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Abstract. Fuzzy extractors (Dodis et al., Eurocrypt 2004) convert
repeated noisy readings of a secret into the same uniformly distrib-
uted key. To eliminate noise, they require an initial enrollment phase
that takes the first noisy reading of the secret and produces a nonsecret
helper string to be used in subsequent readings. Reusable fuzzy extrac-
tors (Boyen, CCS 2004) remain secure even when this initial enrollment
phase is repeated multiple times with noisy versions of the same secret,
producing multiple helper strings (for example, when a single person’s
biometric is enrolled with multiple unrelated organizations).

We construct the first reusable fuzzy extractor that makes no assump-
tions about how multiple readings of the source are correlated (the only
prior construction assumed a very specific, unrealistic class of correla-
tions). The extractor works for binary strings with Hamming noise; it
achieves computational security under assumptions on the security of
hash functions or in the random oracle model. It is simple and efficient
and tolerates near-linear error rates.

Our reusable extractor is secure for source distributions of linear
min-entropy rate. The construction is also secure for sources with much
lower entropy rates—lower than those supported by prior (nonreusable)
constructions—assuming that the distribution has some additional struc-
ture, namely, that random subsequences of the source have sufficient
minentropy. We show that such structural assumptions are necessary to
support low entropy rates.

We then explore further how different structural properties of a noisy
source can be used to construct fuzzy extractors when the error rates are
high, building a computationally secure and an information-theoretically
secure construction for large-alphabet sources.
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1 Introduction

Fuzzy Extractors. Cryptography relies on long-term secrets for key derivation
and authentication. However, many sources with sufficient randomness to form
long-term secrets provide similar but not identical values of the secret at repeated
readings. Prominent examples include biometrics and other human-generated
data [11,19,24,44,45,57], physically unclonable functions (PUFs) [26,47,52,54],
and quantum information [3]. Turning similar readings into identical values is
known as information reconciliation; further converting those values into uni-
formly random secret strings is known as privacy amplification [3]. Both of these
problems have interactive and non-interactive versions. In this paper, we are
interested in the non-interactive case, which is useful for a single user trying
to produce the same key from multiple noisy readings of a secret at different
times. A fuzzy extractor [22] is the primitive that accomplishes both information
reconciliation and privacy amplification non-interactively.

Fuzzy extractors consist of a pair of algorithms: Gen (used once, at “enroll-
ment”) takes a source value w, and produces a key r and a public helper value p.
The second algorithm Rep (used subsequently) takes this helper value p and
a close w′ to reproduce the original key r. The standard correctness guaran-
tee is that r will be correctly reproduced by Rep as long as w′ is no farther
than t from w according to some notion of distance (specifically, we work with
Hamming distance; our primary focus is on binary strings, although we also
consider larger alphabets). The security guarantee is that r produced by Gen is
indistinguishable from uniform, even given p. In this work, we consider compu-
tational indistinguishability [25] rather than the more traditional information-
theoretic notion. (Note that so-called “robust” fuzzy extractors [10,17,21,41,43]
additionally protect against active attackers who modify p; we do not consider
them here, except to point out that our constructions can be easily made robust
by the random-oracle-based transform of [10, Theorem 1].)

Reusability. A fuzzy extractor is reusable (Boyen [9]) if it remains secure even
when a user enrolls the same or correlated values multiple times. For example,
if the source is a biometric reading, the user may enroll the same biometric with
different noncooperating organizations. Reusability is particularly important for
biometrics which, unlike passwords, cannot be changed or created. It is also
useful in other contexts, for example, to permit a user to reuse the same visual
password across many services or to make a single physical token (embodying a
PUF) usable for many applications.

Each enrollment process will get a slightly different enrollment reading wi,
and will run Gen(wi) to get a key ri and a helper value pi. Security for each
ri should hold even when an adversary is given all the values p1, . . . , pρ and
even the keys rj for j �= i (because one organization cannot be sure how other
organizations will use the derived keys).

As pointed out by Dodis et al. [20, Sect. 6], reusable extractors for the non-
fuzzy case (i.e., without p and Rep) can be constructed using leakage-resilient
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cryptography. However, adding error-tolerance makes the problem harder. Most
constructions of fuzzy extractors are not reusable [6,7,9,50]. In fact, the only
known construction of reusable fuzzy extractors [9] requires very particular rela-
tionships between wi values1, which are unlikely to hold for a practical source.

1.1 Our Contribution

A Reusable Fuzzy Extractor. We construct the first reusable fuzzy extractor
whose security holds even if the multiple readings wi used in Gen are arbitrar-
ily correlated, as long as the fuzzy extractor is secure for each wi individually.
This construction is the first to provide reusability for a realistic class of corre-
lated readings. Our construction is based on digital lockers; in the most efficient
instantiation, it requires only evaluation of cryptographic hash functions and is
secure in the random oracle model or under strong computational assumptions
on the hash functions2. The construction can output arbitrarily long r.

Our construction handles a wider class of sources than prior work. It is secure
if the bits of w are partially independent. Namely, we require that, for some
known parameter k, the substring formed by the bits at k randomly chosen
positions in w is unguessable (i.e., has minentropy that is superlogarithmic is
the security parameter). We call sources with this feature “sources with high-
entropy samples.” This requirement is in contrast to most constructions of fuzzy
extractors that require w to have sufficient minentropy.

All sources of sufficient minentropy have high-entropy samples (because sam-
pling preserves the entropy rate [55]). However, as we now explain, the family of
sources with high-entropy samples also includes some low-entropy sources. (Note
that, of course, the entropy of a substring never exceeds the entropy of the entire
string; the terms “high” and “low” are relative to the length.)

Low-entropy sources with high-entropy samples are easy to construct arti-
ficially: for example, we can build a source of length n whose bits are k-wise
independent by multiplying (over GF(2)) a fixed n × k matrix of rank k by a
random k-bit vector. In this source, the entropy rate of any substring of length
k is 1, while the entropy rate of the entire string is just k/n.

Such sources also arise naturally whenever w exhibits a lot of redundancy.
For example, when the binary string w is obtained via signal processing from
some underlying reading (such as an image of an iris or an audio recording of a
voice), the signal itself is likely to have a lot of redundancy (for example, nearby
pixels of an image are highly correlated). By requiring only high-entropy samples
rather than a high entropy rate, we free the signal processing designer from the
need to remove redundancy when converting the underlying reading to a string
w used in the fuzzy extractor. Thus, we enable the use of oversampled signals.

1 Specifically, Boyen’s construction requires that the exclusive or wi ⊕ wj of any two
secrets not leak any information about wi.

2 The term “digital lockers” was introduced by Canetti and Dakdouk [13]; the fact
that such digital lockers can be built easily out cryptographic hash functions was
shown by [38, Sect. 4].
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Our construction can tolerate n lnn
k errors (out of the n bits of w) if we allow

the running time of the construction (the number of hash function evaluations)
to be linear in n. More generally, we can tolerate cn lnn

k errors if we allow running
time linear in nc. Note that, since in principle k needs to be only slightly super-
logarithmic to ensure the high-entropy condition on the samples, our allowable
error rate is only slightly sublinear.

The Advantage of Exploiting the Structure of the Distribution. Follow-
ing the tradition of extractor literature [16,46], much work on fuzzy extractors
has focused on providing constructions that work for any source of a given minen-
tropy m. In contrast, our construction exploits more about the structure of the
distribution than just its entropy. As a result, it supports not only all sources
of a given (sufficiently high) minentropy, but also many sources with an entropy
rate much lower than the error rate. We know of no prior constructions with this
property. We now explain why, in order to achieve this property, exploiting the
structure of the distribution is necessary.

A fuzzy extractor that supports t errors out of a string of n bits and works
for all sources of minentropy m must have the entropy rate m

n at least as big
as the binary entropy3 of the error rate, h2( t

n ) (to be exact, m ≥ nh2( t
n ) −

1
2 log n − 1

2 ). The reason for this requirement is simple: if m too small, then a
single ball of radius t, which contains at least 2nh2(

t
n )− 1

2 log n− 1
2 points [1, Lemma

4.7.2, Eq. 4.7.5, p. 115], may contain the entire distribution of 2m points inside
it. For this distribution, an adversary can run Rep on the center of this ball
and always learn the key r. This argument leads to the following proposition,
which holds regardless of whether the fuzzy extractor is information-theoretic or
computational, and extends even to the interactive setting.

Proposition 1. If the security guarantee of a fuzzy extractor holds for any
source of minentropy m and the correctness guarantees holds for any t errors
and m < log |Bt| (where |Bt| denotes the number of points in a ball of radius
t), the fuzzy extractor must provide no security. In particular, for the binary
Hamming case, m must exceed nh2( t

n ) − 1
2 log n − 1

2 ≈ nh2( t
n ) > t log2

n
t .

Thus, in order to correct t errors regardless of the structure of the distribution, we
would have to assume a high total minentropy m. In contrast, by taking advan-
tage of the specific properties of the distribution, we can handle all distributions
of sufficiently high minentropy, but also some distributions whose minentropy
that is much less than t < nh2( t

n ).
Beating the bound of Proposition 1 is important. For example, the IrisCode

[19], which is the state of the art approach to handling what is believed to be the
best biometric [49], produces a source where m is less than nh2( t

n ) [8, Sect. 5].
PUFs with slightly nonuniform outputs suffer from similar problems [36].

3 Binary entropy h2(α) for 0 < α < 1 is defined as −α log2 α− (1−α) log2(1−α); it is
greater than α log2

1
α

and, in particular, greater than α for interesting range α < 1
2
.
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We emphasize that in applications of fuzzy extractors to physical sources,
any constraint on the source—whether minentropy-based or more structured—
is always, by necessity, an assumption about the physical world. It is no more
possible to verify that a source has high minentropy than it is to verify that
it has high-entropy samples4. Both statements about the source can be derived
only by modeling the source—for example, by modeling the physical processes
that generate irises or PUFs.

Some prior work on key agreement from noisy data also made assumptions
on the structure of the source (often assuming that it consists of independent
identically distributed symbols, e.g. [29,39,40,42,56]). However, we are not aware
of any work that beat the bound of Propostion 1, with the exception of the
work by Holenstein and Renner [30, Theorem 4]. Their construction supports
a uniform length n binary w, with a random selection of (n − m) bits leaked
to the adversary and t random bits flipped in w′. They show that it is possible
to support any m > 4t(1 − t

n ), which is lower than log |Bt| ≈ nh2( t
n ), but still

higher than t.

Constructions Exploiting the Structure of the Distribution for Larger
Alphabets. In addition to the binary alphabet construction that supports reuse
and low entropy rates, as discussed above, we explore how low entropy rates can
be supported when symbols of the string w comes from a large, rather than a
binary, alphabet. We obtain two additional constructions, both of which allow
for distributions whose total minentropy is lower than the volume of the ball of
radius t (in the large-alphabet Hamming space). Unfortunately, neither of them
provides reusability, but both can tolerate a linear error rate (of course, over the
larger alphabet, where errors may be more likely, because each symbol carries
more information).

Our second construction for large alphabets works for sources with sparse
high-entropy marginals: sources for which sufficiently many symbols have high
entropy individually, but no independence among symbols is assumed (thus, the
total entropy may be as low as the entropy of a single symbol).

Our third construction for large alphabets provides information-theoretic,
rather than computational, security. It works for sparse block sources. These are
sources in which a sufficient fraction of the symbols have entropy conditioned on
previous symbols.

Both constructions should be viewed as evidence that assumptions on the
source other than total minentropy may provide new opportunities for increasing
the error tolerance of fuzzy extractors.

Our Approach. Our approach in all three constructions is different from most
known constructions of fuzzy extractors, which put sufficient information in p

4 However, standard heuristics for estimating entropy can also be used to indicate
whether a source has high-entropy samples. For a corpus of noisy signals, repeat the
following a statistically significant number of times: (1) sample k indices (2) run the
heuristic entropy test on the corpus which each sample restricted to the k indices.
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to recover the original w from a nearby w′ during Rep (this procedure is called
a secure sketch). We deliberately do not recover w, because known techniques
for building secure sketches do not work for sources whose entropy rate is lower
than its error rate. (This is because they lose at least log |Bt| bits of entropy
regardless of the source. This loss is necessary when the source is uniform [22,
Lemma C.1] or when reusability against a sufficiently rich class of correlations is
desired [9, Theorem 11]; computational definitions of secure sketches suffer from
similar problems [25, Corollary 1].) Instead, in the computational constructions,
we lock up a freshly generated random r using parts of w in an error-tolerant
way; in the information-theoretic construction, we reduce the alphabet in order
to reduce the ball volume while maintaining entropy.

We note that the idea of locking up a random r has appeared in a prior the-
oretical construction of a computational fuzzy extractor for any source. Namely,
Bitansky et al. [5] show how to obfuscate a proximity point program that tests if
an input w′ is within distance t of the value w hidden inside the obfuscated
program and, if so, outputs the secret r (such a program would be output
by Gen as p and run by Rep). However, such a construction is based on very
strong assumptions (semantically secure graded encodings [48]) and, in contrast
to our construction, is highly impractical in terms of efficiency. Moreover, it is
not known to provide reusability, because known obfuscation of proximity point
programs is not known to be composable.

2 Definitions

For a random variables Xi over some alphabet Z we denote by X = X1, ...,Xn

the tuple (X1, . . . , Xn). For a set of indices J , XJ is the restriction of X to
the indices in J . The set Jc is the complement of J . The minentropy of X is
H∞(X) = − log(maxx Pr[X = x]), and the average (conditional) minentropy of
X given Y is H̃∞(X|Y ) = − log(Ey∈Y maxx Pr[X = x|Y = y]) [22, Sect. 2.4]. For
a random variable W , let H0(W ) be the logarithm of the size of the support of
W , that is H0(W ) = log |{w|Pr[W = w] > 0}|. The statistical distance between
random variables X and Y with the same domain is Δ(X,Y ) = 1

2

∑
x |Pr[X =

x] − Pr[Y = x]|. For a distinguisher D we write the computational distance
between X and Y as δD(X,Y ) = |E[D(X)] − E[D(Y )]| (we extend it to a class
of distinguishers D by taking the maximum over all distinguishers D ∈ D). We
denote by Ds the class of randomized circuits which output a single bit and have
size at most s.

For a metric space (M, dis), the (closed) ball of radius t around x is the set
of all points within radius t, that is, Bt(x) = {y|dis(x, y) ≤ t}. If the size of a
ball in a metric space does not depend on x, we denote by |Bt| the size of a ball
of radius t. We consider the Hamming metric over vectors in Zn, defined via
dis(x, y) = |{i|xi �= yi}|. For this metric, |Bt| =

∑t
i=0

(
n
i

)
(|Z| − 1)i. Un denotes

the uniformly distributed random variable on {0, 1}n. Unless otherwise noted
logarithms are base 2. Usually, we use capitalized letters for random variables
and corresponding lowercase letters for their samples.
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2.1 Fuzzy Extractors

In this section we define computational fuzzy extractors. Similar definitions
for information-theoretic fuzzy extractors can be found in the work of Dodis
et al. [22, Sects. 2.5–4.1]. The definition of computational fuzzy extractors allows
for a small probability of error.

Definition 1 [25, Definition 4]. Let W be a family of probability distributions
over M. A pair of randomized procedures “generate” (Gen) and “reproduce”
(Rep) is an (M,W, κ, t)-computational fuzzy extractor that is (εsec, ssec)-hard
with error δ if Gen and Rep satisfy the following properties:

– The generate procedure Gen on input w ∈ M outputs an extracted string
r ∈ {0, 1}κ and a helper string p ∈ {0, 1}∗.

– The reproduction procedure Rep takes an element w′ ∈ M and a bit string
p ∈ {0, 1}∗ as inputs. The correctness property guarantees that if dis(w,w′) ≤
t and (r, p) ← Gen(w), then Pr[Rep(w′, p) = r] ≥ 1 − δ, where the probability
is over the randomness of (Gen,Rep).

– The security property guarantees that for any distribution W ∈ W, the string
r is pseudorandom conditioned on p, that is δDssec ((R,P ), (Uκ, P )) ≤ εsec.

In the above definition, the errors are chosen before P : if the error pattern
between w and w′ depends on the output of Gen, then there is no guarantee
about the probability of correctness. In Constructions 1 and 2 it is crucial that
w′ is chosen independently of the outcome of Gen.

Information-theoretic fuzzy extractors are obtained by replacing computa-
tional distance by statistical distance. We do make a second definitional modi-
fication. The standard definition of information-theoretic fuzzy extractors con-
siders W consisting of all distributions of a given entropy. As described in the
introduction, we construct fuzzy extractors for parameter regimes where it is
impossible to provide security for all distributions with a particular minentropy.
In both the computational and information-theoretic settings we consider a fam-
ily of distributions W.

2.2 Reusable Fuzzy Extractors

A desirable feature of fuzzy extractors is reusability [9]. Intuitively, it is the
ability to support multiple independent enrollments of the same value, allowing
users to reuse the same biometric or PUF, for example, with multiple noncoop-
erating providers5. More precisely, the algorithm Gen may be run multiple times
on correlated readings w1, ..., wρ of a given source. Each time, Gen will produce
a different pair of values (r1, p1), ..., (rρ, pρ). Security for each extracted string ri

should hold even in the presence of all the helper strings p1, . . . , pρ (the repro-
duction procedure Rep at the ith provider still obtains only a single w′

i close to
5 Reusability and unlinkability are two different properties. Unlinkability prevents an

adversary from telling if two enrollments correspond to the same physical source [15,
35]. We do not consider this property in this work.



124 R. Canetti et al.

wi and uses a single helper string pi). Because the multiple providers may not
trust each other, a stronger security feature (which we satisfy) ensures that each
ri is secure even when all rj for j �= i are also given to the adversary.

Our ability to construct reusable fuzzy extractors depends on the types of
correlations allowed among w1, . . . , wρ. Boyen [9] showed how to do so when each
wi is a shift of w1 by a value that is oblivious to the value of w1 itself (formally,
wi is a result of a transitive isometry applied to w1). Boyen also showed that even
for this weak class of correlations, any secure sketch must lose at least log |Bt|
entropy [9, Theorem 11].

We modify the definition of Boyen [9, Definition 6] for the computational
setting. We first present our definition and then compare to the definitions of
Boyen.

Definition 2 (Reusable Fuzzy Extractors). Let W be a family of distri-
butions over M. Let (Gen,Rep) be a (M,W, κ, t)-computational fuzzy extrac-
tor that is (εsec, ssec)-hard with error δ. Let (W 1,W 2, . . . ,W ρ) be ρ correlated
random variables such that each W j ∈ W. Let D be an adversary. Define the
following game for all j = 1, ..., ρ:

– Sampling The challenger samples wj ← W j and u ← {0, 1}κ.
– Generation The challenger computes (rj , pj) ← Gen(wj).
– Distinguishing The advantage of D is

Adv(D)
def
= Pr[D(r1, ..., rj−1, rj , rj+1, ..., rρ, p1, ..., pρ) = 1]

− Pr[D(r1, ..., rj−1, u, rj+1, ..., rρ, p1, ..., pρ) = 1].

(Gen,Rep) is (ρ, εsec, ssec)-reusable if for all D ∈ Dssec
and for all j = 1, ..., ρ,

the advantage is at most εsec.

Comparison with the Definition of Boyen. Boyen considers two versions
of reusable fuzzy extractors. In the first version (called ”outsider security” [9,
Definition 6]), the adversary sees p1, ..., pρ and tries to learn about the values
w1, ..., wρ or the keys r1, ..., rρ. This version is weaker than our version, because
the adversary is not given any ri values. In the second version (called “insider
security” [9, Definition 7]), the adversary controls some subset of the servers and
can run Rep on arbitrary p̃i. This definition allows the adversary, in particular,
to learn a subset of keys ri (by performing key generation on the valid pi), just
like in our definition. However, it also handles the case when the pi values are
actively compromised. We do not consider such an active compromise attack. As
explained in Sect. 1, protection against such an attack is called “robustness” and
can be handled separately—for example, by techniques from [10, Theorem 1].

In Boyen’s definitions, the adversary creates a perturbation function f i after
seeing p1, ..., pi−1 (and generated keys in case of insider security) and the chal-
lenger generates wi = f i(w1). The definition is parameterized by the class of
allowed perturbation functions. Boyen constructs an outsider reusable fuzzy
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extractor for unbounded ρ when the perturbation family is a family of tran-
sitive isometries; Boyen then adds insider security using random oracles.

In contrast, instead of considering perturbation functions to generate wi, we
simply consider all tuples of distributions as long as each distribution is in W,
because we support arbitrary correlations among them.

3 Tools: Digital Lockers, Point Functions, and Hash
Functions

Our main construction uses digital lockers, which are computationally secure
symmetric encryption schemes that retain security even when used multiple
times with correlated and weak (i.e., nonuniform) keys [14]. In a digital locker,
obtaining any information about the plaintext from the ciphertext is as hard as
guessing the key. They have the additional feature that the wrong key can be
recognized as such (with high probability). We use notation c = lock(key, val) for
the algorithm that performs the locking of the value val using the key key, and
unlock(key, c) for the algorithm that performs the unlocking (which will output
val if key is correct and ⊥ with high probability otherwise).

The following simple and efficient construction of digital lockers was shown
to provide the desired security in the random oracle model of [2] by Lynn,
Prabhakaran, and Sahai [38, Sect. 4]. Let H be a cryptographic hash function,
modeled as a random oracle. The locking algorithm lock(key, val) outputs the pair
nonce,H(nonce, key)⊕(val||0s), where nonce is a nonce, || denotes concatenation,
and s is a security parameter. As long as the entropy of key is superlogarithmic,
the adversary has negligible probability of finding the correct key; and if the
adversary doesn’t find the correct key, then the adversarial knowledge about key
and val is not significantly affected by this locker. Concatenation with 0s is used
to make sure that unlock can tell (with certainty 1−2−s) when the correct value
is unlocked.

It is seems plausible that in the standard model (without random oracles),
specific cryptographic hash functions, if used in this construction, will provide
the necessary security [13, Sect. 3.2], [18, Section 8.2.3]. Moreover, Bitansky and
Canetti [4], building on the work of [13,14], show how to obtain composable digi-
tal lockers based on a strong version of the Decisional Diffie-Hellman assumption
without random oracles.

The security of digital lockers is defined via virtual-grey-box simulatabil-
ity [4], where the simulator is allowed unbounded running time but only a
bounded number of queries to the ideal locker. Intuitively, the definition gives the
primitive we need: if the keys to the ideal locker are hard to guess, the simulator
will not be able to unlock the ideal locker, and so the real adversary will not be
able to, either. Formally, let idealUnlock(key, val) be the oracle that returns val
when given key, and ⊥ otherwise.

Definition 3. The pair of algorithm (lock, unlock) with security parameter λ is
an �-composable secure digital locker with error γ if the following hold:
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– Correctness For all key and val, Pr[unlock(key, lock(key, val)) = val] ≥ 1−γ.
Furthermore, for any key′ �= key, Pr[unlock(key′, lock(key, val)) =⊥] ≥ 1 − γ.

– Security For every PPT adversary A and every positive polynomial p, there
exists a (possibly inefficient) simulator S and a polynomial q(λ) such that for
any sufficiently large s, any polynomially-long sequence of values (vali, keyi)
for i = 1, . . . , �, and any auxiliary input z ∈ {0, 1}∗,

∣
∣
∣Pr

[
A

(
z, {lock (keyi, vali)}�

i=1

)
= 1

]
−

Pr
[
S

(
z, {|keyi|, |vali|}�

i=1

)
= 1

]∣
∣
∣ ≤ 1

p(s)

where S is allowed q(λ) oracle queries to the oracles

{idealUnlock(keyi, vali)}�
i=1 .

Point Functions. In one of the constructions for large alphabets, we use a
weaker primitive: an obfuscated point function. This primitive can be viewed
as a digital locker without the plaintext: it simply outputs 1 if the key is cor-
rect and 0 otherwise. Such a function can be easily constructed from the digital
locker above with the empty ciphertext, or from a strong version of the Deci-
sional Diffie-Hellman assumption [12]. We use notation c = lockPoint(key) and
unlockPoint(key, c); security is defined the same way as for digital lockers with a
fixed plaintext.

4 Main Result: Reusable Construction for Sources
with High-Entropy Samples

Sources with High-Entropy Samples. Let the source W = W1, . . . ,Wn

consist of strings of length n over some arbitrary alphabet Z (the case of greatest
interest is that of the binary alphabet Z = {0, 1}; however, we describe the
construction more generally). For some parameters k, α, we say that the source
W is a source with α-entropy k-samples if

H̃∞(Wj1 , . . . ,Wjk
| j1, . . . , jk) ≥ α

for uniformly random 1 ≤ j1, . . . , jk ≤ n. See Sect. 1 for a discussion of how
sources with this property come up naturally.

The Sample-then-Lock Construction. The construction first chooses a ran-
dom r to be used as the output of the fuzzy extractor. It then samples a random
subset of symbols v1 = wj1 , ..., wjk

and creates a digital locker that hides r using
v1

6. This process is repeated to produce some number � of digital lockers all con-
taining r, each unlockable with v1, ..., v�, respectively. The use of the composable
6 We present and analyze the construction with uniformly random subsets; however, if

necessary, it is possible to substantially decrease the required public randomness and
the length of p by using more sophisticated samplers. See [27] for an introduction to
samplers.
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digital lockers allows us to sample multiple times, because we need to argue only
about individual entropy of Vi. Composability also allows reusability7.

Note that the output r can be as long as the digital locker construction
can handle (in particular, the constructions discussed in Sect. 3 allow r to be
arbitrarily long). Also note that it suffices to have r that is as long as a seed for
a pseudorandom generator, because a longer output can be obtained by running
this pseudorandom generator on r.

Construction 1 (Sample-then-Lock). Let Z be an alphabet, and let W =
W1, ...,Wn be a source with α-entropy k-samples, where each Wj is over Z. Let
� be a parameter, to be determined later. Let lock, unlock be an �-composable
secure digital locker with error γ (for κ-bit values and keys over Zk). Define
Gen,Rep as:

Gen

1. Input: w = w1, ..., wn

2. Sample r
$← {0, 1}κ.

3. For i = 1, ..., �:
(i) Choose uniformly random 1 ≤

ji,1, ..., ji,k ≤ n
(ii) Set vi = wji,1 , ..., wji,k

.
(iii) Set ci = lock(vi, r).
(iv) Set pi = ci, (ji,1, ..., ji,k).

4. Output (r, p), where p = p1 . . . p�.

Rep

1. Input: (w′ = w′
1, ..., w

′
n, p =

p1 . . . p�)
2. For i = 1, ..., �:

(i) Parse pi as ci, (ji,1, ..., ji,k).
(ii) Set v′

i = w′
ji,1

, ..., w′
ji,k

.
(iii) Set ri = unlock(v′

i, ci). If
ri �=⊥ output ri.

3. Output ⊥.

How to Set Parameters: Correctness vs. Efficiency Tradeoff. To instan-
tiate Construction 1, we need to choose a value for �. Recall we assume that
dis(w,w′) ≤ t. For any given i, the probability that v′

i = vi is at least (1 − t
n )k.

Therefore, the probability that no v′
i matches during Rep, causing Rep output

to ⊥, is at most
(

1 −
(

1 − t

n

)k
)�

.

In addition, Rep may be incorrect due to an error in one of the lockers, which
happens with probability at most �·γ. Thus, to make the overall error probability
less than fuzzy extractor’s allowable error parameter δ we need to set � so that

(

1 −
(

1 − t

n

)k
)�

+ � · γ ≤ δ.

This provides a way to set � to get a desirable δ, given a digital locker with error
γ and source parameters n, t, k.

7 For the construction to be reusable ρ times the digital locker must be composable
� · ρ times.
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To get a bit more insight, we need to simplify the above expression. We can
use the approximation ex ≈ 1 + x to get

(

1 −
(

1 − t

n

)k
)�

≈ (1 − e− tk
n )� ≈ exp(−�e− tk

n ).

The value γ can be made very small very cheaply in known locker constructions,
so let us assume that γ is small enough so that � · γ ≤ δ/2. Then if tk = cn ln n
for some constant c, setting � ≈ nc log 2

δ suffices.
We now provide the formal statement of security for Construction 1; we

consider reusability of this construction below, in Theorem 2.

Theorem 1. Let λ be a security parameter, Let W be a family of sources over
Zn with α-entropy k-samples for α = ω(log λ). Then for any ssec = poly(λ)
there exists some εsec = ngl(λ) such that Construction 1 is a (Zn,W, κ, t)-
computational fuzzy extractor that is (εsec, ssec)-hard with error δ = (1 − (1 −
t
n )k)� + �γ ≈ exp(−�e− tk

n ) + �γ. (See above for an expression of � as a function
the other parameters.)

Proof. Correctness is already argued above. We now argue security.
Our goal is to show that for all ssec = poly(λ) there exists εsec = ngl(λ)

such that δDssec ((R,P ), (U,P )) ≤ εsec. Fix some polynomial ssec and let D be
a distinguisher of size at most ssec. We want to bound

|E[D(R,P )] − E[D(U,P )]|

by a negligible function.
We proceed by contradiction: suppose this difference is not negligible. That

is, suppose that there is some polynomial p(·) such that for all λ0 there exists
some λ > λ0 such that

|E[D(R,P )] − E[D(U,P )]| > 1/p(λ).

We note that λ is a function of λ0 but we omit this notation for the remainder
of the proof for clarity.

By the security of digital lockers (Definition 3), there is a polynomial q and
an unbounded time simulator S (making at most q(λ) queries to the oracles
{idealUnlock(vi, r)}�

i=1) such that
∣
∣
∣E[D(R,P1, ..., P�)] − E

[
S{idealUnlock(vi,r)}�

i=1
(
R, {ji,1, ..., ji,k}�

i=1, k, κ
)]∣∣

∣

≤ 1
3p(λ)

. (1)

The same is true if we replaced R above by an independent uniform random
variable U over {0, 1}κ. We now prove the following lemma, which shows that S
cannot distinguish between R and U .
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Lemma 1. Let U denote the uniform distribution over {0, 1}κ. Then
∣
∣
∣E

[
S{idealUnlock(vi,r)}�

i=1
(
R, {ji,1, ..., ji,k}�

i=1, k, κ
)]

−E

[
S{idealUnlock(vi,r)}�

i=1
(
U, {ji,1, ..., ji,k}�

i=1, k, κ
)] ∣

∣
∣

≤ q(q + 1)
2α

≤ 1
3p(λ)

, (2)

where q is the maximum number of queries S can make.

Proof. Fix any u ∈ {0, 1}κ (the lemma will follow by averaging over all u). Let
r be the correct value of R. The only information about whether the value is
r or u can obtained by S through the query responses. First, modify S slightly
to quit immediately if it gets a response not equal to ⊥ (such S is equally
successful at distinguishing between r and u, because the first non-⊥ response
tells S if its input is equal to the locked value r, and subsequent responses
add nothing to this knowledge; formally, it is easy to argue that for any S,
there is an S′ that quits after the first non-⊥ response and is just as success-
ful). There are q + 1 possible values for the view of S on a given input (q of
those views consist of some number of ⊥ responses followed by the first non-⊥
response, and one view has all q responses equal to ⊥). By [22, Lemma 2.2b],
H̃∞(Vi|V iew(S), {jik}) ≥ H̃∞(Vj |{jik})− log(q +1) ≥ α− log(q +1). Therefore,
at each query, the probability that S gets a non-⊥ answer (equivalently, guesses
Vi) is at most (q + 1)2−α. Since there are q queries of S, the overall probability
is at most q(q + 1)/2α. Then since 2α is ngl(λ), there exists some λ0 such that
for all λ > λ0, q(q + 1)/2α ≤ 1/(3p(λ)).

Adding together Eqs. 1, 2, and 1 in which R is replaced with U , we obtain that

δD((R,P ), (U,P )) ≤ 1
p(λ)

.

This is a contradiction and completes the proof of Theorem 1.
Reusability of Construction 1. The reusability of Construction 1 follows from
the security of digital clockers. Consider any ρ number of reuses. For each fixed
i ∈ {1, ..., ρ}, we can treat the keys r1, . . . , ri−1, ri+1, . . . , rρ and the sampled
positions as auxiliary input to the digital locker adversary. The result follows
by simulatability of this adversary, using the same argument as the proof of
Theorem 1 above. Note that this argument now requires the digital locker to be
ρ · �-composable.

Theorem 2. Fix ρ and let all the variables be as in Theorem 1, except that
(lock, unlock) is an � · ρ-composable secure digital locker (for κ-bit values and
keys over Zk). Then for all ssec = poly(n) there exists some εsec = ngl(n) such
that Construction 1 is (ρ, εsec, ssec)-reusable fuzzy extractor.

Comparison with work of [51]. The work of Škorić and Tuyls [51] can be
viewed as a fuzzy extractor that places the entire string into a single digital
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locker (in their paper, they use the language of hash functions). Their Rec pro-
cedure symbol searches for a nearby value that unlocks the digital locker, limiting
Rec to a polynomial number of error patterns. We use a subset of symbols to
lock and take multiple samples, greatly increasing the error tolerance.

5 Additional Constructions for the Case of Large
Alphabets

In this section we provide additional constructions of fuzzy extractors that
exploit the structure of the distribution w (instead of working for all distributions
of a particular min-entropy). As stated in the introduction, both constructions
work for low entropy rates when w comes from a large source alphabet Z.

5.1 Construction for Sources with Sparse High-Entropy Marginals

In this section, we consider an alternative construction that is suited to sources
over large alphabets. Intuitively, we use single symbols of w to lock bits of a secret
that we then transform into r; we use error-correcting codes to handle bits of
the secret that cannot be retrieved due to errors in w′. Our main technical tool
is obfuscated point functions (a weaker primitive than digital lockers; see Sect. 3
for the definition).

This construction requires enough symbols individually to contain sufficient
entropy, but does not require independence of symbols, or even “fresh” entropy
from them. Unlike the previous construction, it tolerates a linear fraction of
errors (but over a larger alphabet, where errors may be more likely.). However,
it cannot work for small alphabets, and is not reusable.

Sources with Sparse High-Entropy Marginals. This construction works
for distributions W = W1, ...,Wn over Zn in which enough symbols Wj are
unpredictable even after adaptive queries to equality oracles for other symbols.
This quality of a distribution is captured in the following definition.

Definition 4. Let idealUnlock(key) be an oracle that returns 1 when given key
and 0 otherwise. A source W = W1, ...,Wn has β-sparse α-entropy q-marginals if
there exists a set J ⊂ {1, ..., n} of size at least n−β such that for any unbounded
adversary S,

∀j ∈ J, H̃∞(Wj |V iew(S(·)))) ≥ α.

where S is allowed q queries to the oracles {idealUnlock(Wi)}n
i=1.

We show some examples of such sources in Appendix A.4. In particular, any
source W where for all j, H∞(Wj) ≥ α = ω(log λ) (but all symbols may arbitrar-
ily correlated) is a source with sparse high-entropy marginals (Proposition 3).
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The Error-Correct-and-Obfuscate Construction. This construction is
inspired by the construction of Canetti and Dakdouk [13]. Instead of having
large parts of the string w unlock r, we have individual symbols unlock bits of
the output.

Before presenting the construction we provide some definitions from error
correcting codes. We use error-correct codes over {0, 1}n which correct up to t
bit flips from 0 to 1 but no bit flips from 1 to 0 (this is the Hamming analog of
the Z-channel [53])8.

Definition 5. Let e, c ∈ {0, 1}n be vectors. Let x = Err(c, e) be defined as follows

xi =

{
1 ci = 1 ∨ ei = 1
0 otherwise.

Definition 6. A set C (over {0, 1}n) is a (t, δcode)-Z code if there exists an
efficient procedure Decode such that

∀e ∈ {0, 1}n|Wgt(e) ≤ t, Pr
c∈C

[Decode(Err(c, e)) �= c] ≤ δcode.

Construction 2 (Lock-and-Error-Correct). Let Z be an alphabet and let
W = W1, ...,Wn be a distribution over Zn. Let C ⊂ {0, 1}n be (t, δcode)-Z code.
Let lockPoint, unlockPoint be an n-composable secure obfuscated point function
with error γ (for keys over Z). Define Gen,Rep as:

Gen

1. Input: w = w1, ..., wn

2. Sample c ← C.
3. For j = 1, ..., n:

(i) If cj = 0:
– Let pj = lockPoint(wj).

(ii) Else: rj
$← Z.

– Let pj = lockPoint(rj).
4. Output (c, p), where p = p1 . . . pn.

Rep

1. Input: (w′, p)
2. For j = 1, ..., n:

(i) If unlockPoint(w′
j , pj) = 1: set

c′
j = 0.

(ii) Else: set c′
j = 1.

3. Set c = Decode(c′).
4. Output c.

As presented, Construction 2 is not yet a computational fuzzy extractor. The
codewords c are not uniformly distributed and it is possible to learn some bits
of c (for the symbols of W without much entropy). However, we can show
that c looks like it has entropy to a computationally bounded adversary who

8 Any code that corrects t Hamming errors also corrects t 0 → 1 errors, but more
efficient codes exist for this type of error [53]. Codes with 2Θ(n) codewords and
t = Θ(n) over the binary alphabet exist for Hamming errors and suffice for our
purposes (first constructed by Justensen [32]). These codes also yield a constant
error tolerance for 0 → 1 bit flips. The class of errors we support in our source (t
Hamming errors over a large alphabet) and the class of errors for which we need
codes (t 0 → 1 errors) are different.



132 R. Canetti et al.

knows p. Applying a randomness extractor with outputs over {0, 1}κ (techni-
cally, an average-case computational randomness extractor) to c, and adding the
extractor seed to p, will give us the desired fuzzy extractor. See Appendix A.1
for the formal details.

Construction 2 is secure if no distinguisher can tell whether it is working
with rj or wj . By the security of point obfuscation, anything learnable from
the obfuscation is learnable from oracle access to the function. Therefore, our
construction is secure as long as enough symbols are unpredictable even after
adaptive queries to equality oracles for individual symbols, which is exactly the
property satisfied by sources with sparse high-entropy marginals.

The following theorem formalizes this intuition (proof in Appendix B).

Theorem 3. Let λ be a security parameter. Let Z be an alphabet. Let W be a
family of sources with β-sparse α = ω(log λ)-entropy q-marginals over Zn, for
any q = poly(n). Furthermore, let C be a (t, δcode)-Z code over Zn. Then for
any ssec = poly(n) there exists some εsec = ngl(n) such that Construction 2,
followed by a κ-bit randomness extractor (whose required input entropy is ≤
H0(C) − β), is a (Zn,W, κ, t)-computational fuzzy extractor that is (εsec, ssec)-
hard with error δcode + n(1/|Z| + γ).

Entropy vs. Error Rate. The minimum entropy necessary to satisfy
Definition 4 is ω(log λ) (for example, when all symbols are completely depen-
dent but are all individually unguessable). The construction corrects a constant
fraction of errors. When n = λ1/c then the entropy is smaller than the number
of errors m = ω(log λ) < Θ(n) = λ1/c.

Output Length. The extractor that follows Construction 2 can output H0(C)−
β − 2 log(1/εsec) bits using standard information-theoretic techniques (such as
the average-case leftover hash lemma [22, Lemma 2.2b, Lemma 2.4]). To get a
longer output, Construction 2 can be run multiple (say, μ) times with the same
input and independent randomness to get multiple values c, concatenate them,
and extract from the concatenation, to obtain an output of sufficient length
μ(H0(C) − β) − 2 log(1/εsec). The goal is to get an output long enough to use
as a pseudorandom generator seed: once the seed is obtained, it can be used to
generate arbitrary polynomial-length r, just like Construction 1.

Further Improvement. If most codewords have Hamming weight close to 1/2,
we can decrease the error tolerance needed from the code from t to about t/2,
because roughly half of the mismatches between w and w′ occur where cj = 1.

Lack of Reusability. Even though Construction 2 uses composable obfuscated
point functions, it is not reusable. Definition 4 allows sources with some “weak”
symbols that can be completely learned by an adversary observing p. If a source
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is enrolled multiple times this partial information may add up over time to reveal
the original value w1. In contrast, Construction 1, leaks no partial information
for the supported sources, allowing reusability.

5.2 Information-Theoretic Construction for Sparse Block Sources

The construction in this section has information-theoretic security, in contrast
to only computational security of the previous two constructions. It uses symbol-
by-symbol condensers to reduce the alphabet size while preserving most of the
entropy, and then applies a standard fuzzy extractor to the resulting string.

This construction requires less entropy from each symbol than the previous
construction; however, it places more stringent independence requirements on
the symbols. It tolerates a linear number of errors.

Sparse Block Sources. This construction works for sources W = W1, ...,Wn

over Zn in which enough symbols Wj contribute fresh entropy conditioned on
previous symbols. We call this such sources sparse block sources, weakening the
notion of block sources (introduced by Chor and Goldreich [16]), which require
every symbol to contribute fresh entropy.

Definition 7. A distribution W = W1, ...,Wn is an (α, β)-sparse block source
if there exists a set of indices J where |J | ≥ n − β such that the following holds:

∀j ∈ J,∀w1, ..., wj−1 ∈ W1, ...,Wj−1,H∞(Wj |W1 = w1, ...,Wj−1 = wj−1) ≥ α.

The choice of conditioning on the past is arbitrary: a more general sufficient
condition is that there exists some ordering of indices where most items have
entropy conditioned on all previous items in this ordering (for example, is pos-
sible to consider a sparse reverse block source [55]).

The Condense-then-Fuzzy-Extract Construction. The construction first
condenses entropy from each symbol of the source and then applies a fuzzy
extractor to the condensed symbols. We’ll denote the fuzzy extractor on the
smaller alphabet as (Gen′,Rep′). A condenser is like a randomness extractor but
the output is allowed to be slightly entropy deficient. Condensers are known with
smaller entropy loss than possible for randomness extractors (e.g. [23]).

Definition 8. A function cond : Z × {0, 1}d → Y is a (m, m̃, ε)-randomness
condenser if whenever H∞(W ) ≥ m, then there exists a distribution Y with
H∞(Y ) ≥ m̃ and (cond(W, seed), seed) ≈ε (Y, seed).

The main idea of the construction is that errors are “corrected” on the large
alphabet (before condensing) while the entropy loss for the error correction is
incurred on a smaller alphabet (after condensing).

Construction 3. Let Z be an alphabet and let W = W1, ...,Wn be a distribution
over Zn. We describe Gen,Rep as follows:
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Gen

1. Input: w = w1, ..., wn

2. For j = 1, ..., n:
(i) Sample seedi ← {0, 1}d.
(ii) Set vi = cond(wi, seedi).

3. Set (r, p′) ← Gen′(v1, ..., vn).
4. Set p = (p′, seed1, ..., seedn).
5. Output (r, p).

Rep

1. Input: (w′, p = (p′, seed1, ...,
seedn))

2. For j = 1, ..., n:
(i) Set v′

i = cond(w′
i, seedi).

3. Output r = Rep′(v′, p′).

The following theorem shows the security of this construction (proof in
Appendix B).

Theorem 4. Let W be a family of (α = Ω(1), β ≤ n(1 − Θ(1)))-sparse block
sources over Zn and let cond : Z × {0, 1}d → Y be a (α, α̃, εcond)-randomness
conductor. Define V as the family of all distributions with minentropy at least
α̃(n − β) and let (Gen′,Rep′) be (Yn,V, κ, t, εfext)-fuzzy extractor with error δ9.
Then (Gen,Rep) is a (Zn,W, κ, t, nεcond + εfext)-fuzzy extractor with error δ.

Overcoming Proposition 1. Proposition 1 shows that no fuzzy extractor can
be secure for all sources of a given minentropy m < log |Bt|. Construction 3
supports sparse block sources whose overall entropy is less than log |Bt|. The
structure of a sparse block source implies that H∞(W ) ≥ α(n − β) = Θ(n). We
assume that H∞(W ) = Θ(n). Using standard fuzzy extractors (for Gen′,Rep′) it
is possible to correct t = Θ(n) errors, yielding log |Bt| > Θ(n) when |Z| = ω(1).
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A Analysis of Construction 2

A.1 Computational Fuzzy Conductors and Computational
Extractors

In this section we introduce tools necessary to convert Construction 2 to a com-
putation fuzzy extractor. We first define an object weaker than a computa-
tional fuzzy extractor: it outputs a key with computational entropy (instead of
a pseudorandom key). We call this object a computational fuzzy conductor. It
is the computational analogue of a fuzzy conductor (introduced by Kanukurthi
and Reyzin [34]). Before defining this object, we define conditional computa-
tional “HILL” [28] entropy.

Definition 9. [31, Definition 3] Let (W,S) be a pair of random variables. W has
HILL entropy at least m conditioned on S, denoted HHILL

εsec,ssec
(W |S) ≥ m if there

exists a joint distribution (X,S), such that H̃∞(X|S) ≥ m and δDssec ((W,S),
(X,S)) ≤ εsec.

Definition 10. A pair of randomized procedures “generate” (Gen) and “repro-
duce” (Rep) is an (M,W, m̃, t)-computational fuzzy conductor that is (εsec, ssec)-
hard with error δ if Gen and Rep satisfy Definition 1, except the last condition
is replaced with the following weaker condition:

– for any distribution W ∈ W, the string r has high HILL entropy conditioned
on P . That is HHILL

εsec,ssec
(R|P ) ≥ m̃.

Computational fuzzy conductors can be converted to computational fuzzy
extractors (Definition 1) using standard techniques, as follows. The transfor-
mation uses a computational extractor. A computational extractor is the adap-
tion of a randomness extractor to the computational setting. Any information-
theoretic randomness extractor is also a computational extractor; however,
unlike information-theoretic extractors, computational extractors can expand
their output arbitrarily via pseudorandom generators once a long-enough out-
put is obtained. We adapt the definition of Krawczyk [37] to the average case:

Definition 11. A function cext : {0, 1}n × {0, 1}d → {0, 1}κ a (m, εsec, ssec)-
average-case computational extractor if for all pairs of random variables X,Y
(with X over {0, 1}n) such that H̃∞(X|Y ) ≥ m, we have

δDssec ((cext(X;Ud), Ud, Y ), Uκ × Ud × Y ) ≤ εsec.
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Combining a computational fuzzy conductor and a computational extractor
yields a computational fuzzy extractor:

Lemma 2. Let (Gen′, Rep′) be a (M,W, m̃, t)-computational fuzzy conduc-
tor that is (εcond, scond)-hard with error δ and outputs in {0, 1}n. Let cext :
{0, 1}n×{0, 1}d → {0, 1}κ be a (m̃, εext, sext)-average case computational extrac-
tor. Define (Gen,Rep) as:

– Gen(w; seed) (where seed ∈ {0, 1}d): run (r′, p′) = Gen′(w) and output r =
cext(r′; seed), p = (p′, seed).

– Rep(w′, (p′, seed)) : run r′ = Rep′(w′; p′) and output r = cext(r′; seed).

Then (Gen,Rep) is a (M,W, κ, t)-computational fuzzy extractor that is (εcond +
εext, s

′)-hard with error δ where s′ = min{scond − |cext| − d, sext}.
Proof. It suffices to show if there is some distinguisher D′ of size s′ where

δD′
((cext(X;Ud), Ud, P

′), (Uκ, Ud, P
′)) > εcond + εext

then there is an distinguisher D of size scond such that for all Y with H̃∞(Y |P ′) ≥
m̃,

δD((X,P ′), (Y, P ′)) ≥ εcond.

Let D′ be such a distinguisher. That is,

δD′
(cext(X,Ud) × Ud × P ′, Uκ × Ud × P ′) > εext + εcond.

Then define D as follows. On input (y, p′) sample seed ← Ud, compute r ←
cext(y; seed) and output D(r, seed, p′). Note that |D| ≈ s′ + |cext| + d = scond.
Then we have the following:

δD((X,P ′), (Y, P ′)) = δD′
((cext(X,Ud), Ud, P

′), cext(Y,Ud), Ud, P
′)

≥ δD′
((cext(X,Ud), Ud, P

′), (Uκ × Ud × P ′))

− δD′
((Uκ × Ud × P ′), (cext(Y,Ud), Ud, P

′))
> εcond + εext − εext = εcond.

where the last line follows by noting that D′ is of size at most sext. Thus D
distinguishes X from all Y with sufficient conditional minentropy. This is a
contradiction.

A.2 Security of Construction 2

It suffices to prove that Construction 2 is a (Zn,W, m̃ = H0(C) − β, t)-comp.
fuzzy conductor, i.e., that C has HILL entropy H0(C) − β conditioned on P .
The final extraction step will convert it to a computational fuzzy extractor (see
Lemma 2).

The security proof of Construction 2 is similar to the security proof of
Construction 1. However, it is made more complicated by the fact that the
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definition of sources with sparse high-entropy marginals (Definition 4) allows for
certain weak symbols that can easily be guessed. This means we must limit our
indistinguishable distribution to symbols that are difficult to guess. Security is
proved via the following lemma:

Lemma 3. Let all variables be as in Theorem 3. For every ssec = poly(n) there
exists some εsec = ngl(n) such that HHILL

εsec,ssec
(C|P ) ≥ H0(C) − β.

We give a brief outline of the proof, followed by the proof of the new state-
ment. It is sufficient to show that there exists a distribution C ′ with con-
ditional minentropy and δDssec ((C,P ), (C ′, P )) ≤ ngl(n). Let J be the set
of indices that exist according to Definition 4. Define the distribution C ′ as
a uniform codeword conditioned on the values of C and C ′ being equal on
all indices outside of J . We first note that C ′ has sufficient entropy, because
H̃∞(C ′|P ) = H̃∞(C ′|CJc) ≥ H∞(C ′, CJc)−H0(CJc) = H0(C)−|Jc| (the second
step is by [22, Lemma 2.2b]). It is left to show δDssec ((C,P ), (C ′, P )) ≤ ngl(n).
The outline for the rest of the proof is as follows:

– Let D be a distinguisher between (C,P ) and (C ′, P ). By the security of
obfuscated point functions,

∣
∣
∣E[D(C,P1, ..., Pn)] − E

[
S{idealUnlock(·)}n

i=1 (C, n · |Z|)
]∣
∣
∣

is small.
– Show that even an unbounded S making a polynomial number of queries to

the stored points cannot distinguish between C and C ′. That is,
∣
∣
∣E

[
S{idealUnlock(·)}n

i=1 (C, n · |Z|)
]

− E

[
S{idealUnlock(·)}n

i=1 (C ′, n · |Z|)
]∣
∣
∣

is small.
– By the security of obfuscated point functions,

∣
∣
∣E

[
S{idealUnlock(·)}n

i=1 (C ′, n · |Z|)
]

− E[D(C ′, P1, ..., Pn)]
∣
∣
∣

is small.

Proof (Proof of Lemma 3). The overall approach and the proof of the first
and third bullet as in Theorem 1. We only prove the second bullet. Define the
distribution X as follows:

Xj =

{
Wj Cj = 0
Rj Cj = 1.

Lemma 4. Δ
(
S{idealUnlock(Xi)}n

i=1 (C, n · |Z|) , S{idealUnlock(Xi)}n
i=1 (C ′, n · |Z|)) ≤

(n − β)2−(α+1).

Proof. It suffices to show that for any two codewords that agree on Jc, the
statistical distance is at most (n − β)2−(α+1).
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Lemma 5. Let c∗ be true value encoded in X and let c′ a codeword in C ′. Then,

Δ
(
S{idealUnlock(Xi)}n

i=1 (c∗, n · |Z|) , S{idealUnlock(Xi)}n
i=1 (c′, n · |Z|)

)

≤ (n − β)2−(α+1).

Proof. Recall that for all j ∈ J , H̃∞(Wj |V iew(S)) ≥ α. The only information
about the correct value of c∗

j is contained in the query responses. When all
responses are 0 the view of S is identical when presented with c∗ or c′. We now
show that for any value of c∗ all queries on j ∈ J return 0 with probability
1−2−α+1. Suppose not. That is, suppose the probability of at least one nonzero
response on index j is > 2−(α+1). Since w,w′ are independent of rj , the probabil-
ity of this happening when c∗

j = 1 is at most q/Z or equivalently 2− log |Z|+log q.
Thus, it must occur with probability:

2−α+1 < Pr[non zero response location j] (3)
= Pr[c∗

j = 1]Pr[non zero response location j ∧ c∗
j = 1]

+ Pr[c∗
j = 0]Pr[non zero response location j ∧ c∗

j = 0]

≤ 1 × 2− log |Z|+log q + 1 × Pr[non zero response location j ∧ c∗
j = 0]

We now show that for α ≤ log |Z| − log q:

Claim. If W is a source with β-sparse α-entropy q-marginals over Z, then α ≤
log |Z| − log q.

Proof. Let J ⊂ {1, ..., n} the set of good indices. It suffices to show that there
exists an S making q queries such that for some

j ∈ J, H̃∞(Wj |S{idealUnlock(Xi)}n
i=1) ≤ log |Z| − log q.

Let j ∈ J be some arbitrary element of J and denote by wj,1, ..., wj,q the q
most likely outcomes of Wj (breaking ties arbitrarily). Then

∑q
i=1 Pr[Wj =

wj,i] ≥ q/|Z|. Suppose not. This means that there is some wj,i with probability
Pr[Wj = wj,i] < 1/|Z|. Since there are Z − q remaining possible values of
Wj for their total probability to be at least 1 − q/|Z| at least of these values
has probability at least 1/Z. This contradicts the statement wj,1, ..., wj,q are the
most likely values. Consider S that queries the jth oracle on wj,1, .., wj,q. Denote
by Bad the random variable when Wj ∈ {wj,1, .., wj,q} After these queries the
remaining minentropy is at most:

H̃∞(Wj |SJW (·,·))

= − log
(
Pr[Bad = 1] × 1 + Pr[Bad = 0] × max

w
Pr[Wj = w|Bad = 0]

)

≤ − log (Pr[Bad = 1] × 1)

= − log
(

q

|Z|
)

= log |Z| − log q

This completes the proof of Claim A.2.
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Rearranging terms in Eq. 3, we have:

Pr[non zero response location j ∧ cj = 0] > 2−α+1 − 2−(log |Z|−log q) = 2−α

When there is a 1 response and cj = 0 this means that there is no remaining
minentropy. If this occurs with over 2−α probability this violates the condition on
W (Definition 4). By the union bound over the indices j ∈ J the total probability
of a 1 in J is at most (n−β)2−α+1. Recall that c∗, c′ match on all indices outside
of J . Thus, for all c∗, c′ the statistical distance is at most (n − β)2−α+1. This
concludes the proof of Lemma 5.

Lemma 4 follows by averaging over all points in C ′.

A.3 Correctness of Construction 2

We now argue correctness of Construction 2. We first assume ideal functionality
of the obfuscated point functions. Consider a coordinate j for which cj = 1.
Since w′ is chosen independently of the points rj , and rj is uniform, Pr[rj =
w′

j ] = 1/|Z|. Thus, the probability of at least one 1 → 0 bit flip (the random
choice ri being the same as w′

i) is ≤ n(1//|Z|). Since there are most t locations
for which wj �= w′

j there are at most t 0 → 1 bit flips in c, which the code will
correct with probability 1− δcode, because c was chosen uniformly. Finally, since
each obfuscated point function is correct with probability 1 − γ, Construction 2
is correct with error at most δcode + n(1/|Z| + γ).

A.4 Characterizing Sources with Sparse High-Entropy Marginals

Definition 4 is an inherently adaptive definition and a little unwieldy. In this
section, we partially characterize sources that satisfy Definition 4. The majority
of the difficulty in characterizing Definition 4 is that different symbols may be
dependent, so an equality query on symbol i may reshape the distribution of
symbol j. In the examples that follow we denote the adversary by S as the
simulator in Definition 3. We first show some sources that have sparse high-
entropy marginals and then show sources with high overall entropy that do not
have sparse high-entropy marginals

Positive Examples. We begin with the case of independent symbols.

Proposition 2. Let W = W1, ...,Wn be a source in which all symbols Wj are
mutually independent. Let α be a parameter. Let J ⊂ {1, ..., n} be a set of indices
such that for all j ∈ J , H∞(Wj) ≥ α. Then for any q, W is a source with
(n − |J |)-sparse (α − log(q + 1))-entropy q-marginals. In particular, when α =
ω(log n) and q = poly(n), then W is a source with (n − |J |)-sparse ω(log n)-
entropy q-marginals.

Proof. It suffices to show that for all j ∈ J, H̃∞(Wj |V iew(S(·))) = α− log(q+1)
where S is allowed q queries to the oracles {idealUnlock(Wi)}n

i=1. We can ignore
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queries for all symbols but the jth, as the symbols are independent. Furthermore,
without loss of generality, we can assume that no duplicate queries are asked,
and that the adversary is deterministic (S can calculate the best coins). Let
A1, A2, . . . Aq be the random variables representing the oracle answers for an
adversary S making q queries about the ith symbol. Each Ak is just a bit, and at
most one of them is equal to 1 (because duplicate queries are disallowed). Thus,
the total number of possible responses is q + 1. Thus, we have the following,

H̃∞(Wj |V iew(S(·))) = H̃∞(Wj |A1, . . . , Aq)
= H∞(Wj) − |A1, . . . , Aq|
= α − log(q + 1) ,

where the second line follows from the first by [22, Lemma 2.2].

In their work on computational fuzzy extractors, Fuller, Meng, and Reyzin [25]
show a construction for symbol-fixing sources, where each symbol is either uni-
form or a fixed symbol (symbol-fixing sources were introduced by Kamp and
Zuckerman [33]). Proposition 2 shows that Definition 4 captures, in particular,
this class of distributions. However, Definition 4 captures more distributions. We
now consider more complicated distributions where symbols are not independent.

Proposition 3. Let f : {0, 1}e → Zn be a function. Furthermore, let fj denote
the restriction of f ’s output to its jth coordinate. If for all j, fj is injective then
W = f(Ue) is a source with 0-sparse (e − log(q + 1))-entropy q-marginals.

Proof. f is injective on each symbol, so H̃∞(Wj |V iew(S)) = H̃∞(Ue|V iew(S)).
Consider a query qk on symbol j. There are two possibilities: either qk is not in
the image of fj , or qk can be considered a query on the preimage f−1

j (qk). Then
(by assuming S knows f) we can eliminate queries which correspond to the same
value of Ue. Then the possible responses are strings with Hamming weight at
most 1 (like in the proof of Claim 2), and by [22, Lemma 2.2] we have for all j,
H̃∞(Wj |V iew(S)) ≥ H∞(Wj) − log(q + 1).

Note the total entropy of a source in Proposition 3 is e, so there is a family
of distributions with total entropy ω(log n) for which Construction 2 is secure.
For these distributions, all the coordinates are as dependent as possible: one
determines all others. We can prove a slightly weaker claim when the correlation
between the coordinates Wj is arbitrary:

Proposition 4. Let W = W1, ...,Wn. Suppose that for all j, H∞(Wj) ≥ α, and
that q ≤ 2α/4 (this holds asymptotically, in particular, if q is polynomial and α is
super-logarithmic). Then W is a source with 0-sparse (α−1− log(q+1))-entropy
q-marginals.

Proof. Intuitively, the claim is true because the oracle is not likely to return 1
on any query. Formally, we proceed by induction on oracle queries, using the
same notation as in the proof of Proposition 2. Our inductive hypothesis is that
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Pr[A1 �= 0 ∨ · · · ∨ Ai−1 �= 0] ≤ (i − 1)21−α. If the inductive hypothesis holds,
then, for each j,

H∞(Wj |A1 = · · · = Ai−1 = 0) ≥ α − 1 . (4)

This is true for i = 1 by the condition of the theorem. It is true for i > 1 because,
as a consequence of the definition of H∞, for any random variable X and event
E, H∞(X|E) ≥ H∞(X) + log Pr[E]; and (i − 1)21−α ≤ 2q2−α ≤ 1/2.

We now show that Pr[A1 �= 0∨· · ·∨Ai �= 0] ≤ i21−α, assuming that Pr[A1 �=
0 ∨ · · · ∨ Ai−1 �= 0] ≤ (i − 1)21−α.

Pr[A1 �= 0 ∨ · · · ∨ Ai−1 �= 0 ∨ Ai �= 0]
= Pr[A1 �= 0 ∨ · · · ∨ Ai−1 �= 0] + Pr[A1 = · · · = Ai−1 = 0 ∧ Ai = 1]

≤ (i − 1)21−α + Pr[Ai = 1 |A1 = · · · = Ai−1 = 0]

≤ (i − 1)21−α + max
j

2−H∞(Wj |A1=···=Ai−1=0)

≤ (i − 1)21−α + 21−α

= i21−α

(where the third line follows by considering that to get Ai = 1, the adversary
needs to guess some Wj , and the fourth line follows by (4)). Thus, using i = q+1
in (4), we know H∞(Wj |A1 = · · · = Aq = 0) ≥ α − 1. Finally this means that

H̃∞(Wj |A1, . . . , Aq) ≥ − log(2−H∞(Wj |A1=···=Aq=0) Pr[A1 = · · · = Aq = 0]
+ 1 · Pr[A1 �= 0 ∨ · · · ∨ Aq �= 0])

≥ − log
(
2−H∞(Wj |A1=···=Aq=0) + q21−α

)

≥ − log
(
(q + 1)21−α

)
= α − 1 − log(q + 1) .

Negative Examples. Propositions 2 and 3 rest on there being no easy “entry”
point to the distribution. This is not always the case. Indeed it is possible for
some symbols to have very high entropy but lose all of it after equality queries.

Proposition 5. Let p = (poly(λ)) and let f1, ..., fn be injective functions
where fj : {0, 1}j×log p → Z10. Then define the distribution Un and consider
W1 = f1(U1,...,log p), W2 = f2(U1,...,2 log p), ....,Wn = fn(U). There is an adver-
sary making p × n queries such that H̃∞(W |V iew(S(·))) = 0.

Proof. Let x be the true value for Up×n. We present an adversary S that com-
pletely determines x. S computes y1

1 = f1(x1
1), ..., y

p
1 = f(xp

1). Then S queries
on (y1), ..., (yp) to the first oracle, exactly one answer returns 1. Let this value
be y∗

1 and its preimage x∗
1. Then S computes y1

2 = f2(x∗
1, x

1
2), ..., y

p
2 = f2(x∗

1, x
p
2)

and queries y1
2 , ..., y

p
2 . Again, exactly one of these queries returns 1. This process

is repeated until all of x is recovered (and thus w).
10 Here we assume that |Z| ≥ n × log p, that is the source has a small number of

symbols.
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The previous example relies on an adversary’s ability to determine a symbol
from the previous symbols. We formalize this notion next. We define the entropy
jump of a source as the remaining entropy of a symbol when previous symbols
are known:

Definition 12. Let W = W1, ...,Wn be a source under ordering i1, ..., in. The
jump of a symbol ij is Jump(ij) = maxwi1 ,...,wij−1

H0(Wij
|Wi1 = wi1 , ...,Wij−1 =

wij−1).

An adversary who can learn symbols in succession can eventually recover the
entire secret. In order for a source to have sparse high-entropy marginals, the
adversary must get “stuck” early enough in this recovery process. This translates
to having a super-logarithmic jump early enough.

Proposition 6. Let W be a distribution and let q be a parameter, if there exists
an ordering i1, ..., in such that for all j ≤ n−β +1, Jump(ij) = log q/(n−β +1),
then W is not a source with β-sparse high-entropy q-marginals.

Proof. For convenience relabel the ordering that violates the condition as 1, ..., n.
We describe an unbounded adversary S that determines W1, ...,Wn−β+1. As
before S queries the q/n possible values for W1 and determines W1. Then S
queries the (at most) q/(n − β + 1) possible values for W2|W1. This process is
repeated until Wn−β+1 is learned.

Presenting a sufficient condition for security is more difficult as S may inter-
leave queries to different symbols. It seems like the optimum strategy for S is
to focus on a single symbol at a time, but it is unclear how to formalize this
intuition.

B Analysis of Construction 3

Proof. Let W ∈ W. It suffices to argue correctness and security. We first argue
correctness.

Correctness: When wi = w′
i, then cond(wi, seedi) = cond(w′

i, seedi) and thus
vi = v′

i. Thus, for all w,w′ where dis(w,w′) ≤ t, then dis(v, v′) ≤ t. Then by
correctness of (Gen′,Rep′), Pr[(r, p) ← Gen′(v)∧r′ ← Rep(v′, p)∧r′ = r] ≥ 1−δ.

Security: We now argue security. Denote by seed the random variable consisting
of all n seeds and V the entire string of generated V1, ..., Vn. To show that

R|P, seed ≈nεcond+εfext
U |P, seed,

it suffices to show that H̃∞(V |seed) is nεcond close to a distribution with average
minentropy α̃(n − β). The lemma then follows by the security of (Gen′,Rep′)11.
11 Note, again, that (Gen′,Rep′) must be an average-case fuzzy extractor. Most known

constructions are average-case and we omit this notation.
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We now argue that there exists a distribution Y where H̃∞(Y |seed) ≥ α̃(n−
β) and (V, seed1, ..., seedn) ≈ (Y, seed1, .., seedn). First note since W is (α, β)
sparse block source that there exists a set of indices J where |J | ≥ n − β such
that the following holds:

∀j ∈ J,∀w1, ..., wj−1 ∈ W1, ...,Wj−1,H∞(Wj |W1 = w1, ...,Wj−1 = wj−1) ≥ α.

Then consider the first element of j1 ∈ J , ∀w1, ..., wj1−1 ∈ W1, ...,Wj1−1,

H∞(Wj1 |W1 = w1, ...,Wj1−1 = wj1−1) ≥ α.

Thus, there exists a distribution Yj1 with H̃∞(Yj1 |seedj1) ≥ α̃ such that

(cond(Wj1 , seedj1), seedj1 ,W1, ...,Wj1−1) ≈εcond
(Yj1 , seedj1 ,W1, ...,Wj1−1)

and since (seed1, ..., seedj1) are independent of these values

(cond(Wj1 , seedj1),Wj1−1, ...,W1, seedj1 , ..., seed1) ≈εcond

(Yj1 ,Wnj1−1, ...,W1, seedj1 , , ..., seed1) .

Consider the random variable

Zj1 = (Yj1 , cond(Wj1−1, seedj1−1), ..., cond(W1, seed1))

and note that H̃∞(Zj1 |seed1, ..., seedj1) ≥ α′. Applying a deterministic function
does not increase statistical distance and thus,

(cond(Wj1 , seedj1), cond(Wj1−1, seedj1−1), .., cond(W1, seed1), seedj1 , ..., seed1)
≈nεcond

(Zj1 , seedj1 , ..., seed1)

By a hybrid argument there exists a distribution Z with H̃∞(Z|seed) ≥ α̃(n−β)
where

(cond(Wn, seedn), ..., cond(W1, seed1), seedn, ..., seed1)
≈nεcond

(Z, seedn, ..., seed1).

This completes the proof of Theorem 4.
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