ov
7 I

Ly . o . .
i does not contain any derivatives with respect to #;, we can determine

by looking at the terms in the right hand side of Eq. (32) containing vy, . These

Since
aL;;
vy
are

1 81h; S1h;
Dj —Egiv,k—}—v,km—l—vxtkm—}—...

1 8ih; 8ih;
—Di —zgjvtk+vtkm+vmm+... .

Now we expand the brackets. By again throwing out all terms that do not contain
any vye,,, and those that cancel modulo v, = g; orv,, = g;, we get

D 81h; v D 81h; n D 81h; N
-V i\ <. Vx i\ <. Vxx j
KT Sy T\ By "\ 8
81h; S1h; Sih;
+ vy Di ( 5\/;) — Vi, Di (5Vx:) — Vaxy, Di (5\’”];() — ...

Comparing this to Eq. (32), we find that

iy _ o (D), p (S
8Vxnr o ! (SquJrl J (SquH ’

On the other hand we have

oLy oLy 81h; 81h;
_ D, —p; (=) =p, (22L) —p, (221 ),
8vxa,,. 3vxa,j (SonHrl (SVX(XH
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5Ly
so Equation (31) implies that % = 0 for any .
ca
823L03
Vya
implies the claim for N = 3.0

Since

= 0 does not depend on the dimension N > 3, the result for N > 4

This concludes the proof of Theorem 5.2. O

6 Relation to Hamiltonian Formalism

In this last section, we briefly discuss the connection between the closedness of .Z
and the involutivity of the corresponding Hamiltonians.

In Proposition 2.2 we saw that d.Z is constant on solutions. For the one—
dimensional case (d = 1) with .Z depending on the first jet bundle only, it has
been shown in [20] that this is equivalent to the commutativity of the corresponding
Hamiltonian flows. If the constant is zero then the Hamiltonians are in involution.
Now we will prove a similar result for the two-dimensional case.

We will use a Poisson bracket on formal integrals, i.e. equivalence classes of
functions modulo x-derivatives [12, Chap. 1-2]. In this section, the integral sign [
will always denote an equivalence class, not an integration operator. The Poisson
bracket due to Gardner-Zakharov-Faddeev is defined by

{fF,fG}:/(DX‘S(S‘—:) ‘S;—f

Using integration by parts, we see that this bracket is anti-symmetric. Less obvious
is the fact that it satisfies the Jacobi identity [18, Chap.7]. As we did when studying
the KdV hierarchy, we introduce a potential v that satisfies v, = u, and we identify
the space-coordinate x with the first coordinate #; of multi-time. We can now re-write
the Poisson bracket as

(33)

51F> 5G 5 F 8G

(rr.ge)= [ (o 30) 52 < [A20C

for functions F and G that depend on the x-derivatives of v but not on v itself.
Assume that the coefficients L;; of the Lagrangian two-from .# are given by

1
Lyj = Zvevy, = hj.
where h; is a differential polynomial in vy, vy, .. .. This is the case for the PKdV

hierarchy. The L,; are Lagrangians of the equations

Vxt; =ngj or Uy, =ngj,
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where g; 1= %, hence % = —D, g;. It turns out that the formal integral [h;

is the Hamilton functional for the equation u,;, = D, g; with respect to the Poisson
bracket (33). Formally:

81h

{fh,-,u(y)}={fh,-,fu8(-—y)}=—/Wj8(x—y) =D, g;(y),

where § denotes the Dirac delta.

Theorem 6.1 Ifd.¥ = 0 on solutions, then the Hamiltonians are in involution,
{[hi. i} =0.
Proof Recall notation (26). We have
My = / (Dx Ljx —Dj Lyt + Dy Lyj)
=/(—DjL1k+DkL1j)
2 2 2 2
1
= / (E(vmv,j — vx,/.v,k) —Dy L + Dy hk)

Using Eq. (21) (which, as opposed to Eq. (19), is independent of the form of 4; and
i), the evolution equations v,, = g;, and integration by parts, we find that

1 1 1 1
=/ (——vxt_fvtk — ViV, + Dj b + SV i, + ViV, — Dk Llj)

1
IMij = / (E(szkvz/ — Vi, Vi) — Dy aji + v, Dy g + Dy ayj — thngk)

1
= / (—5(8./ D, gt — g« Dx g;) — Di aji + Dx akf)

z/&M&

UL
SV Oy,

={/[h. [}

Hence if d.Z = 0 on solutions of the evolution equations Vi, = &j> then the Hamilton
functionals are in involution. O
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7 Conclusion

We have formulated the pluri-Lagrangian theory of integrable hierarchies, and pro-
pose it as a definition of integrability. The motivation for this definition comes from
the discrete case [10, 13, 20] and the fact that we have established a relation with the
Hamiltonian side of the theory. For the Hamiltonians to be in involution, we need the
additional fact that the Lagrangian two-form is closed. However, we believe that the
essential part of the theory is inherently contained in the pluri-Lagrangian formalism.

Since the KdV hierarchy is one of the most important examples of an integrable
hierarchy, our construction of a pluri-Lagrangian structure for the PKdV hierarchy
is an additional indication that the existence of a pluri-Lagrangian structure is a
reasonable definition of integrability.

It is remarkable that multi-time Euler-Lagrange equations are capable of produc-
ing evolutionary equations. This is a striking difference from the discrete case, where
the evolution equations (quad equations) imply the multi-time Euler—Lagrange equa-
tions (corner equations), but are themselves not variational [10].

Acknowledgments This research is supported by the Berlin Mathematical School and the DFG
Collaborative Research Center TRR 109 “Discretization in Geometry and Dynamics”.

A. A very short introduction to the variational bicomplex

Here we introduce the variational bicomplex and derive the basic results that we
use in the text. We follow Dickey, who provides a more complete discussion in
[12, Chap. 19]. Another good source on a (subtly different) variational bicomplex is
Anderson’s unfinished manuscript [2]. For ease of notation we restrict to real fields
u : RN — R, rather than vector-valued fields.

The space of (p, g)-forms .7 (79 consists of all formal sums

WP =" foup AL ASu, Adt AL AL,
where f is a polynomial in u and partial derivatives of u of arbitrary order with

respect to any coordinates. The vertical one-forms §u; are dual to the vector fields
%. The action of the derivative D; on w”*? is

D; P9 =" (D; f)8ur, A...ASus, Adtj AL AdL,
+ fSMIIi/\.../\SMIP/\dlj] /\.../\dqu
+ +f(§l/l]| /\.../\81/t]pi/\dl‘jI /\.../\dqu.

The integral of w”'? over an g-dimensional manifold is the (p, 0)-form defined by
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/wMZZ(/fdtjlA.../\dtjq)(Su,,/\.../\(Sulp.

We call (0, g)-forms horizontal and (p, 0)-forms vertical. The horizontal exterior
derivative d : of PP — o7 P4+ and the vertical exterior derivative § : of P9 —
o P19 are defined by the anti-derivation property

(a) d (wlplm A wé?z#]z) — dwfl#]l A w;zqu + (_1)P1+41 w]ﬂlv‘]l A dwé’z#}z’

5 (a)i’lﬂl Aw;zﬂz) — 80){71»(/1 Awé’zx]z + (_1)P1+(11 wfl,m /\56052'(]2,

and by the way they act on (0, 0)-, (1, 0)-, and (0, 1)-forms:

af af af
(b) df = Zj:Dj fdt; = Z,: (a_;,- +lea—ulu1j)dtj, 8f = ZI: a—ulau,,
(©) d(8us) =—> dus; Adt;,  8(up) =0,
J
(d) d(dl]) =0, 8((1[]) =0, 8(du;)=—-du;) = ZSu” A dlj.
J

Properties (a)—(d) determine the action of d and § on any form. The corresponding
mapping diagram is known as the variational bicomplex.

Y5 fa 1 1

10 & gan &4 aa-n & g
) ) ) )

SO0 L gon & a8 o

The following claims follow immediately from the definitions.
Proposition A.1 We have d> = 8> = 0 and d§ + 8d = 0.

Remark A.2 Thisimplies thatd + § : &7* — &7**!, where &7% := Uf:o of Gk=D) g
an exterior derivative as well.

Proposition A.3 We have D; § = §D,.

Proposition A.4 For a differential polynomial h, define the corresponding vertical
generalized vector field by 8, == ", h; ()"71 We have d 15, + 5, d = 0.

Proof Tt suffices to show this for (0,0)-forms (polynomials f in u and partial deriva-
tives of u), for (0,1)-forms d¢;, and for (1,0)-forms u,. For (0,0)-forms, both terms
of the claimed identity are zero:

d(tah f) =0, 1,df) =, (ZD,fdz,) =0.
J
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Likewise for (0,1)-forms:
d(1a, d1j) =0, 15, (ddry) = 0.

For (1,0)-forms we find:

L, (d8up) = 1, (— > Sup; A dt_,-) = > hyydty = —dh; = —d(Lgh 8u1).
J J

B. Proof of Lemma 2.4

Assume that the action is stationary on all d-dimensional stepped surfaces in RV . Let
S be a smooth d-dimensional surface in R" . Partition the space R" into hypercubes
C; of edge length . We can choose this partitioning in such a way that the surface S
does not contain the center of any of the hypercubes. Denote S := SN C;.

We give each hypercube its own coordinate system [—1, 1]V — C; and identify
the hypercube with its coordinates. In each punctured hypercube [—1, 1]V \ {0} we
define a family of balloon maps

ox
—— i | X lmax < @
BY =1, 11\ {0} > [=1, IV \ {0} : x > { I1X[lmax ™
X if 1% ]| max = &

fora € [0, 1]. Here, ||x||max := max(|x;], ... |xy]|) denotes the maximum norm with
respect to the local coordinates. The idea is that from the center of each hypercube,
we inflate a square balloon which pushes the curve away from the center, until it lies
on the boundary of the hypercube.

Indeed, the deformed surface S ' := 2N (SN) = % (S N C;) lies on the bound-
ary of the hypercube, i.e. within the (N — 1)-faces of the hypercube. We want it to lie
within the d-faces of the hypercube, which would imply that it is a stepped surface.
To achieve this, we introduce a balloon map

ax
4 if [l flmax < @
o W LN (T E W L A (VR J By ’
X if [ x[lmax = @

in each of the (N — 1)-faces C l] of the hypercube C;, which pushes the surface into
the (N — 2)-faces. We denote the surface we obtain this way by SiN ~2_1If the surface
happens to contain the center of a (N — 1)-face, we can slightly perturb the surface
without affecting the argument. By iterating this procedure, using balloon maps %ﬁ”
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in each k-face Cl.j (N > k >d+ 1), we obtain a surface S;’ that lies in the d-faces
(Figs.5 and 6).
Consider the (d + 1)-dimensional surface

N
=) U U #&/sinc)

k=d+1 j: CII isa agl0,1]
k -face of C;

that is swept out by the consecutive application of the balloon maps to SiN =S5NC;.
Assuming that ¢ is small compared to the curvature of S, the (d + 1)-dimensional
volume of each of the Uae[O,l] %ﬁ” (S{c N Cij) is of the order £?*!. The number of
such volumes making up M; only depends on the dimensions N and d, not on &, so
the (d + 1)-dimensional volume |M;| of M; is of the order |M;| = €(¢¢T).

Now consider a variation ¥ with compact support and restrict the surface S to
this support. Denote by S:= U, Sid the stepped surface obtained from S by repeated
application of balloon maps in all the hypercubes, and by M := | J; M; the (d + 1)-
dimensional surface swept out by these balloon maps. The bounary of M consists
of S, §, and a small strip of area &'(¢) connecting the boundaries of S and S (the
dotted line in Fig.5). The number of hypercubes intersecting S is of order £, so
M| = O~ Oy = O(e). It follows that

‘/Alpr”i/(gog_/‘pﬁi/agl =
N N

/ Lpr«;/&?’—i-ﬁ(s)
oM

/ dtpr 892”)’ +0@) — 0
M

as ¢ — 0. By assumption, fg tpry 6.2 =0 for all ¢, so the action on § will be
stationary as well. O

Fig. 5 Balloon maps in nine adjacent squares deforming a curve in R2. From left to right: o = 0.2,
a=07anda =1
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Fig. 6 The second and last iteration for a curve in R3. From left to right: & = 0.1, & = 0.6 and
a=1

Open Access This chapter is distributed under the terms of the Creative Commons Attribution-
Noncommercial 2.5 License (http://creativecommons.org/licenses/by-nc/2.5/) which permits any
noncommercial use, distribution, and reproduction in any medium, provided the original author(s)
and source are credited.

The images or other third party material in this chapter are included in the work’s Creative
Commons license, unless indicated otherwise in the credit line; if such material is not included
in the work’s Creative Commons license and the respective action is not permitted by statutory
regulation, users will need to obtain permission from the license holder to duplicate, adapt or
reproduce the material.
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