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Abstract. Industrial applications of model-driven engineering to
develop large and complex systems resulted in an increasing demand
for collaboration features. However, use cases such as model differencing
and merging have turned out to be a difficult challenge, due to (i) the
graph-like nature of models, and (ii) the complexity of certain opera-
tions (e.g. hierarchy refactoring) that are common today. In the paper,
we present a novel search-based automated model merge approach where
rule-based design space exploration is used to search the space of solution
candidates that represent conflict-free merged models. Our method also
allows engineers to easily incorporate domain-specific knowledge into the
merge process to provide better solutions. The merge process automat-
ically calculates multiple merge candidates to be presented to domain
experts for final selection. Furthermore, we propose to adopt a generic
synthetic benchmark to carry out an initial scalability assessment for
model merge with large models and large change sets.

1 Introduction

Scalable collaborative model-driven engineering (MDE) for complex projects
with multiple stakeholders and development groups working in a distributed
way (both geographically and in time) is a major research challenge [21]. In tra-
ditional software engineering, version control systems (VCS) such as SVN or Git
assist to work with textual documents in off-line collaboration scenarios having
long transactions and complex modifications between commits. Since multiple
collaborators may try to commit changes to the same document, a comparison or
difference is calculated prior to local commit, which may cause conflicts between
remote changes (already published to the server) and local changes (aimed to be
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committed now). Such conflicts need to be resolved by merging the remote and
local changes in a consistent way before a commit succeeds.

Unfortunately, the direct use of VCS in MDE is hindered by numerous fac-
tors implied by the differences between graph-based documents (e.g. models)
and textual documents (e.g. source code). A major challenge is related to model
comparison, which is also computationally more expensive over graphs, and it
gave birth to advanced industrial strength frameworks like EMF Compare [1]
or Diff/Merge [2] built into model-level version control systems (like in Papyrus
UML or AMOR [5]). In order to achieve scalability for large models, these frame-
works frequently assume that unique identifiers are available for model elements.
That assumption results in more efficient model comparison algorithms.

While model comparison is computationally more challenging, resolving con-
flicting model changes is still a cumbersome task in practice, which is frequently
performed manually by the engineers. EMF Compare and Diff/Merge enable
automated conflict resolution in a programmatic way — but writing code for an
automated merge is hardly a task for a domain expert. Furthermore, domain-
specific conflict resolution strategies are rarely taken into consideration in indus-
trial frameworks, hence the well-formedness of merge results is questionable.

In this paper, we propose a novel automated search-based model merge tech-
nique [20] which builds on off-the-shelf tools for the model comparison step, but
uses guided rule-based design space exploration (DSE) [18] for merging models.
In general, rule-based DSE aims to search and identify various design candidates
to fulfill certain structural and numeric constraints. The exploration starts from
an initial model and systematically traverses paths by applying operators. In our
context, the results of model comparison will be the initial model, while target
design candidates will represent the conflict-free merged models.

While many existing model merge approaches detect conflicts statically in a
preprocessing phase, our DSE technique carries out conflict detection dynami-
cally during exploration time as conflicting rule activations and constraint vio-
lations. Then multiple consistent resolutions of conflicts are presented to the
domain experts. Our technique allows to incorporate domain-specific knowledge
into the merge process by additional constraints, goals and operations to provide
better solutions. Finally, we propose to adapt a generic scalability benchmark
for assessing model merge performance for large models and large change sets,
which is also an innovative aspect of the paper.

The rest of the paper is structured as follows: A motivating case study of
modeling wind turbine control systems is presented in Sect. 2 together with the
basics of model comparison and merge. A high-level overview of our approach
is provided in Sect. 3. A detailed explanation of executing a merge process is
discussed in Sect. 4. The case study will also serve as an initial assessment of the
usefulness of a domain-specific merge technique while scalability evaluation will
be carried out by adapting the Train Benchmark [29] in Sect. 5. Related work is
summarized in Sect. 6 while Sect. 7 concludes our paper.
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2 Preliminaries

2.1 From Model Comparison to Model Merge

Model comparison refers to identifying the differences between models. It requires
reliability, precision and completeness as the merge process frequently relies on
the output of this phase to detect conflicts and to resolve the detected conflicts.
Altmanninger et al. [6] classifies model comparison methods based on the kind
of information available. Only models are provided as input for state-based tech-
niques, while change-based comparison relies on a list of the performed changes,
e.g. op1, op2, . . . opn.

Based on the results of model comparison, model merge synthesizes a com-
bined model which reconciles the identified differences. This is not always possi-
ble due to conflicts between model changes carried out by different collaborators.
A merged model is called syntactically correct if it corresponds to its metamodel,
and consistent when additional constraints of the domain are satisfied.

We use a simplified difference model derived from the EMF Compare tool [1]
to store the changes in EMF models. This allows us to accept different types of
comparison model (e.g. EMF Compare or Diff/Merge [2]) as an input of model
merge. It contains the following default change types: (1) create or delete an
object; (2) set, add or remove a value or an object to/from an attribute or
a reference, respectively. Furthermore, we annotate the priority of changes as
may or must which will be decided by users. Changes with must priority are
mandatory to be involved in the solutions while the others with may priority
can be omitted.

In the paper, we focus on three-way merge, which also uses the common
ancestor O of local copy L and remote copy R to derive the merged model M . To
determine the changes executed on O, a comparison is conducted between O ↔ L
and O ↔ R. The solution of merge M is obtained by applying a combination of
changes performed either on L or R to the original model O.

2.2 A Motivating Model Merge Scenario

The domain of our motivating example describes Wind Turbine Control Systems
(WTCS) developed by IK4-Ikerlan where different artefacts and algorithms for
controlling a wind turbine are specified and connected to sensors and actuators.
Models are specified by several collaborators, and consequently modifications
could result in merge conflicts.

We introduce a simplified example of a wind turbine (WT1) in Fig. 1. Real
models are obviously larger, sample models of this paper contain only artifacts
related to the cooling of the Generator Subsystem:

– Inputs: Wind turbine WT1 gets data from a temperature sensor specified by
the SystemInput identified as Temperature.

– Outputs: WT1 acts on two fans for cooling the wind turbine generator specified
by the SystemOutputs: Fan1Activator and Fan2Activator.
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(a) Original model

(b) Local instance (modified by User1) (c) Remote instance (modified by User2)

Fig. 1. Local and remote changes for 3-way merge

– Params: temperature limits for starting generator cooling can be specified by
SystemParams: CoolingTempLimit1 and CoolingTempLimit2.

Subsystem Generator contains all the control units for cooling the Generator:

– CoolingFan1: this control unit (of type FanCtrl) specifies the control algo-
rithm for fan #1 with High priority cycle with Temperature as SystemInput,
Fan1Activator as SystemOutput, CoolingTempLimit1 as SystemParam.

– CoolingFan2: this control unit (of type FanCtrl) specifies the control algo-
rithm for fan #2 with High priority cycle with Temperature as SystemInput,
Fan2Activator as SystemOutput and CoolingTempLimit2 as SystemParam.

As a running example, we investigate the following scenario:

Local Changes. The first expert creates a Local version of the model with the
following changes: (L1) the cycle attribute of CoolingFan1 is changed to Normal,
(L2) CoolingFan2 instance is deleted. (L3) A new control unit (WTCtrl) is created
with CoolingPump id. The new control unit is of type PumpCtrl with High cycle.
Its input references the existing Temperature and its param references the existing
CoolingTempLimit2. In contrast, (L4) its output references a new SystemOutput

instance identified as PumpActivator.

Remote Changes. Another expert also remotely modified and already com-
mitted the model (before the first expert working on the local version managed
to commit the model) to introduce the following remote changes: (R1) the cycle
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attribute of CoolingFan1 is changed to Low, (R2) the cycle attribute of CoolingFan2
is changed to Low, (R3) deletes SystemParam instance identified as CoolingTem-

pLimit2 and (R4) changes param reference of control unit identified as CoolingFan2

to SystemParam instance identified as CoolingTempLimit1.

Model Comparison. Table 1 shows the result of model comparison between
the different versions of the model calculated by using existing tools (using e.g.
EMF Compare or Diff/Merge [2]). The differences between the local and the
original model is denoted with Δ(L,O) (or shortly ΔL), while Δ(R,O) (or ΔR)
represents the differences between the remote and the original model.

Table 1. Elements of Δ(L) and Δ(R)

Change Annotation. After the comparison, the local collaborator annotates
local changes L2, L3 and L4 and remote change R2 as must which prescribes
that all such changes have to be present in the merged model unless some of
them are in a conflict. In such a case, the merged model should contain as
many (non-conflicting) must changes as possible, while some (conflicting) must
changes might be omitted from the merged model. All other changes are marked
as may to denote that the corresponding change may be included in the merged
model.

Challenges. The following challenges need to be addressed for our example:

– Calculate merged models automatically as a maximal subset of non-conflicting
changes from the local and remote change set. When there is a large number
of possible combination of changes where some of them are selected from
the local and the others from the remote branch, a merged model may be
restricted to solutions compliant with must and may change annotations.

– Use domain-specific goals and constraints to restrict merged models to consis-
tent ones (to ensure that all inputs and parameters are referenced by at least
one control unit and each output is referenced by different control unit).

– Specify domain-specific composite operations to guide the merge process into
a consistent solution (e.g. to remove inputs, parameters and outputs not ref-
erenced by any control unit).
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3 Model Merge by Design Space Exploration: Concepts

3.1 Conceptual Overview

We propose to exploit guided rule-based design space exploration (DSE) [18]
for automated model merge with an architecture depicted in Fig. 2. Rule-based
DSE aims at finding optimal solutions from the several design candidates which
satisfy several structural and numeric constraints, and they are reachable from
an initial model along a trajectory by applying a sequence of exploration rules.
The input of a rule-based DSE includes (1) the initial model used as the start of
the exploration; (2) goals which need to be satisfied by solutions; (3) the set of
exploration rules; (4) constraints that need to be respected in each exploration
state and (5) further guidance for the exploration process.

Fig. 2. Architecture of DSE Merge

We applied three-way model merge to a DSE problem as follows:

(1) the initial model contains the original model O and two difference models
(ΔL and ΔR)

(2) the main goal is that there are no executable changes left in ΔL and ΔR
along a specific exploration path.

(3) the operations are defined by change driven transformation rules to process
generic change objects (create, delete, set, add, remove) of the difference
models, and potentially composite (domain-specific) operators;

(4) constraints may identify inconsistencies and conflicts to eliminate certain
trajectories;

(5) as main exploration strategy, any changes annotated as must are tried to
be merged before resolving may changes.

Input. Our model merge approach takes three models as input: the original
model O and the difference models between local and original models ΔL as
well as the remote and original models ΔR. These together constitute the initial
model for DSE. The calculation of the difference models ΔL and ΔR is carried
out by an external comparison tool such as EMF Compare or Diff/Merge. Fur-
thermore, in order to derive efficient state encoding for the exploration process,
we assume that each element in the original model has some unique identifier.
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Output. The output of the merge process automatically derived by DSE is a
set of solutions where each solution consists of (i) the merged model M derived
by applying a (non-extensible and non-conflicting) subset of local and remote
changes on the original model O; (ii) the set of non-executed changes ΔL′,ΔR′;
and (iii) the collection of the deleted objects stored in Cemetery.

3.2 Key Aspects of Exploration Process

Each solution is derived along a trajectory from the initial state to a solution
state by applying generic and domain-specific operations. Along this trajectory,
we transform the original model O into the merged model M , and the change
models ΔL and ΔR are gradually reduced to ΔL′ and ΔR′. In each exploration
step, conflicts are detected and resolved by incrementally tracking the matches
(activations) of operations and constraints. Finally, a solution state is identified
if all goals are satisfied without violating a constraint along the trajectory.

Operations. We incorporate two kinds of operations in the exploration based
model merge: generic merge operations [30] and (domain-specific) composite
operations [14,23] (such as refactorings, or repair rules). Each operation is
captured by (graph) transformation rules [16], which consist of a precondition
described as a graph pattern (using the EMF-IncQuery language [10] in our case)
and an action part which captures model manipulations.

Generic merge operations are change-driven transformations [9], which con-
sume or produce change models as additional input or output. The precondition
selects an applicable change c from the deltas ΔL ∪ ΔR and may require the
existence of certain model elements in the origin model O. The action part of a
generic merge operation (1) modifies the original model O to apply a change, (2)
moves the change c from the difference set ΔL∪ΔR into a completed set Comp
to prevent the application of the change multiple times. Thus such change-driven
rules transform state-based merging into operation-based merging [12].

By default, domain-specific composite operations only manipulate the model
O without consuming the deltas. Therefore, they need to be complemented with
generic change-driven rules which identify the model-level changes carried out
by them and record them as difference models in the completed set. In most
cases, domain experts are responsible for capturing complex (domain-specific)
operations only at the preparation of the merge tool for the specific domain.
Collaborating engineers only use them as part of the merge process.

Conflict Detection and Resolution. A local change l ∈ ΔL and a remote
change r ∈ ΔR may be conflicting, i.e. it is impossible to obtain a consistent
merged model M by applying both l and r. Alternatively, in an operation-based
interpretation, a conflict denotes a pair of operations o1 and o2, whereas one
operation masks the effect of the other (i.e., they do not commute) or one oper-
ation disables the applicability of the other [23].

Instead of static (a priori) detection of conflicts as proposed in [17,24,27], we
detect conflicts on- the-fly during the exploration process by relying upon the
incremental book-keeping of rule activations and constraints. In each state of the
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DSE, we investigate one by one all (enabled) activations of transformation rules,
and try to find a solution by firing them. In case of a conflict, (1) firing one rule
may prevent the application of another activation, or (2) both rules are fireable,
but the result state violates a constraint. When two operations are confluent
(i.e. they can be applied in arbitrary order), state encoding of DSE [19] helps
identify that an already traversed state is reached. Hence applying operations in
a different order has no impact on the results.

Activations of rules and constraints are continuously and efficiently main-
tained when firing an operation (either generic or composite), thus disabled
rules and violated constraints are immediately identified. For that purpose, we
rely upon the reactive VIATRA framework [8] and incremental model queries.
The technicalities of conflict detection will be illustrated in Sect. 4.

Conflict Resolution by Exploration Strategy. In case of a conflict between
two operations, DSE will investigate both trajectories as possible resolutions and
derive two separate solutions correspondingly. Thus a merged model M derived
automatically as a solution contains no conflicts by definition.

In case of many conflicts, the result set can too large to be presented to
experts. Therefore, in order to reduce the number of solutions retrieved by DSE
and guide the exploration in case of conflicts, model changes can be prioritized
by the collaborators as may and must (see Table 1) prior to executing merge.

– If a change c1 with must priority is in conflict with another change c2 of may
priority, then the merge will always select the former (c1).

– If two conflicting changes c1 and c2 are both annotated with may than the
merge will randomly select one.

– However, if two changes c1 and c2 of must priority are in conflict, then the
merge process will enumerate both of them separately (in different solutions).

Goals. In generic, we aim to apply as many changes in ΔL and ΔR as pos-
sible to derive the merged model M . When extending a trajectory by any of
the remaining changes in ΔL′ or ΔR′ would cause a conflict with some already
applied change, a solution state of the DSE is reached. Technically, it is detected
by the termination of the rule system, i.e. no operations are activated. Addition-
ally, domain experts can provide domain-specific goals that act as heuristics for
the exploration and provide consistent solutions.

Altogether, we define a fully automated model merge approach where all pos-
sible resolutions of conflicts are calculated, and all consistent merged models are
prompted to experts, which was claimed to be beneficial in [31]. Representation
of solutions contains several layouts (e.g. tree, graph) and metrics (e.g. number of
executed changes) which help experts select the best solution for their purpose.

4 Elaboration of Model Merge on an Example

4.1 Operations and Goals

Change-Driven Rules for Generic Operations. We defined the fol-
lowing generic operations in the merge process for creating/deleting object,
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setting/adding/removing attribute and setting/adding/removing reference. For
space considerations, we only discuss operations for setting an attribute (setAt-
tribute) and deleting an object (deleteObject) in details (depicted in Fig. 3).

– setAttribute(ac,o): The precondition prescribes that an attribute change ac
is available in change set ΔL′ ∪ ΔR′ and its object o exists in the current
model. Its action sets (i) attribute ac.attribute of object o to the given value
ac.value, and (ii) moves the change ac to the completed set Comp.

– deleteObject(dc,o): The precondition states that a delete change dc is available
in the current change set ΔL′ ∪ ΔR′ and its referred object o exists in the
current state of the model where o is a leaf in the containment hierarchy.
The action part (i) deletes the object o from current state, (ii) puts it into
Cemetary and (iii) moves the change dc to the completed set Comp.

Domain-Specific Goals and Operations. Our example introduced in Sect. 2
requires to extend model merge with domain-specific knowledge to guarantee the
consistency of solutions. In the Wind Turbine Control System (WTCS) domain,
it is mandatory that all SystemInput and SystemParam instances should be refer-
enced by at least one control unit and each SystemOutput has to be referenced
by a unique control unit. Model merge needs to respect such domain specific
knowledge, which can be captured by additional goals specified as constraints
and depicted in a graphical representation in Fig. 3c.

A domain-specific operation called unreferencedPart can be defined to elim-
inate unreferenced SystemInput, SystemOutput and SystemParam instances (see
Fig. 3d). Here the precondition selects the unreferenced object o while the action
part (i) initiates a new delete change independently from the current change set
and (ii) executes the action part of the generic delete operation.

4.2 Conflict Detection in a Sample Exploration Step

Conflict detection and resolution is carried out during exploration by incremen-
tally tracking rule activations and special constraints. We illustrate this step in
the context of our running example (see Fig. 4, which is an extract of iteration 3
and 9 of merge session from Sect. 4.3). It demostrates a delete/use conflict: simul-
taneously setting the cycle attribute of CoolingFan2 and deleting CoolingFan2. Any
solution of model merge may only contain one of the two changes.

1. In the beginning, both operations have an activation (left in Fig. 4) in the
context of object CoolingFan2. Initially, all changes are located in ΔL or ΔR,
cemetery and completed changes are empty. In this state, all constraints are
satisfied, but goals are violated which means this state is not a solution.

2. Our merge process first selects and executes the deleteObject operation (top
branch of Fig. 4) which removes CoolingFan2 from the model, moves CoolingFan2
to the cemetery, and the corresponding change is moved from ΔL to the
completed set Comp. As a side effect, operation setAttribute loses its activation
in the context of CoolingFan2 since its precondition is no longer be satisfied in
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(a) Generic setAttribute (b) Generic deleteObject

(c) Domain-specific goal (d) Domain-specific operation

Fig. 3. Operations and goal

the new state. This fact is immediately identified by the underlying reactive
transformation engine [8]. In the new state, the exploration incrementally
checks that all constraints are satisfied and goals are violated, and then selects
another enabled (activated) operation for execution.

3. Later, after backtracking to the first state, operation setAttribute is scheduled
for execution on object CoolingFan2 (bottom branch of Fig. 4). As a result,
Cemetery remains empty, the change is moved to the completed set, all goals
are violated, and all constraints are satisfied. As a main conceptual difference,
the activation of deleteObject is not disabled on CoolingFan2 as the correspond-
ing object still exists, hence its precondition is satisfied.

4. Next, the process selects and executes deleteObject operation. As a result,
CoolingFan2 is moved to the cemetery and the change is moved from ΔR to
the completed set Comp. We detect this conflict by (incrementally) checking
a generic merge constraint: there are two changes in the completed-set Comp
which modifies the same object. In this case, exploration has to backtrack
and finds another executable operation.

Obviously, the first type of constraint could also be detected by using similar
constraints as for the second type. However, lost activations reduce the number
of states to be traversed, thus they are preferred. Furthermore, note that when
two operations are applicable in both order with a confluent result, the state
encoding of DSE identifies that the same model is reached as a state.

4.3 A Merge Scenario on the Motivating Example

A possible execution of the DSE Merge is depicted in Fig. 5 which displays the
completed changes for two solutions. In each iteration, one change is processed.
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Fig. 4. Conflict resolution with incrementally tracking constraints and operations

– Itr. 1-2: all must changes are available and the algorithm randomly picked the
createObject of CoolingPump and PumpActivator.

– Itr. 3: at this point only two conflicting transitions have activation; the algo-
rithm picked deleteObject for CoolingFan2 non-deterministically. This leads to a
state where the precondition of setAttribute operation cannot be satisfied any
longer, thus it is disabled.

– Itr. 4-5: only may operations have activation where a setAttribute opera-
tion is selected that set the cycle attribute of CoolingFan1 to normal. Because
of the generic constraint, the other setAttribute related to the same object
(CoolingFan1) is disabled. The same happens when executing deleteObject for
CoolingTempLimit2 that disables the setReference operation which should con-
nect CoolingPump and CoolingTempLimit2.

– Itr. 6: this (aggregated) step is composed of all iterations that execution of
operation setAttribute related to the newly created CoolingPump.

– Itr. 7: on this trajectory, deletion of CoolingFan2 leads the model into a state
where the Fan2Activator output is not referenced by any control unit. Thus our
domain-specific (composite) operation (unreferencedPart) has an activation that
is executed on the model. After this iteration, there are no more activations
and all goals are satisfied, so Solution #1 is found.

– Itr. 8: after the solution, the strategy backtracks until it finds an activation for
a must operation that should lead the model into a partially traversed state
and forks the trajectory. Only the setAttribute operation related to CoolingFan2
can be executed. After the execution, deleteObject of CoolingFan2 could have
activation, but it is disabled by the generic constraint.

– Itr. 9-11: The same activations are available as for the 4th iteration except the
domain-specific operation. The algorithm randomly executes these operations
and finds Solution #2.
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Resolved Conflicts. In iteration 3 and 8, two conflicting operations marked
with must are executed which forks the exploration into two separate solutions
to resolve the conflicts. At iterations of 4 and 9, two operations with may mark
are in conflict. In each trajectory, only one of them is selected. Similar happens
in iteration 5 and 10, but this time the same operation is selected in each branch.

Solution. There are two solutions in the output of the merge process. We dis-
cuss solution #1 in details where the merged model is depicted in Fig. 6. It
also displays in dashed line the deleted objects stored in Cemetery, namely,
CoolingTempLimit2, CoolingFan2 and Fan2Activator. There are four non-executed
changes as shown in the bottom left corner of Fig. 6.

Fig. 5. Possible execution of the
process

Fig. 6. Merged Model from Solution #1

5 Evaluation

As the state-of-the-art of model merge still lacks well-accepted benchmarks to
measure scalability of model merging components (e.g. [22] measures precision
and recall), we propose a new scalability benchmark for model merge by adapting
of the Train Benchmark [29], which is an existing performance benchmark for
model queries and well-formedness constraints (and also a case of the TTC 2015
contest [28]). The benchmark uses a domain-specific model of a railway system
originating from the MOGENTES project [4]. From the existing benchmark, we
reuse (1) the model generator to derive models of different size conforming to
a railway metamodel, (2) the fault injector which changes the generated model
(e.g. by changing structural features, and creating or deleting objects) to violate
predefined well-formedness constraints, and (3) repair actions which pseudo-
randomly resolve such violations in accordance with to a random seed value.

Based upon these components, we summarize how synthetic models are gen-
erated that contain conflicts serving as input for model comparison and model
merge: (1) First, we generate a well-formed model. (2) Next, we inject several
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faults into the generated model. The result of this phase acts as original (O)
model. (3) Then, local and remote changes are simulated by repairing these vio-
lations either in the local model (L) or remote model (R) or in both of them with
different random seeds. In the latter case, the framework repairs the same prob-
lems in both cases by using different values, which leads to a conflict between two
models. (4) We calculate the differences between the two with an existing com-
parison tool (EMF Compare). (5) Finally, these two model have to be merged
with may annotations for changes using our merge tool.

We evaluate our DSE-based automated merge approach to assess its scalabil-
ity using our benchmark where we investigate the scalability of the approach by
measuring execution time for model comparison (carried out by EMF Compare)
and model merge with respect to (i) the size of models, (ii) the size of change
set, and (iii) the number of changes in conflict. For the evaluation, we gener-
ated models where the number of model elements is from 10, 000 to 350, 000, the
number of faults injected into the models (i.e. size of the change set) is from 10
to 2000 while the number of conflicts are set to 0 %, 50 % and 100 % of the total
number of changes. Measurement results are summarized in Table 2 taking the
average of 5 separate runs.

Table 2. Scalability measurement results

Analysis of Results. As expected, merge time is linear in model and change
size, and also proportional to comparison time. Furthermore, fewer conflicts
imply faster merge time. Our results also show that runtime of merge is lower
than compare time in case of smaller change sets (120, 240), and gradually out-
grows it as the change set increases. However, change sets of an average commit
in real projects are even smaller than our smallest case (see also the evaluation
in [23]), which means that our scalability results represent a pessimistic setup.

6 Related Work

Several approaches address the model merge as depicted in Table 3. To position
them against our approach, we use several characteristics proposed in a survey
on model versioning [6], which also guides the structure of this section.
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Table 3. Comparison of model merge approaches

Basis Conflict Merge Merge Objectives Guidance Evaluation

detection automation operations

EMF Compare [1] state static semi generic - - scalability

EMF Diff/Merge [2] state static semi generic - - scalability

Westfachtel [30] state runtime semi generic goals - preliminary

N-way Merge [25] state static semi generic - - preliminary

AMOR [13] state static semi generic,
composite

goals - precision
recall

Dam H.K. et al. [14] state static auto composite goals,
constraints

repair plan scalability
(closed)

MOMM [23] operation runtime auto composite fixed goals global search
prioritized

real data

DSE Merge state runtime auto generic,
composite

goals contraints local search
may/must

scalability
(open)

Comparison Basis. Based on the model comparison technique, the approaches
may be classified into state-based and operation-based. [1,2,13,14,25,30] and
DSE Merge are state-based as they execute a comparison process between model
states. However, [23] uses operations as input where even more complex opera-
tions as just the simple add, update, and delete operations are considered.

Conflict Detection. Finding the conflicting changes in the merge process is
crucial task for a correct resolution. Most approaches use an initial phase to stati-
cally analyze the changes and look for conflicting pairs such as in [1,2,13,14,25].
Westfechtel [30] defines transformation rules for searching conflicts where the
satisfied preconditions selects the conflicts in each iteration. Mansoor et al. [23]
uses conflict detection algorithm between operations [12]. DSE Merge identifies
conflicts incrementally as violations of constraints or as deactivations of merge
operations, while dependencies between rules and constraints are handled auto-
matically by the underlying DSE engine. This extends [14] where inconsistency
constraints are handled incrementally while conflict detection happens as pre-
processing.

Merge Automation. Most approaches [1,2,13,25,30] are semi-automated as
they use a two-phase process: (i) they apply the non-conflicting operations and
then (ii) let the user prioritize and select the operation to apply in case of two
conflicting changes. This always results in a single solution due to the man-
ual resolution by the user. In comparison, [14,23] and DSE Merge resolve the
conflicts automatically in different ways and offer several solutions.

Merge Operations. In this context, merge operations are responsible for apply-
ing the changes in the merged model. [1,2,25,30] use generic operations for
changes. The extension [11] of [30] adaptively learns resolution patterns from
user that can be applied on the models which results in composite operations.
[23] applies the input operations which are composite refactorings in their case.
[14] uses basic generic operators for conflicts but generates composite opera-
tions as repair plans from the description of inconsistency constraints. Our DSE
Merge approach allows to combine both generic and domain-specific composite
operators in the form of change-driven transformation rules.
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Objectives. Quality of the merge model can be improved by objectives that
have to be satisfied during (contraints) or at the end (goals) of the merge process.
This is an unsupported feature in [1,2,25]. [23] uses two fixed goals which are the
base of the conflict resolution. [14] provides support for incrementally detecting
violations of inconsistency constraints. [13] is connected to an additional model
checker component [11] which allows to check OCL constraints as goals. [30]
allows to define well-formedness constraints in OCL that act as goals. DSE Merge
let the users to provide additional constraints and goals using graph patterns in
addition to a built-in termination condition when no operations are activated.

Guidance. The execution of the merge process can use guidance to find the
solution(s) faster. The tool [26] of [30] uses a dedicated fusing algorithm for the
model merge phase using a fixed priority strategy of merge operations. [23] bases
their tool to a global search genetic algorithm (NSGA-II [15]) where the oper-
ations are also prioritized related to their importance. DSE Merge is built on
top of the ViatraDSE framework [19] using rule-based guided local search explo-
ration. Furthermore, annotating changes with may/must can further reduce the
result set retrieved to the user, which is another key difference wrt [14,23].

Evaluation. [23] provides an empirical evaluation of the tool based on real data,
but its scalability is not discussed as their largest model was the same as our
smallest. [14] represents an scalability evaluation of its tool with the largest size
of 33.000 model element and 1, 650 changes. [25] and [26] show a preliminary
evaluation which show the relevance of the approach on very small models and
change set. [13] evaluated by [22], but scalability is not discussed. For comparing
models, [1] has a scalability test presented in [7]. Scalability of [2] is not well
covered, however, we evaluated ourselves on the proposed benchmark [3]. DSE
Merge is evaluated on an open scalability benchmark [29]. As future work, we
plan to create an empirical user study from the usability aspect of our tool.

Summary. To summarize the key differences with [14] and [23], we rely on state-
based comparison, apply a guided local-search strategy (vs. [23]), detect conflicts
at runtime and allow complex generic merge operations (vs. [14]). Internally,
we uniquely use incremental and change-driven transformations to derive the
merged models. Finally, we report scalability of merge process for models which
are at least one order of magnitude larger compared to [14] and [23].

7 Conclusion

The current paper presented an automated technique for three-way model
merge exploiting design space exploration in the background. The original
model and two difference models (original model↔remote version, and origi-
nal model↔local version) calculated with existing model comparison tools (e.g.
EMF Compare or Diff/Merge) serve as an input of our technique. Our technique
automatically derives consistent and semantically correct merged models in all
possible ways and also highlights the remaining (unresolved thus conflicting)
model differences. Our approach incorporates the use of change-driven model
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transformations [9] to capture and execute merge operations, and relies on an
incremental reactive model transformation engine [8] to detect and resolve merge
conflicts. We proposed scalability benchmark for scalability aspect of merge com-
ponents that demonstrates that DSE-based model merge can be executed for
models around 350,000 elements and conflicting change sets with 1000 elements.

Our approach is fully implemented in a tool developed as part of a European
project, which operates on well-known open source components of the Eclipse
framework, such as EMF Compare [1] or Diff/Merge for [2] for model compar-
ison and using the Viatra DSE [18,19] as underlying design space exploration
framework built on reactive transformations [8].

As future work, we plan to improve our model merge technique by further
search strategies to better exploit the dependencies between rules and constraints
and compare it with other search-based merge techniques [23]. Currently, we
are conducting an experimental user evaluation to compare the usability of the
presented DSE Merge tool with EMF-Compare and Diff/Merge.

Acknowledgments. We thank to Gábor Szárnyas for improving the syntectic per-
formance benchmark for the evaluation and András Szabolcs Nagy for his assistance
on design space exploration.
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26. Schwägerl, F., Uhrig, S., Westfechtel, B.: Model-based tool support for consistent
three-way merging of EMF models. In: Proceedings of the workshop on ACadeMics
Tooling with Eclipse, p. 2. ACM (2013)

27. Steyaert, P., Lucas, C., Mens, K., D’Hondt, T.: Reuse contracts: managing the evo-
lution of reusable assets. In: Proceedings of the 1996 ACM SIGPLAN Conference
on Object-Oriented Programming Systems, Languages & Applications (OOPSLA
1996), San Jose, California, pp. 268–285, 6–10 October 1996
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