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Abstract. Program slicing can be used to reduce a given initial program
to a smaller one (a slice) which preserves the behavior of the initial
program with respect to a chosen criterion. Verification and validation
(V&V) of software can become easier on slices, but require particular
care in presence of errors or non-termination in order to avoid unsound
results or a poor level of reduction in slices.

This article proposes a theoretical foundation for conducting V&V
activities on a slice instead of the initial program. We introduce the
notion of relaxed slicing that remains efficient even in presence of errors
or non-termination, and establish an appropriate soundness property. It
allows us to give a precise interpretation of verification results (absence
or presence of errors) obtained for a slice in terms of the initial program.
Our results have been proved in Coq.

1 Introduction

Context. Program slicing was initially introduced by Weiser [32,33] as a tech-
nique allowing to decompose a given program into a simpler one, called a pro-
gram slice, by analyzing its control and data flow. In the classic definition, a
(program) slice is an executable program subset of the initial program whose
behavior must be identical to a specified subset of the initial program’s behav-
ior. This specified behavior that should be preserved in the slice is called slicing
criterion. A common slicing criterion is a program point l. For the purpose of
this paper, we prefer this simple formulation to another criterion (l, V ) where
a set of variables V is also specified. Informally speaking, program slicing with
respect to the criterion l should guarantee that any variable v at program point
l takes the same value in the slice and in the original program.

Since Weiser’s original work, many researchers have studied foundations of
program slicing (e.g. [4–6,8,11,14,20,26–28]). Numerous applications of slicing
have been proposed, in particular, to program understanding, software main-
tenance, debugging, program integration and software metrics. Comprehensive
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surveys on program slicing can be found e.g. in [9,29,30,35]. In recent classifi-
cations of program slicing, Weiser’s original approach is called static backward
slicing since it simplifies the program statically, for all possible executions at the
same time, and traverses it backwards from the slicing criterion in order to keep
those statements that can influence this criterion. Static backward slicing based
on control and data dependencies is also the purpose of this work.

Goals and Approach. Verification and Validation (V&V) can become easier
on simpler programs after “cutting off irrelevant branches” [13,15,17,22]. Our
main goal is to address the following research question:

(RQ) Can we soundly conduct V&V activities on slices instead of the
initial program? In particular, if there are no errors in a program slice,
what can be said about the initial program? And if an error is found in
a program slice, does it necessarily occur in the initial program?

We consider errors determined by the current program state such as runtime
errors (that can either interrupt the program or lead to an undefined behavior).
We also consider a realistic setting of programs with potentially non-terminating
loops, even if this non-termination is unintended. So we assume neither that
all loops terminate, nor that all loops do not terminate, nor that we have a
preliminary knowledge of which loops terminate and which loops do not.

Dealing with potential runtime errors and non-terminating loops is very
important for realistic programs since their presence cannot be a priori excluded,
especially during V&V activities. Although quite different at first glance, both
situations have a common point: they can in some sense interrupt normal exe-
cution of the program preventing the following statements from being exe-
cuted. Therefore, slicing away (that is, removing) potentially erroneous or non-
terminating sub-programs from the slice can have an impact on soundness of
program slicing.

While some aspects of (RQ) were discussed in previous papers, none of them
provided a complete formal answer in the considered general setting (as we detail
in Sects. 2 and 6 below). To satisfy the traditional soundness property, program
slicing would require to consider additional dependencies of each statement on
previous loops and error-prone statements. That would lead to inefficient (that is,
too large) slices, where we would systematically preserve all potentially erroneous
or non-terminating statements executed before the slicing criterion. Such slices
would have very limited benefit for our purpose of performing V&V on slices
instead of the initial program.

This work proposes relaxed slicing, where additional dependencies on previ-
ous (potentially) erroneous or non-terminating statements are not required. This
approach leads to smaller slices, but needs a new soundness property. We state
and prove a suitable soundness property using a trajectory-based semantics, and
show how this result can justify V&V on slices by characterizing possible ver-
ification results on slices in terms of the initial program. The proof has been
formalized in the Coq proof assistant [7] and is available in [1].

The Contributions of this work include:
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– a comprehensive analysis of issues arising for V&V on classic slices;
– the notion of relaxed slicing (Definition 6) for structured programs with pos-

sible errors and non-termination, that keeps fewer statements than it would
be necessary to satisfy the classic soundness property of slicing;

– a new soundness property for relaxed slicing (Theorem 1);
– a characterization of verification results, such as absence or presence of errors,

obtained for a relaxed slice, in terms of the initial program, that constitutes
a theoretical foundation for conducting V&V on slices (Theorems 2, 3);

– a formalization and proof of our results in Coq.

Paper Outline. Section 2 presents our motivation and illustrating examples.
The considered language and its semantics are defined in Sect. 3. Section 4 defines
the notion of relaxed slice and establishes its main soundness property. Next,
Sect. 5 formalizes the relationship between the errors in the initial program and in
a relaxed slice. Finally, Sects. 6 and 7 present the related work and the conclusion
with some future work.

2 Motivation and Running Examples

Errors and Assertions. We consider errors that are determined by the cur-
rent program state1 including runtime errors (division by zero, out-of-bounds
array access, arithmetic overflows, out-of-bounds bit shifting, etc.). Some of these
errors do not always interrupt program execution and can sometimes lead to an
(even more dangerous) undefined behavior, such as reading or writing an arbi-
trary memory location after an out-of-bounds array access in C. Since we cannot
take the risk to overlook some of these “silent runtime errors”, we assume that all
threatening statements are annotated with explicit assertions assert(C) placed
before them, that interrupt the execution whenever the condition C is false. This
assumption will be convenient for the formalization in the next sections: possible
runtime errors will always occur in assertions. Such assertions can be generated
syntactically (for example, by the RTE plugin of the Frama-C toolset [21] for
C programs). For instance, line 10 in Fig. 1a prevents division by zero at line 11,
while line 13 makes explicit a potential runtime error at line 14 if the array a is
known to be of size N. In addition, the assert(C) keyword can be also used to
express any additional user-defined properties on the current state.

Most previous applications of slicing to debugging used slices in order to
better understand an already detected error, by analyzing a simpler program
rather than a more complex one [8,29,30]. Our goal is quite different: to perform
V&V on slices in order to discover yet unknown errors, or show their absence
(cf. (RQ)). The interpretation of absence or presence of errors in a slice in terms
of the initial program requires solid theoretical foundations.

Classic Soundness Property. Let p be a program, and q a slice of p w.r.t. a
slicing criterion l. The classic soundness property of slicing (cf. [6, Definition 2.5]
or [28, Slicing Th.]) can be informally stated as follows.
1 Temporal errors (e.g. use-after-free in C) cannot be directly represented in this way.
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1 s1 = 0;
2 s2 = 0;
3 i = 0;
4 while (i < N){
5 assert (i < N);
6 s1 = s1 + a[i];
7 i = i + k;
8 }
9 j = 0;

10 assert (k != 0);
11 last = N/k;
12 while (j <= last){
13 assert (k*j < N);
14 s2 = s2 + a[k*j];
15 j = j + 1;
16 }
17 assert (N != 0);
18 avg1 = s1 / N;
19 assert (N != 0);
20 avg2 = s2 / N;
21 if(avg1 == avg2)
22 print("equal");

1 s1 = 0;
2

3 i = 0;
4 while (i < N){
5 assert (i < N);
6 s1 = s1 + a[i];
7 i = i + k;
8 }
9
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9 j = 0;
10 assert (k != 0);
11 last = N/k;
12 while (j <= last){
13 assert (k*j < N);
14 s2 = s2 + a[k*j];
15 j = j + 1;
16 }
17

18

19 assert (N != 0);
20 avg2 = s2 / N;
21

22

(a) (b) (c)

Fig. 1. (a) A program computing in two ways the average of elements of a given array
a of size N whose only nonzero elements can be at indices {0, k, 2k, . . . }, and its two
slices: (b) w.r.t. line 18, and (c) w.r.t. line 20.

Property 1. Let σ be an input state of p. Suppose that p halts on σ. Then q halts
on σ and the executions of p and q on σ agree after each statement preserved in
the slice on the variables that appear in this statement.2

This property was originally established for classic dependence-based slicing for
programs without runtime errors and only for executions with terminating loops:
nothing is guaranteed if p does not terminate normally on σ. Let us show why
this property does not hold in presence of potential runtime errors or non-ter-
minating loops.

Illustrating Examples. Figure 1a presents a simple (buggy) C-like program
that takes as inputs an array a of length N and an integer k (with 0 � k� 100,
0 � N� 100), and computes in two different ways the average of the elements
of a. We suppose that all variables and array elements are unsigned integers,
and all elements of a whose index is not a multiple of k are zero, so it suffices
to sum array elements over the indices multiples of k and to divide the sum
by N. The sum is computed twice (in s1 at lines 3–8 and in s2 at lines 9–
16), and the averages avg1 and avg2 are computed (lines 17–20) and compared
(lines 21–22). We assume that necessary assertions with explicit guards (at lines
5, 10, 13, 17, 19) are inserted to prevent runtime errors.

Figure 1b shows a (classic dependence-based) slice of this program with
respect to the statement at line 18. Intuitively, it contains only statements

2 Formally, using the notation introduced hereafter in the paper (cf. Definition 8), their
projections are equal: ProjL(T �p�σ) = ProjL(T �q�σ).
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Fig. 2. Errors (�), non-termination (�) and normal termination (—) of programs of
Fig. 1 for some inputs.

(at lines 1, 3, 4, 6, 7, 18) that can influence the slicing criterion, i.e. the values
of variables that appear at line 18 after its execution.3 In addition, we keep the
assertions to prevent potential errors in preserved statements. Similarly, Fig. 1c
shows a slice with respect to line 20, again with protecting assertions.

Figure 2 summarizes the behavior of the three programs of Fig. 1 on some
test data. The elements of a do not matter here. Suppose we found an error at
line 17 in slice (b) provoked by test datum σ4. Program (a) does not contain
the same error: it fails earlier, at line 13. We say that the error at line 17 in slice
(b) is hidden by the error at line 13 of the initial program. Similarly, test datum
σ5 provokes an error at line 17 in slice (b) while this error is hidden by an error
at line 10 in (a). In fact, the error at line 17 cannot be reproduced on the initial
program, so we say that it is totally hidden by other errors.

For slice (c), detecting an error at line 10 on test datum σ5 would allow us to
observe the same error in (a). However, if this error in slice (c) is also provoked
by test datum σ3, this test datum does not provoke any error in (a) because the
loop at line 4 does not terminate. We say that this error is (partially) hidden by
a non-termination of the loop at line 4.

These examples clearly show that Property 1 is not true in presence of errors
or non-terminating loops for classic slices. Indeed, the executions of p and q may
disagree at least for two reasons:

(i) a previously executed non-terminating loop not preserved in the slice, or
(ii) a previously executed failing statement not preserved in the slice.

Let us consider another example related to error-free programs. If we suppose
that 0 < k� 100, 0 < N� 100, and replace N/k by (N-1)/k at line 11 of Fig. 1,
neither slice contains any error. If we manage to verify the absence of errors on
both slices, can we be sure that the initial program is error-free as well?

Bigger Slices vs. Weaker Soundness Property. One solution (adopted
by [18,25,26]), cf. Sect. 6) proposes to ensure Property 1 even in presence of
errors and potentially non-terminating loops by considering additional depen-
dencies. This approach would basically lead to always preserving in the slice any

3 By formal definitions of Sect. 4, one easily checks that line 18 is data-dependent on
line 6, that is in turn data-dependent on lines 1,3,7 and control-dependent on line 4.
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(potentially non-terminating) loop or error-prone statement that can be exe-
cuted before the slicing criterion. The resulting slices would be much bigger, and
the benefit of performing V&V on slices would be very limited.

For instance, to ensure that the executions of program (a) and slice (b)
activated by test datum σ4 agree on all statements of slice (b), line 13 should
be preserved in slice (b). That would result (by transitivity of dependencies) in
keeping e.g. the loop at line 12 and lines 9–11 in slice (b) as well. Similarly, the
loop at line 4 should be kept in slice (c) to avoid disagreeing executions for test
datum σ3. The slices can become much bigger in this approach.

In this paper we propose relaxed slicing, an alternative approach that does not
require to keep all loops or error-prone statements that can be executed before
the slicing criterion, but ensures a weaker soundness property. We demonstrate
that the new soundness property is sufficient to justify V&V on slices instead of
the initial program. In particular, we show that reasons (i) and (ii) above are
the only possible reasons of a hidden error, and investigate when the absence of
errors in slices implies the absence of errors in the initial program.

3 The Considered Language and Its Semantics

Language. In this study, we consider a simple WHILE language (with integer
variables, fixed-size arrays, pure expressions, conditionals, assertions and loops)
that is representative for our formalization of slicing in presence of runtime errors
and non-termination. The language is defined by the following grammar:

Prog ::= Stmt∗

Stmt ::= l : skip |
l : x = e |
if (l : b) Prog else Prog |
while (l : b) Prog |
l : assert (b, l′)

where l, l′ denote labels, e an expression and b a boolean expression. A program
(Prog) is a possibly empty list of statements (Stmt). The empty list is denoted λ,
and the list separator is “;”. We assume that the labels of any given program are
distinct, so that a label uniquely identifies a statement. Assignments, conditions
and loops have the usual semantics. As its name suggests, skip does nothing.

The assertion assert(b, l′) stops program execution in an error state (denoted
ε) if b is false, otherwise execution continues normally. As said earlier, we assume
that assertions are added to protect all threatening statements. The label l′

allows us to associate the assertion with another statement that should be pro-
tected by the assertion (e.g. because it could provoke a runtime error). An asser-
tion often protects the following line (like in Fig. 1, where the protected label
is not indicated). Two simple cases however need more flexibility (cf. Fig. 3).
Some assertions have to be themselves protected by assertions when they con-
tain a threatening expression. Figure 3a gives such an example where, instead
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l3 : assert (z != 0, l1);

l2 : assert (w != 0, l);

l1 : assert ((y/z) + 1 != 0, l);

l : z = x / ((y/z) + 1) + v/w;

(a) Chained assertions

l1 : assert (k != 0, l);

while (l : j <= N/k) {

...

l2 : assert (k != 0, l); }

(b) Loop condition

Fig. 3. Two special cases of assertions

of creating three assertions pointing to l, assertions l1 and l2 point to l, and
assertion l3 points to another assertion l1. Figure 3b (inspired by the second
loop of Fig. 1) shows how assertions with explicit labels can be used to protect a
loop condition from a runtime error. The arrows in Fig. 3 indicate the protected
statement.

Assertions can be also added by the user to check other properties than
runtime errors. If the user does not need to indicate the protected statement,
they can choose for l′ either the label l of the assertion itself or any label not
used elsewhere in the program. User-defined assertions should be also protected
against errors by other assertions if necessary.

Semantics. Let p be a program. A program state is a mapping from variables
to values. Let Σ denote the set of all valid states, and Σε = Σ ∪ {ε}, where ε is
the error state. Let σ be an initial state of p. The trajectory of the execution of
p on σ, denoted T �p�σ, is the sequence of pairs 〈(l1, σ1) . . . (lk, σk) . . . 〉, where
l1, . . . , lk, . . . is the sequence of labels of the executed instructions, and σi is the
state of the program after the execution of instruction li. T can be seen as a
(partial) function

T : Prog → Σ → Seq(L × Σε)

where Seq(L × Σε) is the set of sequences of pairs (l, σ) ∈ L × Σε. Trajectories
can be finite or (countably) infinite. A finite subsequence at the beginning of a
trajectory T is called a prefix of T . The empty sequence is denoted 〈 〉.

Let ⊕ be the concatenation operator over sequences. For a finite trajectory
T , we denote by LSσ(T ) the last state of T (i.e. the state component of its last
element) if T �= 〈 〉, and σ otherwise. The definition of T1 ⊕ T2 is standard if T1

is finite. If T1 is infinite or ends with the error state ε, then we set T1 ⊕ T2 = T1

for any T2 (and even if T2 is not well-defined, in other words, ⊕ performs lazy
evaluation of its arguments).

We denote by E an evaluation function for expressions, that is standard and
not detailed here. For any (pure) expression e and state σ ∈ Σ, E�e�σ is the
evaluation of expression e using σ to evaluate the variables present in e. The
error state is only reached through a failed assert. Thanks to the assumption
that all potentially failing statements are protected by assertions, we do not
need to model errors in expressions or other statements: errors always occur in
assertions. We also suppose for simplicity that all variables appearing in p are
initialized in any initial state of p, that ensures the absence of expressions that
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Fig. 4. Trajectory-based semantics of the language (for a valid state σ ∈ Σ)

cannot be evaluated due to an uninitialized variable. These assumptions slightly
simplify the presentation without loss of generality for our purpose: loops and
errors (in assertions) are present in the language.

Figure 4 gives the inductive definition of T for any valid state σ ∈ Σ. The
definitions for a loop and a conditional rely on the notation (v → T1, T2) also
defined in Fig. 4. For any state σ, variable x and value v, σ[x ← v] denotes σ
overridden by the association x 
→ v. Notice that in the definitions for a sequence
and a loop, it is important that ⊕ does not evaluate the second parameter when
the first trajectory is infinite or ends with the error state since the execution of
the remaining part is not defined in this case. Thus ε can appear only once at
the very end of a trajectory.

We illustrate these definitions on slice (b) of Fig. 1, denoted pb. For every ini-
tial state σ of pb and unsigned integer i, we define σi = σ[s1 ← (i·a[0] mod Mu)],
where Mu denotes the maximal representable value of an unsigned integer. Then
the trajectory on σ3 is infinite, while the trajectory on σ5 leads to an error:

T �pb�σ3 = 〈(1, σ0
3)(3, σ0

3)(4, σ0
3)(5, σ0

3)(6, σ1
3)(7, σ1

3)(4, σ1
3)(5, σ1

3)(6, σ2
3)(7, σ2

3) . . . 〉,
T �pb�σ5 = 〈(1, σ0

5)(3, σ0
5)(4, σ0

5)(17, ε)〉.

4 Relaxed Program Slicing

4.1 Control and Data Dependences

Let L(p) denote the set of labels of program p. Let us consider here a more
general slicing criterion defined as a subset of labels L0 ⊆ L(p), and construct
a slice with respect to all statements whose labels are in L0. In particular, this
generalization can be very useful when one wants to perform V&V on a slice with
respect to several threatening statements. In this work we focus on dependence-
based slicing, where a dependence relation D ⊆ L(p) × L(p) is used to construct
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a slice. We write l
D−→
p

l′ to indicate that l′ depends on l according to D, i.e.

(l, l′) ∈ D. The definitions of control and data dependencies, denoted respectively
Dc and Dd, are standard, and given following [6].

Definition 1 (Control Dependence Dc). The control dependencies in p are
defined by if and while statements in p as follows:

for any statement if (l : b) q else r and l′ ∈ L(q) ∪ L(r), we define l
Dc−−→
p

l′;

for any statement while (l : b) q and l′ ∈ L(q), we define l
Dc−−→
p

l′.

For instance, in Fig. 1a, lines 5–7 are control-dependent on line 4, while lines
13–15 are control-dependent on line 12.

To define data dependence, we need the notion of (finite syntactic) paths.
Let us denote again by ⊕ the concatenation of paths, extend ⊕ to sets of paths
as the set of concatenations of their elements, and denote by “∗” Kleene closure.

Definition 2 (Finite Syntactic Paths). The set of finite syntactic paths
P(p) of a program p is inductively defined as follows:

P(�λ�) = {λ},

P(�s; p�) = P(s) ⊕ P(p),
P(�l : skip�) = {l},

P(�l : x = e�) = {l},

P(�if (l : b) p else q�) = {l} ⊕ (P(p) ∪ P(q)),
P(�while (l : b) p�) = ({l} ⊕ P(p))∗ ⊕ {l},

P(�l : assert(b, l′)�) = {l}.

For a given label l, let def(l) denote the set of variables defined at l (that
is, def(l) = {v} if l is an assignment of variable v, and ∅ otherwise), and let
ref(l) be the set of variables referenced at l. If l designates a conditional (or a
loop) statement, ref(l) is the set of variables appearing in the condition; other
variables appearing in its branches (or loop body) do not belong to ref(l). We
denote by used(l) the set def(l) ∪ ref(l).

Definition 3 (Data Dependence Dd). Let l and l′ be labels of a program p.
We say that there is a data dependency l

Dd−−→
p

l′ if def(l) �= ∅ and def(l) ⊆ ref(l′)

and there exists a path π = π1lπ2l
′π3 ∈ P(p) such that for all l′′ ∈ π2, def(l′′) �=

def(l). Each πi may be empty.

For instance, in Fig. 1b, line 18 is data-dependent on line 1 (with π =
1, 3, 4, 17, 18) and on line 6 (with π = 1, 3, 4, 5, 6, 7, 4, 17, 18), while line 6 is
data-dependent on lines 1, 3, 6 and 7.
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A slice of p is expected to be a quotient of p, that is, a well-formed program
obtained from p by removing zero, one or more statements. A quotient can
be identified by the set of labels of preserved statements. Notice that when a
conditional (or a loop) statement is removed, it is removed with all statements
of its both branches (or its loop body) to preserve the structure of the initial
program in the quotient.

Given a dependence relation D and L0 ⊆ L(P ), the slice based on D w.r.t. L0

will be also identified by the set of labels of preserved statements. The following
lemma justifies the correctness of the definitions of slices given hereafter. We
denote by D∗ the reflexive transitive closure of D, and by (D∗)−1(L0) the set of

all labels l′ ∈ L(p) such that there exists l ∈ L0 with l′ D∗
−−→

p
l.

Lemma 1. Let L0 ⊆ L(P ). If D is a dependence relation on p such that Dc ⊆ D,
then (D∗)−1(L0) is the set of labels of a (uniquely defined) quotient of p.

Lemma 1 can be easily proven by structural induction. It allows us to define a
slice as the set of statements on which the statements in L0 are (directly or
indirectly) dependent.

Definition 4 (Dependence-based Slice). Let D be a dependence relation on
p such that Dc ⊆ D, and L0 ⊆ L(P ). A dependence-based slice of p based on
D with respect to L0 is the quotient of p whose set of labels is (D∗)−1(L0). A
classic dependence-based slice of p with respect to L0 is based on D = Dc ∪ Dd.

4.2 Assertion Dependence and Relaxed Slices

Soundness of classic slicing for programs without runtime errors or non-termina-
ting loops can be expressed by Property 1 in Sect. 2. As we illustrated, to general-
ize this property in presence of runtime errors and for non-terminating executions
one would need to add additional dependencies and systematically preserve in
the slice all potentially erroneous or non-terminating statements executed before
(a statement of) the slicing criterion. We propose here an alternative approach,
called relaxed slicing, where only one additional dependency type is considered.

Definition 5 (Assertion Dependence Da). For every assertion l : assert
(b, l′) in p with l, l′ ∈ L(p), we define an assertion dependency l

Da−−→
p

l′.

Definition 6 (Relaxed Slice). A relaxed slice of p with respect to L0 is the
quotient of p whose set of labels is (D∗)−1(L0), where D = Dc ∪ Dd ∪ Da.

For instance, in Fig. 1a, there would be an assertion dependence of each threat-
ening statement on the corresponding protecting assertion (written on the pre-
vious line). Therefore both slices (b) and (c) of Fig. 1 (in which we artificially
preserved assertions in Sect. 2) are in fact relaxed slices where assertions are
naturally preserved thanks to the assertion dependence.
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Assertion dependence brings two benefits. It ensures that a potentially threat-
ening instruction is never kept without its protecting assertion. At the same time,
an assertion can be preserved without its protected statement, that is quite useful
for V&V that focus on assertions: slicing w.r.t. assertions may produce smaller
slices if we do not need the whole threatening statement. For example, a relaxed
slice w.r.t. the assertion at line 17 would contain only this unique line.

Notice that a relaxed slice does not require to include potentially erroneous
or non-terminating statements that can prevent the slicing criterion from being
executed (like in [18,25,26]). For example, slice (b) does not include the potential
error at line 13, and slice (c) does not include the loop of line 4.

4.3 Soundness of Relaxed Slicing

We cannot directly compare the trajectory of the original program with a slice,
since it may refer to statements and variables not preserved in the slice. We use
projections of trajectories that reduce them to selected labels and variables.

Definition 7 (Projection of a State). The projection of a state σ to a set of
variables V , denoted σ↓V , is the restriction of σ to V if σ �= ε, and ε otherwise.

Definition 8 (Projection of a Trajectory). The projection of a one-element
sequence 〈(l, σ)〉 to a set of labels L, denoted 〈(l, σ)〉↓L, is defined as follows:

〈(l, σ)〉↓L =

{
〈(l, σ↓used(l))〉 if l ∈ L,

〈 〉 otherwise.

The projection of a trajectory T = 〈(l1, σ1) . . . (lk, σk) . . . 〉 to L, denoted ProjL(T ),
is defined element-wise: ProjL(T ) = 〈(l1, σ1)〉↓L ⊕ . . . ⊕ 〈(lk, σk)〉↓L ⊕ . . . .

We can now state and prove the soundness property of relaxed slices.

Theorem 1 (Soundness of a Relaxed Slice). Let L0 ⊆ L(p) be a slicing
criterion of program p. Let q be the relaxed slice of p with respect to L0, and
L = L(q) the set of labels preserved in q. Then for any initial state σ ∈ Σ of p
and finite prefix T of T �p�σ, there exists a prefix T ′ of T �q�σ, such that:

ProjL(T ) = ProjL(T ′)

Moreover, if p terminates without error on σ, T �p�σ and T �q�σ are finite, and

ProjL(T �p�σ) = ProjL(T �q�σ)

Proof. Let σ ∈ Σ, T �p�σ = 〈(l1, σ1)(l2, σ2) . . . 〉, and T �q�σ = 〈(l′1, σ′
1)(l

′
2, σ

′
2)

. . . 〉. Let T = 〈(l1, σ1) . . . (li, σi)〉 be a finite prefix of T �p�σ. By Definition 8, the
projections of T �q�σ and T to L = L(q) have the following form

ProjL(T �q�σ) = 〈 (l′1, σ
′
1↓used(l′1))(l

′
2, σ

′
2↓used(l′2)) . . . 〉,

ProjL(T ) = 〈 (lf(1), σf(1)↓used(lf(1))) . . . (lf(j), σf(j)↓used(lf(j))) 〉,

where j ≤ i and f is a strictly increasing function.



190 J.-C. Léchenet et al.

Let us denote by k the greatest natural number such that k ≤ j and
such that the prefix of T �q�σ of length k exists and satisfies (ProjL(T ))k =
ProjL((T �q�σ)k), where we denote by Uk the prefix of length k for any trajec-
tory U . Let T ′ = 〈(l′1, σ′

1) . . . (l′k, σ′
k)〉 be the prefix (T �q�σ)k. By Definition 8 we

have
ProjL(T ′) = 〈 (l′1, σ

′
1↓used(l′1)) . . . (l′k, σ′

k↓used(l′k)) 〉.
Since (ProjL(T ))k = ProjL(T ′), for any m = 1, 2, . . . , k we have l′m = lf(m) and
σ′

m↓used(l′m) = σf(m)↓used(lf(m)). Set σ0 = σ′
0 = σ.

Let us prove that k = j. We reason by contradiction and assume that k < j.
By maximality of k, there can be three different cases:

1. T �q�σ is of size k, or
2. l′k+1 exists, but l′k+1 �= lf(k+1), or
3. l′k+1 exists, l′k+1 = lf(k+1), but σ′

k+1↓used(l′k+1) �= σf(k+1)↓used(lf(k+1)).

Since l′k = lf(k), cases 1 and 2 can be only due to a diverging evaluation of
a control flow statement (i.e. if, while or assert) situated in the execution of
p between lf(k) and lf(k+1)−1. If such a statement occurs at label l′k = lf(k), its
condition would be evaluated identically in both executions since σ′

k↓used(l′k) =
σf(k)↓used(lf(k)). The first non-equal label lf(k+1) cannot be part of the body
of some non-preserved if or while statement between lf(k) + 1 and lf(k+1)−1 in
p by definition of control dependence (cf. Definition 1). Finally, the divergence
cannot be due to an assert in p between lf(k)+1 and lf(k+1)−1 either, because
a passed assert has no effect, while a failing assert would make it impossible
to reach lf(k+1) in p. Thus a divergence leading to cases 1 and 2 is impossible.

In case 3, the key idea is to remark that σ′
k↓ref(l′k+1) = σf(k+1)−1↓ref(lf(k+1)).

Indeed, assume that there is a variable v ∈ ref(l′k+1) = ref(lf(k+1)) such that
σ′

k(v) �= σf(k+1)−1(v). The last assignment to v in the execution of p before its
usage at lf(k+1) must be preserved in q because of data dependence (cf. Defini-
tion 3), so it has a label l′u = lf(u) for some 1 � u � k. By definition of k, the state
projections after this statement were equal: σ′

u↓used(l′u) = σf(u)↓used(lf(u)), so
the last values assigned to v before its usage at lf(k+1) were equal, that contradicts
the assumption σ′

k(v) �= σf(k+1)−1(v). This shows that all variables referenced in
lf(k+1) have the same values, so the resulting states cannot differ, and case 3 is
not possible either. Therefore k = j, and T ′ satisfies ProjL(T ) = ProjL(T ′).

If p terminates without error on σ, by the first part of the theorem we have
a prefix T ′ of T �q�σ such that ProjL(T �p�σ) = ProjL(T ′). If T ′ is a strict
prefix of T �q�σ, this means as before that a control flow statement executed
in p causes the divergence of the two trajectories. By hypothesis, there are no
failing assertions in the execution of p, therefore it is due to an if or a while.
By the same reasoning as in cases 1, 2 above we show that its condition must be
evaluated in the same way in both trajectories and cannot lead to a divergence.
Therefore, T ′ = T �q�σ. ��
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5 Verification on Relaxed Slices

In this section, we show how the absence and the presence of errors in relaxed
slices can be soundly interpreted in terms of the initial program.

Lemma 2. Let q be a relaxed slice of p and σ ∈ Σ an initial state of p. If the
preserved assertions do not fail in the execution of q on σ, they do not fail in
the execution of p on σ either.

Proof. Let us show the contrapositive. Assume that T �p�σ ends with (l, ε) where
l ∈ L(q) is a preserved assertion. Let L = L(q). From Theorem 1 applied to
T = T �p�σ, it follows that there exists a finite prefix T ′ of T �q�σ such that
ProjL(T ) = ProjL(T ′). The last state of ProjL(T ′) is ε, therefore the last state
of T ′ is ε too. It means that ε appears in T �q�σ, and by definition of semantics
(cf. Sect. 3) this is possible only if ε is its last state. Therefore T �q�σ ends with
(l, ε) as well. ��

The following theorem and corollary immediately follow from Lemma2.

Theorem 2. Let q be a relaxed slice of p. If all assertions contained in q never
fail, then the corresponding assertions in p never fail either.

Corollary 1. Let q1, . . . , qn be relaxed slices of p such that each assertion in
p is preserved in at least one of the qi. If no assertion in any qi fails, then no
assertion fails in p.

The last result justifies the detection of errors in a relaxed slice.

Theorem 3. Let q be a relaxed slice of p and σ ∈ Σ an initial state of p. We
assume that T �q�σ ends with an error state. Then one of the following cases
holds for p:

(†) T �p�σ ends with an error at the same label, or
(††) T �p�σ ends with an error at a label not preserved in q, or
(† † †) T �p�σ is infinite.

Proof. Let L = L(q) and assume that T �q�σ ends with (l, ε) for some preserved
assertion at label l ∈ L. We reason by contradiction and assume that T �p�σ does
not satisfy any of the three cases. Then two cases are possible.

First, T �p�σ ends with (l′, ε) for another preserved assertion at label l′ ∈ L
(with l′ �= l). Then reasoning as in the proof of Lemma2 we show that T �q�σ
ends with (l′, ε) as well, that contradicts l′ �= l.

Second, T �p�σ is finite without error. Then the second part of Theorem1 can
be applied and thus ProjL(T �p�σ) = ProjL(T �q�σ). This is contradictory since
T �q�σ contains an error (at label l ∈ L) and T �p�σ does not. ��

For instance, consider the example of Fig. 1 with 0 < k � 100, 0 < N � 100.
In this case we can prove that slice (b) does not contain any error, thus we can
deduce by Theorem 2 that the assertions at lines 5 and 17 (preserved in slice (b))
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never fail in the initial program either. If in addition we replace N/k by (N-1)/k
at line 11 of Fig. 1, we can show that neither of the two slices of Fig. 1 contains
any error. Since these slices cover all assertions, we can deduce by Corollary 1
that the initial program is error-free.

Theorem 3 shows that despite the fact that an error detected in q does not
necessary appear in p, the detection of errors on q has a precise interpretation. It
can be particularly meaningful for programs supposed to terminate, for which a
non-termination within some time τ is seen as an anomaly. In this case, detection
of errors in a slice is sound in the sense that if an error is found in q for initial
state σ, there is an anomaly (same or earlier error, or non-termination within
time τ) in p whose type can be easily determined by running p on σ.

It can be noticed that a result similar to Theorem3 can be established for
non-termination: if T �q�σ is infinite, then either (††) or († † †) holds for p.

6 Related Work

Weiser [34] introduced the basics of intraprocedural and interprocedural static
slicing. A thorough survey provided in [30] explores both static and dynamic
slicing and compares the different approaches. It also lists the application areas
of program slicing. More recent surveys can be found at [9,29,35]. Foundations
of program slicing have been studied e.g. in [4–6,8,11,14,20,26–28]. This section
presents a selection of works that are most closely related to the present paper.

Debugging and Dynamic Slicing. Program debugging and testing are tradi-
tional application domains of slicing (e.g. [2,19,33]) where it can be used to better
understand an already detected error, to prioritize test cases (e.g. in regression
testing), simplify a program before testing, etc. In particular, dynamic slicing [8]
is used to simplify the program for a given (e.g. erroneous) execution. However,
theoretical foundations of applying V&V on slices instead of the initial program
(like in [13,22]) in presence of errors and non-termination, that constitute the
main purpose of this work, have been only partially studied.

Slicing and Non-terminating Programs. A few works tried to propose
a semantics preserved by classic slicing even in presence of non-termination.
Among them, we can cite the lazy semantics of [11], and the transfinite one of
[16], improved by [24]. Another semantics proposed in [6] has several improve-
ments compared to the previous ones: it is intuitive and substitutive. Despite
the elegance of these proposals, they turn out to be unsuitable for our purpose
because they consider non-existing trajectories, that are not adapted to V&V
techniques, for example, based on path-oriented testing like in [13,15].

Ranganath, et al. [26] provides foundations for the slicing of modern pro-
grams, i.e. programs with exceptions and potentially infinite loops, represented
by control flow graphs (CFG) and program dependence graphs (PDG). Their
work gives two definitions of control dependence, non-termination sensitive and
non-termination insensitive, corresponding respectively to the weak and strong
control dependences of [25] and further generalized for any finite directed graph
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in [14]. [26] also establishes the soundness of classic slicing with non-termination
sensitive control dependence in terms of weak bisimulation, more adapted to
deal with infinite executions. Their approach requires to preserve all loops, that
results in much bigger slices than in relaxed slicing.

Amtoft [4] establishes a soundness property for non-termination insensitive
control dependence in terms of simulation. Ball and Horwitz [5] describes pro-
gram slicing for arbitrary control flow. Amtoft and Ball [4,5] state that an exe-
cution in the initial program can be a prefix of that in a slice, without care-
fully formalizing runtime errors. Our work establishes a similar property, and in
addition performs a complete formalization of slicing in presence of errors and
non-termination, explicitly formalizes errors by assertions and deduces several
results on performing V&V on slices.

Slicing in Presence of Errors. Harman, et al. [18] notes that classic algo-
rithms only preserve a lazy semantics. To obtain correct slices with respect to
a strict semantics, it proposes to preserve all potentially erroneous statements
through adding pseudo-variables in the def(l) and ref(l) sets of all potentially
erroneous statements l. Our approach is more fine-grained in the sense that we
can independently select assertions to be preserved in the slice and to be consid-
ered by V&V on this slice. This benefit comes from our dedicated formalization of
errors with assertions and a rigorous proof of soundness using a trajectory-based
semantics. In addition, we make a formal link about the presence or the absence
of errors in the program and its slices. Harman and Danicic [17] uses program
slicing as well as meaning-preserving transformations to analyze a property of
a program not captured by its own variables. For that, it adds variables and
assignments in the same idea as our assertions. Allen and Horwitz [3] extends
data and control dependences for Java program with exceptions. In both papers,
no formal justification is given.

Certified Slicing. The ideas developed in [4,26] were applied in [10,31].
Wasserrab [31] builds a framework in Isabelle/HOL to formally prove a slic-
ing defined in terms of graphs, therefore language-independent. Blazy, et al. [10]
proposes an unproven but efficient slice calculator for an intermediate language
of the CompCert C compiler [23], as well as a certified slice validator and a slice
builder written in Coq [7]. The modeling of errors and the soundness of V&V
on slices were not specifically addressed in these works.

To the best of our knowledge, the present work is the first complete for-
malization of program slicing for structured programs in presence of errors and
non-termination. Moreover, it has been formalized in the Coq proof assistant
on a representative structured language, that provides a certified program slicer
and justifies conducting V&V on slices instead of the initial program.

7 Conclusion

In many domains, modern software has become very complex and increasingly
critical. This explains both the growing efforts on verification and validation
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(V&V) and, in many cases, the difficulties to analyze the whole program. We
revisit the usage of program slicing to simplify the program before V&V, and
study how it can be performed in a sound way in presence of possible runtime
errors (that we model by assertions) and non-terminating loops. Rather than
preserving more statements in a slice in order to satisfy the classic soundness
property (stating an equality of whole trajectory projections), we define smaller,
relaxed slices where only assertions are kept in addition to classic control and
data dependences, and prove a weaker soundness property (relating prefixes of
trajectory projections). It allows us to formally justify V&V on relaxed slices
instead of the initial program, and to give a complete sound interpretation of
presence or absence of errors in slices. First experiments with Sante [12,13],
where all-path testing is used on relaxed slices to confirm or invalidate alarms
initially detected by value analysis, show that using relaxed slicing allowed to
reduce the program in average by 51 % (going up to 97 % for some examples)
and accelerated V&V in average by 43 %.

The present study has been formalized in Coq for a representative program-
ming language with assertions and loops, and the results of this paper (as well as
many helpful additional lemmas on dependencies and slices) were proved in Coq,
providing a certified correct-by-construction slicer for the considered language
[1]. This Coq formalization represents an effort of 8 person-months of intensive
Coq development resulting in more than 10,000 lines of Coq code.

Future work includes a generalization to a wider class of errors, an extension
to a realistic programming language and a certification of a complete verification
technique relying on program slicing. Another research direction is to precisely
measure the reduction rate and benefits for V&V of relaxed slicing compared
to slicing approaches systematically introducing dependencies on previous loops
and erroneous statements. In an ongoing work in DEWI project, we apply relaxed
slicing for verification of protocols of wireless sensor networks.
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