
The Death of Object-Oriented Programming

Oscar Nierstrasz(B)

Software Composition Group, University of Bern, Bern, Switzerland
oscar@inf.unibe.ch

http://scg.unibe.ch/

Abstract. Modern software systems are increasingly long-lived. In order
to gracefully evolve these systems as they address new requirements,
developers need to navigate effectively between domain concepts and
the code that addresses those domains. One of the original promises
of object-orientation was that the same object-oriented models would
be used throughout requirements analysis, design and implementation.
Software systems today however are commonly constructed from a het-
erogeneous “language soup” of mainstream code and dedicated DSLs
addressing a variety of application and technical domains. Has object-
oriented programming outlived its purpose?

In this essay we argue that we need to rethink the original goals of
object-orientation and their relevance for modern software development.
We propose as a driving maxim, “Programming is Modeling,” and explore
what this implies for programming languages, tools and environments. In
particular, we argue that: (1) source code should serve not only to specify
an implementation of a software system, but should encode a queryable
and manipulable model of the application and technical domains con-
cerned; (2) IDEs should exploit these domain models to enable inex-
pensive browsing, querying and analysis by developers; and (3) barriers
between the code base, the running application, and the software ecosys-
tem at large need to be broken down, and their connections exploited
and monitored to support developers in comprehension and evolution
tasks.

1 Introduction

Is object-oriented programming dying?
The code of real software systems is structured around a number of inter-

acting and overlapping technical and application domains. As we shall see, this
fact is not well supported by mainstream languages and development environ-
ments. Although object-oriented software development made early promises to
close the gaps between analysis, design and implementation by offering a uni-
fying object-oriented modeling paradigm for these activities, we still struggle to
navigate between these worlds. Do the emergence of domain-specific languages
(DSLs) and model-driven development (MDD) prove that object-orientation has
failed?

In this essay we explore some of the symptoms of this apparent failure, and
argue that we need to be bolder in interpreting the vision of object-orientation.
c© Springer-Verlag Berlin Heidelberg 2016
P. Stevens and A. W ↪asowski (Eds.): FASE 2016, LNCS 9633, pp. 3–10, 2016.
DOI: 10.1007/978-3-662-49665-7 1



4 O. Nierstrasz

We propose the slogan “Programming is Modeling” and identify a number of
challenges this leads us to.

Let us briefly summarize the key symptoms:

There Exists a Large Gap Between Models and Code. In an ideal world, require-
ments and domain models are clearly visible in the implementation of a soft-
ware system. In reality, most mainstream programming languages seem to be
ill-equipped to represent domain concepts in a concise way, leading to a prolif-
eration of DSLs. Internal DSLs, for example, “fluent interfaces” that exploit the
syntax of a host language, are often less fluent and readable than they should
be. External DSLs (i.e. with their own dedicated syntax) can lead to a “soup”
of heterogeneous code that is hard to navigate, understand, and analyse.

MDD represents another important trend, in which high-level models are
typically transformed to implementations, but such “model compilers” tend to
pay off only in well-understood domains where changes in requirements can be
well-expressed by corresponding changes to models.

Mainstream IDEs are Glorified Text Editors. Although software developers
spend much of their time reading and analyzing code, mainstream IDEs mostly
treat source code as text. In general, the IDE is not aware of application or tech-
nical domain concepts, and does not help the developer to formulate domain-
specific queries or custom analyses, such as: Where is this feature implemented?
Will this change impact the system architecture? Who is an expert on this part of
the code? Similarly classical development tools belonging to the IDE are unaware
of the application domain. A classical example is the interactive debugger, which
offers a uniform interface to debugging based on the run-time stack, without any
knowledge of the underlying application domain. Although popular IDEs offer
plugin architectures that allow third-party developers to integrate new tools into
the IDE, the barrier to building such tools remains relatively high, and the appli-
cation domain models of the underlying code base remain relatively inaccessible.

Programming Languages and Tools Live in a Closed World. Mainstream pro-
gramming languages assume the world is closed and frozen. Static type systems,
for example, assume that the type of an entity is fixed and will never change or
evolve. When a type changes, the entire world must change with it. In reality,
complex software systems have to cope with evolving and possibly inconsistent
entities. Another symptom is the strict divide between “compile time” and “run
time” in mainstream programming. For example, it is not possible to navigate
seamlessly from a feature of a running system to the code that implements it.
Finally, we see that developers often resort to web search engines and dedicated
Q&A fora to answer questions that the IDE cannot. We need to acknowledge
that code lives within a much larger ecosystem than the current code base.

In this essay we argue that we should revisit the object-oriented paradigm to
address these issues by adopting the maxim that “Programming is Modeling.”
We further propose a number of research challenges along the following lines:



The Death of Object-Oriented Programming 5

1. Bring models closer to code by expressing queryable and manipulable domain
models directly in source code;

2. Exploit domain models in the IDE to enable custom analyses by developers;
3. Link the code to its ecosystem and monitor them both to steer their evolution.

Caveat: we apologize in advance for referencing only little of the vast amount
of relevant related work.1

2 Bring Models Closer to Code

When we develop and evolve code, we need to comprehend the relationships
between requirements that refer to domain models, and the underlying code that
realizes those requirements. Ideally we want to see domain concepts directly in
the code. We therefore argue that a program should not just serve to specify an
implementation of a set of requirements, but it should encode domain models
suitable for querying and analysis.

This, we believe, was one of the early promises of object-oriented program-
ming as expressed in the 1980s. Nowadays, however, complex software systems
are implemented as a soup of mainstream and domain-specific languages. DSLs
can be used to address either technical or application domains. Typically several
DSLs are needed to address a complex application. Despite the availability of
many dedicated DSLs, important aspects of a software system may not be explic-
itly modeled at all. Notoriously, architectural constraints are implemented with
the help of frameworks and architectural styles, but rarely represented explicitly
or checked as the system evolves.

Introducing ever more DSLs is not a solution. Having many external DSLs
complicates program comprehension and makes it difficult for tools to reason
about the relationships between them.2

Internal (or embedded) DSLs are hard to achieve because (1) the syntax of
many mainstream object-oriented languages does not support well the design of
truly fluent interfaces (with some notable exceptions, such as Smalltalk, Ruby,
Scala, ...), and (2) design methods emphasize the development of “fluent inter-
faces,” so they can be hard to achieve post hoc.

We think that many of these problems have their roots in a fundamental mis-
understanding of the object-oriented paradigm. While the imperative program-
ming paradigm can be summarized as programs = algorithms + data structures,
object-oriented programming is often explained (following Alan Kay [8][p 78]) as
programs = objects + messages. While this is not incorrect, it is a mechanistic
interpretation that misses the key point.

In our view, the object-oriented paradigm is better expressed as: “design your
own paradigm” (i.e. programming is modeling). A well-designed object-oriented

1 A representative selection of related work can be found in the research plan of our
SNSF project, “Agile Software Analysis”: http://scg.unibe.ch/research/snf16.

2 Coping with this complexity is one of the goals of the GEMOC initiative [6]. See
http://gemoc.org.

http://scg.unibe.ch/research/snf16
http://gemoc.org


6 O. Nierstrasz

system consists of objects representing exactly the domain abstractions that
are needed for your application and suitable operations over them (if you like, a
many-sorted algebra). Code can be separated into the objects (or “components”)
representing domain concepts, and scripts that configure them [1].

We therefore posit as a challenge to revive object-oriented programming by
viewing OO languages as modeling languages, not just implementation languages.
Rather than viewing DSLs and MDD as the competition, we should encourage
the use of OO languages as modeling tools, and even as language workbenches
for developing embedded DSLs.3

3 Exploit Domain Models in the IDE

Although developers are known to spend much of their development time read-
ing and analyzing code, mainstream IDEs do not do a good job of supporting
program comprehension. IDEs are basically glorified text editors.

Developers need custom analyses to answer the questions that arise during
typical development tasks [7,16]. Building a dedicated analysis tool is expensive,
even using a plugin architecture such as that of Eclipse. Dedicated analysis
platforms like Moose [12] and Rascal [9] reduce the cost of custom queries, but
they rely on the existence of a queryable model of the target software.

As we have seen in the previous section, even though we would like to see
programs as models, they are not in a form useful for querying and analysis, so
we need to do extra work to extract these models and work with them.

We see two important challenges. The first is “Agile Model Extraction”, i.e.
the ability to efficiently extract models from source code. This is not just a
problem of parsing heterogeneous code and linking concepts encoded in different
languages (e.g. Java, SQL, XML), but also of recognizing concepts coming from
numerous and intertwined domain models. We are experimenting with approxi-
mate parsing technology, inexpensive heuristics, and other techniques [10,13] to
quickly and cheaply extract models from heterogeneous source code.

The second challenge is “Context-Aware Tooling”, i.e. the ability to cheaply
construct dedicated, custom analyses and tools that close the gap between IDEs
and application software. The key idea is, once we have access to the underlying
domain model of code (whether it is offered by the underlying infrastructure
or obtained by Agile Model Extraction), to make it easy to exploit that model
in tools used by developers to produce code, browse and query it, analyze it and
debug it. On the one hand, generic core functionality is needed for querying and
navigating models. On the other hand, tools and environments need to be aware
of the context of the domain model of the code under study so they can adapt
themselves accordingly.

An example is the “moldable debugger” which, instead of presenting only a
generic stack-based interface to the run-time environment, is aware of relevant
domain concepts, such as notifications in an event-driven system, or grammar
3 See, for example, Helvetia, a workbench for integrating DSLs into the IDE and

toolchain of the host language [15].



The Death of Object-Oriented Programming 7

Fig. 1. A domain-specific debugger for PetitParser. The debugging view displays rel-
evant information for debugging parsers ((4) Input, (5) Production structure). Each
widget loads relevant debugging operations (1, 2, 4).

rules in a parser [4]. In Fig. 1 we see a screenshot of a domain-specific debugger
for PetitParser, a parser combinator framework for Pharo Smalltalk [14]. Each
widget of the debugger is context-sensitive and loads the appropriate debugging
operations for the current context. The debugger is aware of a grammar’s pro-
duction rules and is capable, for example, of stepping to the next production or
the next parser failure, rather than simply to the next expression, statement or
method. Custom visualizations are also loaded to display the production struc-
ture in a suitable way. Custom debuggers can be defined in a straightforward way
by leveraging the explicit representation of the underlying application domain.

The same principles have been applied to the “moldable inspector,” a
context-aware tool for querying and exploring an object space [5]. Domain-
specific views are automatically loaded depending on the entities being inspected.
As with the moldable debugger, custom views are commonly expressed with just
a few lines of code.

In the long run we envision a development environment in which we are not
forced to extract models from code, but in which the code is actually a model
that we can interact with, query and analyze.

4 Link the Code to Its Ecosystem

Conventional software systems are trapped behind a number of artificial barri-
ers. The most obvious is the barrier between the source code and the running
application. This is manifested in the usual program/compile/run cycle. This



8 O. Nierstrasz

makes it difficult to navigate between application features and source code. The
debugger is classically the only place where the developer can navigate between
the two worlds. It does not have to be that way, as seen in the Morphic frame-
work of Self, in which one may navigate freely between user interface widgets and
the source code related to them [11]. (This is just one dramatic manifestation of
“live programming”, but perhaps one of the most important ones for program
comprehension.)

A second barrier is that between a current version of a system and other
related versions. In order to extract useful information about the evolution of
the system, one must resort to “mining software repositories”, but this possibility
is not readily available to average developers who do not have spare capacity to
carry out such studies. Furthermore, different versions cannot normally co-exist
within a single running system, complicating integration and migration. (There
has been much interesting research but not much is available for mainstream
development.)

A third barrier exists between the system under development and the larger
ecosystem of related software. Countless research efforts in the past decade have
shown that, by mining the ecosystem, much useful knowledge can be gleaned
about common coding practices, bugs and bug fixes, and so on. Unfortunately
this information is not readily accessible to developers, so they often turn instead
to question and answer fora.

We see two main challenges, namely “Ecosystem Mining” and “Evolution-
ary Monitoring.” By mining software ecosystems and offering platforms to ana-
lyze them [2], we hope to automatically discover intelligence relevant to a given
project. Examples are opportunities for code reuse, automatically-generated and
evolving documentation, and usage information than can influence maintainers
of libraries and frameworks.

Evolutionary monitoring refers to steering the evolution of a software system
by monitoring stakeholder needs. An example of this is architectural monitor-
ing [3] which formalizes architectural constraints and monitors conformance as
the application evolves. Other examples include tracking the needs of stake-
holders (i.e. both developers and users) to determine chronic pain points and
opportunities for improvements; tracking technical debt to assess priorities for
reengineering and replacement; and monitoring technical trends, especially with
respect to relevent technical debt.

In the long run, we envision a development environment that integrates not
just the current code base and the running application, enabling easy naviga-
tion between them, but also knowledge mined from the evolution of the software
under development as well as from the software ecosystem at large. The develop-
ment environment should support active monitoring of the target system as well
as the ecosystem to identify and assess opportunities for code improvements.

5 Conclusion

Object-oriented programming has fulfilled many of its promises. Software sys-
tems today are longer-lived and more amenable to change and extension than



The Death of Object-Oriented Programming 9

ever. Nevertheless we observe that object orientation is slowly dying, with the
introduction of ever more complex and heterogeneous systems.

We propose to rejuvenate object-oriented programming and let ourselves be
guided by the maxim that “programming is modeling.” We need programming
languages, tools and environments that enable models to be directly expressed
in code in such a way that they can be queried, manipulated and analyzed.

Acknowledgments. We thank Mircea Lungu for his comments on an early draft of
this essay. We also gratefully acknowledge the financial support of the Swiss National
Science Foundation for the project “Agile Software Analysis” (SNSF project No.
200020-162352, Jan 1, 2016 - Dec. 30, 2018), and its predecessor, “Agile Software
Assessment” (SNSF project No. 200020-144126/1, Jan 1, 2013 - Dec. 30, 2015).

References

1. Achermann, F., Nierstrasz, O.: Applications = components + scripts—a tour of
piccola. In: Aksit, M. (ed.) Software Architectures and Component Technology,
pp. 261–292. Kluwer, Alphen aan den Rijn (2001)

2. Caracciolo, A., Chiş, A., Spasojević, B., Lungu, M.: Pangea: a workbench for sta-
tically analyzing multi-language software corpora. In: 2014 IEEE 14th Interna-
tional Working Conference on Source Code Analysis and Manipulation (SCAM),
pp. 71–76. IEEE, September 2014

3. Caracciolo, A., Lungu, M., Nierstrasz, O.: A unified approach to architecture con-
formance checking. In: Proceedings of the 12th Working IEEE/IFIP Conference
on Software Architecture (WICSA), pp. 41–50. ACM Pres, May 2015

4. Chiş, A., Denker, M., Gı̂rba, T., Nierstrasz, O.: Practical domain-specific debuggers
using the moldable debugger framework. Comput. Lang. Syst. Struct. 44(Part A),
89–113 (2015). Special issue on the 6th and 7th International Conference on Soft-
ware Language Engineering (SLE 2013 and SLE 2014)

5. Chiş, A., Gı̂rba, T., Nierstrasz, O., Syrel, A.: The moldable inspector. In:
Proceedings of the ACM International Symposium on New Ideas, New Paradigms,
and Reflections on Programming and Software. ACM, New York (2015) (Onward!
2015, page to appear)

6. Combemale, B., Deantoni, J., Baudry, B., France, R.B., Jézéquel, J.-M., Gray, J.:
Globalizing modeling languages. Computer 47(6), 68–71 (2014)

7. Fritz, T., Murphy, G.C.: Using information fragments to answer the questions
developers ask. In: Proceedings of the 32nd ACM/IEEE International Conference
on Software Engineering, vol. 1, ICSE 2010, pp. 175–184. ACM, New York (2010)

8. Kay, A.C.: The early history of Smalltalk. In: ACM SIGPLAN Notices, vol. 28,
pp. 69–95. ACM Press, March 1993

9. Klint, P., van der Storm, T., Vinju, J.: RASCAL: A domain specific language
for source code analysis and manipulation. In: Ninth IEEE International Working
Conference on Source Code Analysis and Manipulation, SCAM 2009, pp. 168–177
(2009)

10. Kurš, J., Lungu, M., Nierstrasz, O.: Bounded seas. Comput. Lang. Syst. Struct.
44(Part A), 114–140 (2015). Special issue on the 6th and 7th International
Conference on SoftwareLanguage Engineering (SLE 2013 and SLE 2014)



10 O. Nierstrasz

11. Maloney, J.H., Smith, R.B.: Directness and liveness in the morphic user interface
construction environment. In: Proceedings of the 8th Annual ACM Symposium on
User Interface and Software Technology, UIST 1995, pp. 21–28. ACM, New York
(1995)

12. Nierstrasz, O., Ducasse, S., Gı̂rba, T.: The story of Moose: an agile reengineering
environment. In: Proceedings of the European Software Engineering Conference
(ESEC/FSE 2005), pp. 1–10. ACM Press, New York, September 2005 (invited
paper)

13. Nierstrasz, O., Kurš, J.: Parsing for agile modeling. Sci. Comput. Program.
97(Part 1), 150–156 (2015)

14. Renggli, L., Ducasse, S., Gı̂rba, T., Nierstrasz, O.: Practical dynamic grammars
for dynamic languages. In: 4th Workshop on Dynamic Languages and Applications
(DYLA 2010), Malaga, Spain, pp. 1–4, June 2010

15. Renggli, L., Gı̂rba, T., Nierstrasz, O.: Embedding languages without breaking
tools. In: D’Hondt, T. (ed.) ECOOP 2010. LNCS, vol. 6183, pp. 380–404. Springer,
Heidelberg (2010)

16. Sillito, J., Murphy, G.C., De Volder, K.: Asking and answering questions during a
programming change task. IEEE Trans. Softw. Eng. 34, 434–451 (2008)


	The Death of Object-Oriented Programming
	1 Introduction
	2 Bring Models Closer to Code
	3 Exploit Domain Models in the IDE
	4 Link the Code to Its Ecosystem
	5 Conclusion
	References


